Home The crystal structure of 1-dodecylpyridin-1-ium bromide monohydrate, C17H32BrNO
Article Open Access

The crystal structure of 1-dodecylpyridin-1-ium bromide monohydrate, C17H32BrNO

  • Yanwen Sun , Zhen Chen ORCID logo EMAIL logo and Xiaozhong Wang
Published/Copyright: April 26, 2021

Abstract

C17H32BrNO, triclinic, P1 (no. 2), a = 5.344(3) Å, b = 7.871(5) Å, c = 23.614(15) Å, α = 95.990(12)°, β = 95.747(12)°, γ = 98.386(12)°, V = 970.5(11) Å3, Z = 2, Rgt(F) = 0.0550, wRref(F2) = 0.1527, T = 293(2) K.

CCDC no.: 1983264

The asymmetric unit of the title crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless needle
Size:0.25 × 0.10 × 0.10 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:2.12 mm−1
Diffractometer, scan mode:Bruker,
θmax, completeness:25.0°, 99%
N(hkl)measured, N(hkl)unique, Rint:4817, 3382, 0.031
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 1876
N(param)refined:182
Programs:Bruker [1], SHELX [2], [3], Olex2 [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Br10.46294 (11)0.82802 (8)0.12404 (3)0.0721 (3)
C10.3469 (11)0.3466 (7)0.0733 (2)0.0618 (15)
H10.50610.41570.07810.074*
C20.1999 (12)0.3378 (8)0.0239 (2)0.0715 (17)
H20.25030.4032−0.00480.086*
C3−0.0312 (12)0.2276 (8)0.0166 (3)0.0756 (17)
H3−0.13570.2129−0.01800.091*
C4−0.1043 (11)0.1404 (8)0.0613 (3)0.0706 (16)
H4−0.26230.07010.05740.085*
C50.0521 (11)0.1560 (7)0.1107 (2)0.0579 (14)
H50.00470.09460.14050.070*
C60.4453 (11)0.2851 (8)0.1721 (2)0.0719 (17)
H6A0.44720.17340.18590.086*
H6B0.61780.32960.16560.086*
C70.3634 (11)0.4049 (7)0.21697 (19)0.0633 (15)
H7A0.19180.36050.22410.076*
H7B0.36190.51720.20360.076*
C80.5425 (11)0.4241 (8)0.2723 (2)0.0740 (17)
H8A0.54230.31100.28510.089*
H8B0.71390.46550.26440.089*
C90.4765 (12)0.5454 (7)0.3204 (2)0.0686 (16)
H9A0.30400.50640.32810.082*
H9B0.48270.66010.30850.082*
C100.6566 (12)0.5549 (9)0.3746 (2)0.0807 (19)
H10A0.82950.58970.36630.097*
H10B0.64600.44060.38700.097*
C110.5988 (12)0.6840 (8)0.4244 (2)0.0759 (18)
H11A0.61030.79860.41220.091*
H11B0.42580.64960.43270.091*
C120.7776 (12)0.6916 (8)0.4777 (2)0.0774 (18)
H12A0.95030.72620.46920.093*
H12B0.76670.57660.48960.093*
C130.7221 (11)0.8207 (8)0.5288 (2)0.0752 (18)
H13A0.73380.93590.51710.090*
H13B0.54960.78630.53740.090*
C140.9011 (12)0.8258 (8)0.5812 (2)0.0774 (18)
H14A1.07350.85930.57240.093*
H14B0.88880.71050.59280.093*
C150.8496 (12)0.9539 (9)0.6323 (2)0.0819 (19)
H15A0.85931.06850.62030.098*
H15B0.67740.91930.64110.098*
C161.0293 (14)0.9634 (9)0.6856 (2)0.091 (2)
H16A1.20190.99640.67690.109*
H16B1.01750.84940.69830.109*
C170.9764 (16)1.0943 (12)0.7354 (3)0.129 (3)
H17A0.97591.20580.72250.193*
H17B1.10691.10260.76710.193*
H17C0.81361.05510.74750.193*
N10.2765 (8)0.2612 (5)0.11630 (17)0.0530 (11)
O1W0.9057 (7)0.5792 (5)0.12690 (19)0.0942 (14)
H1WA0.79050.64310.12610.113*
H1WB1.04830.64230.12610.113*

Source of material

The title compound was synthesized by heating 1-bromododecane in pyridine at reflux for 3 h. Excess pyridine was removed under reduced pressure and the resulting solid dissolved in a minimum of CHCl3. Pouring this liquid slowly into stirring ethyl acetate resulted in the formation of a white solid, which was subsequently filtered and recrystallized from methanol. The solid was dissolved in water and left to slowly evaporate, affording colourless needles of the title compound.

Experimental details

The structure was solved by Direct Methods with SHELX [2]. All H-atoms were positioned geometrically and refined using a riding model with d(C–H) = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic, 0.97 Å, Uiso = 1.2Ueq (C) for CH2, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 hydrogen atoms and d(O–H) = 0.85 Å, Uiso = 1.2Ueq (O) for H2O. Restraints were applied to the displacement parameters of C2, C3, C6, C7, C8, C9, C16, C17 to approximate typical behaviour.

Comment

In recent years, all kinds of ionic liquids, especially imidazolium and pyridinium ionic liquids have attracted extensive attention and research interest, because these long-chain amphiphilic salts not only are surface-active, but also can form a new class of liquid crystals materials in suitable solvents, which combine the characteristics of ionic liquids and thermotropic liquid crystals [5]. They can be used as ionic conducting material, organic reaction solvent, functional nanomaterial template and ordered membrane [6], [7], [8], [9]. The characteristics of their crystal structures are very important for the application of these materials and many crystal structures have been reported. However, there is no report of the crystal structure of the 1-dodecylpyridinium bromide monohydrate.

The asymmetric unit of the title compound (see the Figure) comprises the desired alkyl pyridinium cation with a bromide counter anion and a water molecule. The hydrophobic C12 alkyl chain has a trans-planar arrangement. The C–C bond lengths found in the hydrocarbon chain are between 1.479(7)A-1.575(7) and the C–C–C bond angles are between 110.7(5) and 114.6(5)°. These values are close to those found in 1-dodecylpyridinium chloride monohydrate [10] and 1-tetradecylpyridinium bromide monohydrate [11]. The dihedral angle formed between the alkyl chain and the pyridinium ring is 78.29(20)°, slightly less than the 79.16° seen in 1-dodecylpyridinium chloride monohydrate [10], and different to the 52.73(7)° seen in 1-tetradecylpyridinium bromide monohydrate [11]. The torsion angles in the hydrocarbon chain show that the largest deviation from the trans-conformation is 179.8(5)° for N–C6–C7–C8 slightly greater than the 179.0(4)° seen in 1-dodecylpyridinium chloride monohydrate [10] and 177.00(18)° seen in 1-tetradecylpyridinium bromide monohydrate [11]. The compound has a lipid bilayered structure and water molecules participate in the formation of the structure which is consistent with similar structures. The bromide ion accepts a weak hydrogen bond [O1W···Br1 = 3.284(4) Å and O1W–H1WA···Br1 = 179.6°] from the water molecule and symmetry links it to another water molecule [O1···Br1i = 3.328(4) Å and <(O1W–H1WB···Br1i) = 179.6 (i = 1 + X, +Y, +Z)], forming an infinite O–H···Br hydrogen bonded chain in the (100) direction. In addition, there are four non-classical hydrogen bonds between C–H donors and the water molecule or bromide anion. Two of these interactions involve the methylene group attached directly to the pyridinium nitrogen whilst two involve pyridinium C–H groups which is different from 1-tetradecylpyridinium bromide monohydrate.


Corresponding author: Zhen Chen, School of Chemistry and Chemical Engineering, Hebei Normal University for Nationalities, Higher Education Park, Chengde067000, P. R. China, E-mail:

Funding source: Natural Science Foundation of Hebei Province

Award Identifier / Grant number: B2018101017

Funding source: Scientific and technological research project of institutions of higher education in Hebei Province

Award Identifier / Grant number: QN2019315

Award Identifier / Grant number: BJ2019205

Funding source: Hebei Normal University

Award Identifier / Grant number: QN2017001

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Natural Science Foundation of Hebei Province (grant No. B2018101017); Scientific and technological research project of institutions of higher education in Hebei Province (QN2019315, BJ2019205) and the 2017 fund project of Hebei Normal University for Nationalities (grant No. QN2017001).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SADABS, SAINT and SMART; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.Search in Google Scholar

2. Sheldrick, G. M. Shelxs-97, Program for X-ray Crystal Structure Determination; University of Gottingen: Gottingen, Germany, 1997.Search in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Goossens, K., Lava, K., Bielawski, C. W., Binnemans, K. Ionic liquid crystals: versatile materials. Chem. Rev. 2016, 116, 4643–4807; https://doi.org/10.1021/cr400334b.Search in Google Scholar PubMed

6. Yildirim, A., Szymoniak, P., Sentker, K., Butschies, M., Bühlmeyer, A., Huber, P., Schönhals, A. Dynamics and ionic conductivity of ionic liquid crystals forming a hexagonal columnar mesophase. Phys. Chem. Chem. Phys. 2019, 20, 5626–5635.10.1039/C7CP08186CSearch in Google Scholar

7. Lee, C. K., Huang, H. W., Lin, I. J. Simple amphiphilic liquid crystalline N-alkylimidazolium salts. a new solvent system providing a partially ordered environment. Chem. Commun. 2000, 19, 1911–1912; https://doi.org/10.1039/b004462h.Search in Google Scholar

8. Kang, X., Sun, X., Han, B. Synthesis of functional nanomaterials in ionic liquids. Adv. Mater. 2016, 28, 1011–1030; https://doi.org/10.1002/adma.201502924.Search in Google Scholar PubMed

9. Carmichael, A. J., Hardacre, C., Holbrey, J. D., Nieuwenhuyzen, M., Seddon, K. R. Molecular layering and local order in thin films of 1-alkyl-3-methylimidazolium ionic liquids using X-ray reflectivity. Mol. Phys. 2001, 99, 795–800; https://doi.org/10.1080/00268970010012301.Search in Google Scholar

10. Vongbupnimit, K., Noguchi, K., Okuyama, K. 1–Dodecylpyridinium chloride monohydrate. Acta Crystallogr. 1995, C51, 1940–1941; https://doi.org/10.1107/s0108270195004537.Search in Google Scholar

11. Jordan, D. K., Kitchen, J. A., Hegh, D. Y., Brooker, S., Tan, E. W. 1–Tetradecylpyridinium bromide monohydrate. Acta Crystallogr. 2008, E64, o2457; https://doi.org/10.1107/s1600536808039020.Search in Google Scholar

Received: 2021-03-18
Accepted: 2021-04-08
Published Online: 2021-04-26
Published in Print: 2021-07-27

© 2021 Yanwen Sun et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of poly[(μ2-aqua-tetraaqua-(μ3-glutarato-κ4O,O′:O′:O′′)-(μ5-glutarato-κ6O:O,O′:O′:O′′:O′′′)distrontium(II)], C10H22O13Sr2
  4. The crystal structure of acetato-κ1O-{(2-(2-(2-aminophenoxy)ethoxy)phenyl)(4-oxo-4-phenylbut-2-en-2-yl)amido-κ2N,N′,O}copper(II), C26H26CuN2O5
  5. Crystal structure of dimethanolato-k2O:O-bis(1-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κN)-bis(thiocyanato-κN)dicopper(II), C34H32Cu2N12O2S2
  6. Crystal structure of poly[diaqua-bis(μ2-3-(pyrimidin-5-yl)benzoato-κ2N:O)cobalt(II)] dihydrate, [Co(C11H11O2N2)2(H2O)2]
  7. Crystal structure of bis(3,3-dimethyl-1-phenylbut-1-en-2-yl)(trimethylsilyl)amido-k1N)zinc(II), Zn(C15H24NSi)2
  8. Crystal structure of catena-poly[(μ2-methanolato-κ2O:O)-(μ2-1-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κ2N:N′)-(thiocyanato-κ1N)copper(II)] 0.25 hydrate, C17H16CuN6OS ⋅ 0.5H2O
  9. The crystal structure of 2-amino-5-nitroanilinium iodide monohydrate, C6H8IN3O2
  10. The crystal structure of 3-amino-5-carboxypyridin-1-ium perchlorate monohydrate, C6H9ClN2O7
  11. Crystal structure of 7-hydroxy-2,4-dimethoxy-9,10-dihydrophenanthrene from Arundina graminifolia, C16H16O3
  12. Crystal structure of 6,6′-((1E, 1′E)-(((1R, 2R)-1,2-diphenylethane-1,2-diyl) bis(azanylylidene))bis(methanylylidene))bis(2-ethylphenol), C32H32N2O2
  13. The crystal structure of 2-amino-5-carboxypyridin-1-ium iodide monohydrate, C6H9IN2O3
  14. The crystal structure of 2-(3,5-difluorophenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C16H11BF2N2
  15. Crystal structure of bis{(2-pyridinyl)-1-phenyl-1-isopropylmethanolato-κ2N,O}nickel, C30H32N2NiO2
  16. Crystal structure of poly[(m3-3-carboxyadamantane-1-carboxylato-κ3O:O′:O″)-(phenanthroline-κ2N,N′)sodium(II)], C24H23N2NaO4
  17. Crystal structure of 2-phenylethynyl-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C22H20B2F4N4
  18. Crystal structure of 4-tert-butyl-2-N-(2-pyridylmethyl)aminophenol, C16H20N2O
  19. The crystal structure of (3Z,3′Z)-4,4′-((1,4-phenylenebis(methylene))bis(azanediyl))bis(pent-3-en-2-one), C18H24N2O2
  20. Crystal structure of (morpholine-1-carbodithioato-κ2-S,S′)bis(triphenylphosphine-κ-P)gold(I), C41H38AuNOP2S2
  21. Crystal structure of 1,4-bis(4-bromobenzyl)-4-(4-chlorophenyl)-1,4-dihydropyridine-3-carbonitrile, C26H19Br2ClN2
  22. The crystal structure of fac-tricarbonyl (N′-benzoyl-N,N-diphenylcarbamimidothioato-κ2S,O)-(pyrazole-κN)rhenium(I) — methanol (1/1) C26H23O4N4SRe
  23. The crystal structure of Ba2Mn(SeO3)2Cl2 containing 1[Mn(SeO3)2Cl2]4− chains
  24. Crystal structure of 3,3′,3″-((1E,1′E,1″E)-((nitrilotris(ethane-2,1-diyl))tris(azaneylylidene)) tris(methaneylylidene))tris(4-hydroxy-1-naphthaldehyde) monohydrate, C42H36N4O6·H2O
  25. The crystal structure of 4-(6-acetyl-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidin-7-yl)benzonitrile, C14H12N6O
  26. Crystal structure of benzo[d][1,3]dioxol-5-yl-2-(6-methoxynaphthalen-2-yl)propanoate, C21H18O5
  27. The crystal structure of ethyl 5-methyl-7-(4-(phenylthio)phenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate, C20H19N5O2S
  28. Crystal structure of N′,N‴-((propane-2,2-diylbis(1H-pyrrole-5,2-diyl))bis(methaneylylidene))-di(isonicotinohydrazide)– water – dimethylformamide (1/4/2), C25H24N8O2·4H2O·2C3H7NO
  29. Synthesis and crystal structure of 4-(2,4-dinitrophenoxy)benzaldehyde, C13H8N2O6
  30. The crystal structure of 1-dodecylpyridin-1-ium bromide monohydrate, C17H32BrNO
  31. Crystal structure of (E)-amino(2-(4-(dimethylamino)benzylidene)hydrazineyl)methaniminium nitrate, C10H16N6O3
  32. Crystal structure of (E)-(2-((1H-pyrrol-2-yl)methylene)hydrazineyl)(amino)methaniminium nitrate monohydrate, C6H12N6O4
  33. The crystal structure of hexakis(1-propylimidazole-κ1N)copper(II) dichloride, C36H60Cl2CuN12
  34. The crystal structure of bis{(μ2-3,3-dimethyl-1-phenylbut-1-en-2-yl)((dimethylamino)dimethylsilyl)amido-κ3N,N′:N′}dilithium, C32H54Li2N4Si2
  35. The crystal structure of methyl 4-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  36. Crystal structure of (E)-N-(1-((2-chlorothiazol-5-yl)methyl)pyridin-2(1H)-ylidene)-2,2,2-trifluoroacetamide, C11H7ClF3N3OS
  37. Crystal structure of N′, N‴-((propane-2,2-diylbis(1H-pyrrole-5,2-diyl))bis (methaneylylidene))di(picolinohydrazide) – water – methanol (1/1/1), C25H24N8O2·H2O·CH3OH
  38. Crystal structure of 3-(2-chloro-benzyl)-7-[4-(2-chloro-benzyl)-piperazin-1-yl]-5,6,8-trifluoro-3H-quinazolin-4-one, C26H21Cl2F3N4O
  39. Crystal structure of N1,N2-bis(2-fluorobenzyl)benzene-1,2-diamine,C20H18F2N2
  40. The crystal structure of 2-(benzo[d][1,3]dioxol-5-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C17H13BN2O2
  41. The crystal structure of 6,6′-((1E,1′E)-hydrazine-1,2-diylidenebis(methaneylylidene)) bis(2-bromo-4-nitrophenol) — dimethylsulfoxide (1/2), C14H8Br2N4O6⋅2(C2H6OS)
  42. Selective biocatalytic synthesis and crystal structure of (2R,6R)-hydroxyketaminium chloride, C13H17Cl2NO2
  43. Crystal structure of bis{tetraaqua-[μ3-1-(4-carboxylatophenyl)-5-methyl-1H-pyrazole-3-carboxylate-κ4N,O,O′,O″] [μ2-1-methyl-1H-pyrazole-3,5-dicarboxylate-κ3N,O:O]dicobalt(II)} dihydrate, C36H44Co4N8O26
  44. Crystal structure of diethyl-2,2′-naphthalene-2,3-diylbis(oxy)diacetate, C18H20O6
  45. Synthesis and crystal structure of poly[(μ3-2-(2-carboxylatophenyl)-1H-benzo[d]imidazole-5-carboxylato-κO,O′:O′;:O″, O″′)-(μ2-1-(4-(1Himidazol-1-yl)phenyl)-1H-imidazole-κ2N:N′)cadmium(II)], C27H18CdN6O4
  46. The crystal structure of catena-poly[diaqua-bis(μ2-2-((2-(2-phenylacetyl)hydrazineylidene)methyl)benzoato-κ2O:O')zinc(II)], C32H30N4O8Zn
  47. The crystal structure of 2-(3,4-dimethoxyphenyl)-2,3-dihydro-1H-naphtho [1,8-de][1,3,2]diazaborinine, C18H17BN2O2
  48. The crystal structure of hexakis(1-ethylimidazole-κ1N)nickel(II) dichloride – 1-ethylimidazole (1/2), C40H64Cl2NiN16
  49. Crystal structure of diaqua-bis(2,4-dinitrophenolato-κ2O,O′)copper(II) 1.5 hydrate, C12H13CuN4O13.5
  50. Crystal structure of N′,N‴-((1E,1′E)-((decane-1,10-diylbis(oxy))bis(2,1-phenylene)) bis(methaneylylidene))di(isonicotinohydrazide), C36H40N6O4
  51. The crystal structure of 2-[(R)-1-(naphthalen-1-yl)ethyl]-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-1(6H)-one, C19H20NO2
  52. Synthesis and crystal structure of (1E,2E)-3-(anthracen-9-yl)-1-(4-methoxyphenyl)prop-2-en-1-one oxime, C24H19NO2
  53. Synthesis and crystal structure of (2E,2′E)-3,3′-(1,3-phenylene)bis(1-(3-bromophenyl)prop-2-en-1-one), C24H16Br2O2
  54. The crystal structure of catena-poly[bis(µ2-1,2-bis((1H-imidazol-1-yl)methyl)benzene- κ2N:N′)-bis(nitrato-κO)copper(II)], C28H28N10O6Cu
  55. Synthesis and crystal structure of the novel chiral acetyl-3-thiophene-5-(9-anthryl)-2-pyrazoline, C23H18N2OS
  56. Crystal structure of (E)-3-(dimethylamino)-1-(thiophen-3-yl)prop-2-en-1-one, C9H11NOS
  57. Crystal structure of catena-poly[aqua-(4-iodopyridine-2,6-dicarboxylato-κ3N,O,O′)-(μ2-4-amino-4H-1,2,4-triazole-κ2N:N′) copper(II)], C9H8N5O5CuI
  58. Crystal structure of cyclopropane-1,2,3-triyltris(phenylmethanone), C24H18O3
  59. Crystal structure of bis(amino(thioureido)methaniminium) terephthalate, C12H18N8O4S2
  60. A three-dimensional Eu(III) framework in the crystal structure of dimethylaminium poly[dimethylformamide-κ1N)bis(μ4-terephthalato-κ4O:O′:O′′:O′′′)europium(III)] monohydrate, C21H25EuN2O10
  61. Crystal structure of 2-methoxyphenyl 2-(6-methoxynaphthalen-2-yl)propanoate, C21H20O4
  62. The crystal structure of Hexakis(diethylamido)dimolybdenum, Mo2(NEt2)6
Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0096/html
Scroll to top button