Home Crystal structure of methyl (E)-3-(4-(2-ethoxy-2-oxoethoxy)phenyl) acrylate, C14H16O5
Article Open Access

Crystal structure of methyl (E)-3-(4-(2-ethoxy-2-oxoethoxy)phenyl) acrylate, C14H16O5

  • Guo Chun-Mei , Yi Lu-Yao , Pan Lei , You Yuan and Nie Xu-Liang ORCID logo EMAIL logo
Published/Copyright: February 1, 2021

Abstract

C14H16O5, triclinic, P1 (no. 2), a = 8.5293(8) Å, b = 11.5626(11) Å, c = 14.2196(13) Å, α = 88.888(10)°, β = 74.988(10)°, γ = 87.556(10)°, V = 1353.2(2) Å3, Z = 4, Rgt(F) = 0.0430, wRref(F2) = 0.1202, T = 296(2) K.

CCDC no.: 2056369

The molecular structure is shown in the Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colorless block
Size:0.20 × 0.17 × 0.15 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.10 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
θmax, completeness:25.5°, 99%
N(hkl)measured, N(hkl)unique, Rint:10,485, 5000, 0.021
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3803
N(param)refined:348
Programs:Bruker [1], SHELX [2], [, 3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.5279 (2)−0.03036 (15)0.83500 (13)0.0583 (5)
H10.5195−0.02090.90090.070*
C20.4461 (2)0.04737 (15)0.78830 (13)0.0591 (5)
H20.38400.10860.82230.071*
C30.4571 (2)0.03348 (14)0.69001 (12)0.0488 (4)
C40.5508 (2)−0.05755 (14)0.63956 (12)0.0524 (4)
H40.5586−0.06700.57370.063*
C50.6323 (2)−0.13374 (14)0.68744 (12)0.0523 (4)
H50.6954−0.19430.65300.063*
C60.6226 (2)−0.12251 (14)0.78623 (12)0.0498 (4)
C70.7077 (2)−0.20735 (15)0.83439 (13)0.0545 (4)
H70.7680−0.26510.79460.065*
C80.7106 (2)−0.21326 (16)0.92638 (14)0.0587 (5)
H80.6561−0.15610.96900.070*
C90.7981 (2)−0.30808 (15)0.96279 (13)0.0544 (4)
C100.8606 (3)−0.39440 (18)1.10074 (14)0.0696 (5)
H10A0.9752−0.38231.08330.104*
H10B0.8408−0.46791.07670.104*
H10C0.8202−0.39331.17030.104*
C110.2865 (2)0.19980 (14)0.68563 (13)0.0568 (4)
H11A0.35560.24970.70990.068*
H11B0.20270.17270.74060.068*
C120.2107 (2)0.26569 (14)0.61603 (12)0.0512 (4)
C130.0553 (3)0.43844 (16)0.60416 (15)0.0674 (5)
H13A−0.03530.39930.59140.081*
H13B0.12790.46000.54230.081*
C14−0.0044 (3)0.54338 (17)0.66396 (16)0.0737 (6)
H14A0.08640.58340.67360.111*
H14B−0.07260.52080.72600.111*
H14C−0.06570.59360.63090.111*
C150.8044 (2)0.18059 (16)0.86747 (13)0.0598 (5)
H150.83180.14300.80790.072*
C160.8569 (2)0.13283 (15)0.94355 (13)0.0583 (5)
H160.91980.06420.93510.070*
C170.8157 (2)0.18734 (14)1.03318 (12)0.0507 (4)
C180.7214 (2)0.28931 (15)1.04514 (13)0.0574 (5)
H180.69220.32581.10520.069*
C190.6711 (2)0.33635 (16)0.96771 (13)0.0587 (5)
H190.60860.40510.97630.070*
C200.7111 (2)0.28407 (15)0.87698 (12)0.0529 (4)
C210.6633 (2)0.33272 (16)0.79310 (13)0.0590 (5)
H210.68860.28650.73800.071*
C220.5891 (2)0.43337 (16)0.78423 (13)0.0601 (5)
H220.55630.48180.83780.072*
C230.5575 (2)0.46999 (16)0.69200 (14)0.0585 (5)
C240.4518 (3)0.61708 (17)0.60725 (15)0.0704 (5)
H24A0.55300.62580.55920.106*
H24B0.39430.69080.61870.106*
H24C0.38740.56350.58430.106*
C250.8304 (2)0.18562 (15)1.19728 (12)0.0534 (4)
H25A0.71320.19621.21910.064*
H25B0.87750.26101.19380.064*
C260.8909 (2)0.10903 (15)1.26773 (12)0.0516 (4)
C270.8913 (3)0.09761 (17)1.43497 (13)0.0647 (5)
H27A1.00800.08901.42490.078*
H27B0.84690.02121.44080.078*
C280.8182 (3)0.16530 (18)1.52402 (15)0.0772 (6)
H28A0.86260.24081.51720.116*
H28B0.84200.12631.57920.116*
H28C0.70270.17271.53340.116*
O10.8814 (2)−0.38141 (13)0.91315 (11)0.0909 (5)
O20.77875 (17)−0.30365 (12)1.05856 (9)0.0685 (4)
O30.37976 (15)0.10434 (10)0.63651 (8)0.0579 (3)
O40.21016 (19)0.23713 (12)0.53647 (10)0.0748 (4)
O50.14039 (17)0.36314 (11)0.65826 (9)0.0675 (4)
O60.5950 (3)0.41540 (14)0.61845 (11)0.1085 (7)
O70.48292 (18)0.57381 (11)0.69658 (9)0.0696 (4)
O80.87424 (16)0.13399 (10)1.10454 (8)0.0593 (3)
O90.95911 (18)0.01679 (11)1.25174 (9)0.0709 (4)
O100.85264 (17)0.16062 (10)1.35406 (9)0.0624 (3)

Source of material

The mixtrue of methyl (E)-3-(4-hydroxyphenyl)acrylate (1.78 g, 0.01 mol), ethyl 2-bromoacetate (2.00 g, 0.012 mol), K2CO3 (2.76 g, 0.02 mol) and DMF (10 mL) was reacted at 80 °C for 2 h. After the reaction completed (monitored by TLC), the mixture was poured into 50 mL ice water and a large amount of white product was precipitated. The product was filtered and washed with water three times respectively. The yield was 86% (based on methyl (E)-3-(4-hydroxyphenyl)acrylate). Elemental Anal. Calcd. (%) for C14H16O5(264.27): C, 63.63; H, 6.10. Found (%): C, 61.53; H, 6.27. The crystals were obtained after one week of slow volatilisation at room temperature.

Experimental details

All H atoms were included in calculated positions and refined as riding atoms, with C–H = 0.93 Å with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C) for all other H atoms.

Comment

The p-coumaric acid, (E)-3-(4-hydroxyphenyl) acrylic acid, is a natural phenolic acid of cinnamic acid core structure [5]. p-Coumaric acid is mainly found in fruits, vegetables, grains, and fungi, and is also abundant in Chinese herbal medicines [6], [7], [8], [9]. The pharmacological effects of p-coumaric acid has anti-oxidant, anti-inflammatory, antitumor effects, antiplatelet aggregation, and cardiovascular protection, while the anti-oxidant activities is the important basis of other pharmacological effects [10], [11], [12]. The synthesis and application of p-coumaric acid and its derivatives have attracted much attention [10], [11], [12], [13], [14], [15], [16]. We are committed to the detection and regulation of cosmetics. In order to establish a rapid and effective method for the determination of coumaric acid derivatives, a series of p-coumaric acid derivatives were synthesized.

There are two crystallographic independent molecules in the asymmetric unit (shown in the figure). In the molecules of the title structure bond lengths and angles are very similar to those given in the literature for p-coumaric acid derivatives [17], [, 18]. In the title structure, the parts of methyl p-coumaric acid of molecule A and B were approximately planar. The dihedral angles of molecule A formed by the C1–C6 plane, the carboxylate group O1–C9–O2 plane and the carboxylate group O4–C12–O5 plane were 5.0°, 10.1° and 14.6, respectively, while the dihedral angles of molecule B formed by the C15–C20 plane, the carboxylate group O6–C23–O7 plane and the carboxylate group O9–C26–O10 plane were 6.5°, 6.1° and 1.1°, respectively.


Corresponding author: Nie Xu-Liang, Department of Chemistry/Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang330045, P. R. China, E-mail:

Funding source: Jiangxi key R & D project

Award Identifier / Grant number: 20203BBGL73212

Funding source: Key Research Foundation of Educational Department of Jiangxi Province of China

Award Identifier / Grant number: GJJ200386

Award Identifier / Grant number: GJJ160382

Funding source: Reform of Higher Education Foundation of Jiangxi Province

Award Identifier / Grant number: JXJG-17-3-18

Acknowledgements

X-ray data were collected at Instrumental Analysis Center Nanchang Hangkong University, Nanchang, 330063, People’s Republic of China.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Jiangxi key R & D project (20203BBGL73212), the Key Research Foundation of Educational Department of Jiangxi Province of China (GJJ200386, GJJ160382) and the Reform of Higher Education Foundation of Jiangxi Province (No. JXJG-17-3-18).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2, SAINT and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Ver. 4.0; Crystal Impact: Bonn, Germany, 2015.Search in Google Scholar

5. Wang, D., Miao, X. Y., Guo, X. D., Zhu, J. Preparation of coumaric acid amide derivatives and their application in cosmetics. Chin. J. Chem. 2020, 61, 305–311.Search in Google Scholar

6. Taofiq, O., González-Paramás, A. M., Barreiro, M. F., Ferreira, I. C. F. R. Hydroxycinnamic acids and their derivatives: cosmeceutical significance, challenges and future perspectives, a review. Molecules 2017, 22, 1–24; https://doi.org/10.3390/molecules22020281.Search in Google Scholar

7. Pei, K., Ou, J., Huang, J., Ou, S. Y. p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016, 96, 2952–2962; https://doi.org/10.1002/jsfa.7578.Search in Google Scholar

8. Clifford, M. N. Chlorogenic acids and other cinnamates-nature, occurrence and dietary burden. J. Sci. Food Agric. 1999, 79, 362–372.10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-DSearch in Google Scholar

9. Kim, J. S. Investigation of phenolic, flavonoid, and vitamin contents in different parts of Korean ginseng (Panax ginseng C. A. Meyer). Prev. Nutr. Food Sci. 2016, 21, 263–270; https://doi.org/10.3746/pnf.2016.21.3.263.Search in Google Scholar

10. Chung, I. M., Lim, J. J., Ahn, M. S., Jeong, H. N., An, T. J. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years. J. Ginseng Res. 2016, 40, 68–75; https://doi.org/10.1016/j.jgr.2015.05.006.Search in Google Scholar

11. Pereira, J. A., Oliveira, I., Sousa, A., Valentāo, P., Andrade, P. B., Ferreira, I. C. F. R., Ferreres, F., Bento, A., Seabra, R., Estevinho, L. Walnut (Juglans regia L.) leaves: phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem. Toxicol. 2007, 45, 2287–2295; https://doi.org/10.1016/j.fct.2007.06.004.Search in Google Scholar

12. Cheng, J., Dai, F., Zhou, B., Yang, L., Liu, Z. L. Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: mechanism and structure-activity relationship. Food Chem. 2007, 104, 132–139; https://doi.org/10.1016/j.foodchem.2006.11.012.Search in Google Scholar

13. Camarero, S., Canas, A. I., Nousiainen, P., Record, E., Lomascolo, A., MartÍnez, M. J., MartÍnez, Á. T. p-Hydroxycinnamic acids as natural mediators for laccase oxidation of recalcitrant compounds. Environ. Sci. Technol. 2008, 42, 6703–6709; https://doi.org/10.1021/es8008979.Search in Google Scholar

14. Wang, J. R., Ma, L., Li, W. F., Tang, X. H., Zhao, G., Peng, L. X., Zhao, J. L. Effect of trace elements on the flavonoids and phenolic acids in tartary Buckwheat Sprouts. Acta Agric. Univ. Jiangxiensis 2017, 39, 55–63.Search in Google Scholar

15. Li, X., Zhao, J., Liu, J. X., Li, G., Zhao, Y., Zeng, X. Systematic analysis of absorbed anti-inflammatory constituents and metabolites of Sarcandra glabra in rat plasma using ultra-high-pressure liquid chromatography coupled with linear trap quadrupole orbitrap mass spectrometry. PLoS One 2016, 11, e150063; https://doi.org/10.1371/journal.pone.0150063.Search in Google Scholar PubMed PubMed Central

16. Shailasree, S., Venkataramana, M., Niranjana, S. R., Prakash, H. S. Cytotoxic effect of p-coumaric acid on neuroblastoma, N2a cell via generation of reactive oxygen species leading to dysfunction of mitochondria inducing apoptosis and autophagy. Mol. Neurobiol. 2015, 51, 119–130; https://doi.org/10.1007/s12035-014-8700-2.Search in Google Scholar PubMed

17. Faini, F., Gonzalez, F. S., Labbe, C., Rodilla, J. M., Torres, R., Rocha, P. M., Monache, F. D. Crystal structure of 9-trans-p- coumaroyloxy-α-terpineol, C19H24O4. Z. Kristallogr. NCS 2009, 224, 277–279; https://doi.org/10.1524/ncrs.2009.0122.Search in Google Scholar

18. Jing, L., Ma, H., Li, Q., He, L., Jia, Z. Crystal structure of (1S,4S,5S,8R)-8-nitrooxy-2,6-dioxabicyclo[3.3.0] octan-4-yl-3-(4-acetoxyphenyl)acrylate, C17H17NO9. Z. Kristallogr. NCS 2012, 227, 297–298; https://doi.org/10.1524/ncrs.2012.0138.Search in Google Scholar

Received: 2020-12-17
Accepted: 2021-01-18
Published Online: 2021-02-01
Published in Print: 2021-05-26

© 2021 Guo Chun-Mei et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxidoethylidene)benzohydrazonato-κ5N,O,O′:N′,O′′)hexkis(pyridine-κ1N)trinickel(II) - pyridine (1/1), C63H57Cl2N13Ni3O6
  4. Crystal structure of [(μ2-succinato κ3O,O′:O′′)-bis-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)]dinickel(II)] diperchlorate, dihydrate C36H82Cl2N8Ni2O15
  5. Crystal structure of catena-poly[aquabis(3-nitrobenzoato-κ2O:O′)-(μ2-pyrazine-N: N′)cadmium(II)], C18H14N4O9Cd
  6. Crystal structure of 4-(2,2-difluoroethyl)-2,4,6-trimethylisoquinoline-1,3(2H,4H)-dione, C14H15F2NO2
  7. The crystal structure of thioxanthen-9-one-10,10-dioxide, C13H8O3S – a second polymorph
  8. Crystal structure of (E)-2-((2-methoxy-3-pyridyl)methylene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  9. The crystal structure of diaquahydrogen 2,5-dimethylbenzenesulphonate, C8H14O5S
  10. The crystal structure of N-(4-(cyclohexylimino)pent-2-en-2-yl)cyclohexanamine, C17H30N2
  11. The twinned crystal structure of 1,3-phenylenedimethanaminium dibromide, C8H14Br2N2
  12. Crystal structure of 2,4,7,9-tetranitro-10H-benzofuro[3,2-b]indole – dimethyl sulfoxide (1/1), C16H11N5O10S
  13. Crystal structure of 2,6-bis(2-(pyridin-3-yl)ethyl)pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone, C24H18N4O4
  14. The crystal structure of 3,4-dichlorobenzoic acid chloride, C7H3Cl3O
  15. Crystal structure of 1,1′-(1,4-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-k2S:S)zinc(II), C26H18N6ZnS4
  16. Crystal structure of tetrakis(μ-naphthalene-1-carboxylato-κ2O,O′)bis(methanol)copper(II), C46H36Cu2O10
  17. Crystal structure of 9-methyl-3-methylene-1,2,3,9-tetrahydro-4H-carbazol-4-one, C14H13NO
  18. Crystal structure of bis(amino(carbamothioylamino)methaniminium) 3-nitrophthalate monohydrate, C12H19N9O7S2
  19. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate), C18H24F12N4P2
  20. The crystal structure of 5-hydroxy-6,8-dimethoxy-2-methyl-4H-benzo[g]chromen-4-one– rubrofusarin B, C16H14O5
  21. The crystal structure of bis(ethanol-kO)- bis(6-aminopicolinato-k2N,O)manganese(II), C16H22O6N4Mn
  22. The crystal structure of 3,3′-((carbonylbis(azanediyl))bis(ethane-2,1-diyl)) bis(1-methyl-1H-benzo[d]imidazol-3-ium) tetrafluoroborate monohydrate, C21H28N6O3B2F8
  23. Crystal structure of dimethanol-dichlorido-bis( μ2-2-(((1,5-dimethyl-3-oxo-2- phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato- κ4O:O,O′,N)dinickel (II), C20H24ClNiN3O4
  24. The crystal structure of methyl 5-(trifluoromethyl)-1H-pyrrole-2-carboxylate, C7H6F3NO2
  25. Crystal structure of (OC‐6‐13)‐aqua‐tris (3‐bromopyridine‐κ1N)‐bis(trifluoroacetato‐κ1O)cadmium(II) C19H14Br3CdF6N3O5
  26. Crystal structure of methyl (E)-3-(4-(2-ethoxy-2-oxoethoxy)phenyl) acrylate, C14H16O5
  27. Crystal structure of methyl 4-acetoxy-3,5-dimethoxybenzoate, C12H14O6
  28. The crystal structure of 2-(1H-benzimidazol-2-yl)-3-bromo-5-chlorophenol, C13H8BrClN2O
  29. The crystal structure of bis(μ2-5-chloro-N-(2-methyl-1-oxidopropylidene)-2-oxidobenzohydrazonate-κ5N,O,O′:N′,O′′)pentakis(pyridine-κ1N)tricopper(II), C47H45Cl2N9Cu3O6
  30. Synthesis and crystal structure of catena-poly[aqua-bis(nitrato-κ2O:O′)- (μ2-((1 H-imidazol-1-yl)methyl)benzene-κ2 N,N′)-H2O-κ2O]cadmium(II), C14H16N6O7Cd
  31. The crystal structure of pentakis(carbonyl)-{μ-[2,3-bis(sulfanyl)propan-1-olato]}-(triphenylphosphane)diiron (FeFe)C26H21Fe2O6PS2
  32. Crystal structure of ethyl-2-(3-benzoylthioureido)propanoate, C13H16N2O3S
  33. Crystal structure of 2-methoxy-4b,5,14,15-tetrahydro-6H-isoquinolino[2′,1′:1,6] pyrazino[2,3-b]quinoxaline, C19H18N4O
  34. Crystal structure of 2,2′-[ethane-1,2-diylbis(azanylylidenemethylylidene)]bis(6-chlorophenol), C16H14Cl2N2O2
  35. The crystal structure of (Z)-3-((2-(2-(2-aminophenoxy)ethoxy)phenyl)amino)-1-phenylbut-2-en-1-one, C24H24N2O3
  36. The crystal structure of 10-(3,5-di(pyridin-4-yl)phenyl)-10H-phenoxazine dihydrate, C28H23N3O3
  37. Crystal structure of poly[dipoly[aqua-di(µ2-pyrazin-2-olato-κ2N:N′) zinc(II)], C8H8N4O3Zn
  38. Crystal structure of poly[tetra(μ2-cyanido-κ2N:O)-bis(N,N-dimethylformamide-κO)-manganese(II)-platinum(II)], C10H14MnN6O2Pt
  39. The crystal structure of aqua-chlorido-6,6′-((ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dichlorophenolato-κ4N,N′,O,O′)manganese(III), C16H12Cl5MnN2O3
  40. Crystal structure of [di(µ2-cyanido)-dicyanido-bis(dimethyl sulfoxide-κO)- bis(2,2′-(ethane-1,2-diylbis(azanylylidenemethanylylidene))diphenolato-κ4,N,N′,O,O′)- dimanganese(III)-platinum(II)], C40H40Mn2N8O6PtS2
  41. The crystal structure of (azido)-κ1N-6,6′-((cyclohexane-1,2-diylbis(azanylylidene)) bis(methanylylidene))bis(3-bromophenolato-κ4N,N,O,O)-(methanol)-manganese(III)–methanol(1/1), C22H26Br2MnN5O4
  42. Crystal structure of 7-chloro-N-(4-iodobenzyl)-1,2,3,4-tetrahydroacridin-9-amine, C20H18ClIN2
  43. Crystal structure of catena-poly[(1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N′′′)-bis(μ2-thiocyanato-κ2N:S)-bis(thiocyanato-κS)-nickel(II)palladium(II)], C14H24N8NiPdS4
  44. Crystal structure of 3-chloro-4-(4-ethylpiperazin-1-yl)aniline monohydrate, C12H20ClN3O
  45. Crystal structure of the 2D coordination polymer poly[diaqua-bis(μ2-3- methoxyisonicotinato-κ2N:O)cobalt(II)] — dimethylformamide (1/1), C20H30CoN4O10
  46. Crystal structure of 4-[(5-chloro-2-hydroxybenzylidene)amino]-3-propyl-1H-1,2,4-triazole-5(4H)-thione, C12H13ClN4OS
  47. Crystal structure of N-(5-(2-(benzyl(1-(4-methoxyphenyl)propan-2-yl)amino)-1-hydroxyethyl)-2-(benzyloxy)phenyl)formamide, C33H36N2O4
  48. Crystal structure of 3-(methoxycarbonyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid, C9H12O5
  49. The crystal structure of 1-((dimethylamino)(3-nitrophenyl)methyl)naphthalen-2-ol, C19H18N2O3
  50. Crystal structure of catena-poly[di(μ2-cyanido-κ2C:N)-dicyanido-tetrakis(dimethyl sulfoxide-κO)-manganese(II)-platinum(II)], C12H24MnN4O4PtS4
  51. Crystal structure of 4-amino-N-(2-pyrimidinyl)benzenesulfonamide–1,4-dioxane (1/1), C14H18N4O4S
  52. Crystal structure of bis{1-[(benzotriazol-1-yl)methyl]-1H-1,3-(2-methyl-imidazol)}di-chloridomercury(II), [Hg(C11H11N5)2Cl2], C22H22N10Cl2Hg
  53. Crystal structure of 2, 3-bis((4-methylbenzoyl)oxy) succinic acid–N, N-dimethylformamide (1/1), C23H25NO9
  54. Crystal structure of catena-poly[bis(4-(4-carboxyphenoxy)benzoato-κ1O)-μ2-(1,4-bis(1-imidazolyl)benzene-κ2N:N′)cobalt(II)], C40H28N4O10Co
  55. Crystal structure of 1H-imidazol-3-ium poly[aqua-(μ4-glutarato-κ6O,O′:O′:O′′,O′′′:O′′′)-(nitrato-κ2O,O′)strontium(II)], C8H13N3O8Sr
  56. Crystal structure of (R)-6-(benzo[b]thiophen-5-yl)-2-methyl-2,6-dihydrobenzo [5,6] silino[4,3,2-cd]indole, C23H17NSSi
  57. Crystal structure of catena-poly[bis(μ2-thiocyanato-κ2N:S)-(2-(5-methyl-1H-pyrazol-3-yl)pyridine-κ2N,N′)cadmium(II)]–dioxane (1/1), C15H17CdN5O2S2
  58. Crystal structure of poly[aqua-(μ2-1,4-bis(2′-carboxylatophenoxy)benzene-κ2O:O′)-(μ2-4,4′-bipyridione-κ2N:N′)cadmium(II)] monhydrate, C30H22CdN2O7⋅H2O
  59. Crystal structure of catena-poly[tetraaqua-(μ2-4,4′-bipyridine-k2N:N′)-bis(μ2-4′-methyl-[1,1′-biphenyl]-3,5-dicarboxylato-k4O,O′:O″,O′″)dicadmium(II)] dihydrate, C20H20NO7Cd
  60. Crystal structure of 1‐tert‐butyl‐3‐(2,6‐diisopropyl‐4‐phenoxyphenyl)‐2-methylisothiourea, C24H34N2OS
  61. Crystal structure of catena-poly[triaqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ1O)cobalt(II)] — N,N′-dimethylformamide (1/1), C28H34N8O8Co
  62. Crystal structure of tetraaqua-bis(1,4-di(1H-imidazol-1-yl)benzene-κ1N)manganese(II) 2,3-dihydroxyterephthalate, C32H32MnN8O10
Downloaded on 20.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0634/html
Scroll to top button