Startseite Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and characterisation of alkaline earth-iron(III) double hydroxides

  • Mónika Sipiczki EMAIL logo , Dávid Srankó , Ákos Kukovecz , Zoltán Kónya , Pál Sipos und István Pálinkó
Veröffentlicht/Copyright: 28. September 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Double hydroxides containing alkaline earth and iron(III) ions were synthesised by the co-precipitation method. The solid materials obtained were characterised by a range of instrumental methods (powder X-ray diffractometry, thermogravimetry, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, elemental maps, and infrared spectroscopy). It was found that the Ca(II)Fe(III), Mg(II)Fe(III), and Ba(II)Fe(III) double hydroxides had layered structures, while Sr(II)Fe(III) had not. The optimum conditions for synthesis of Ca(II)Fe(III)-layered double hydroxides (materials to be used in further studies) were also elaborated.

[1] Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcitetype anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173–301. DOI: 10.1016/0920-5861(91)80068-K. http://dx.doi.org/10.1016/0920-5861(91)80068-K10.1016/0920-5861(91)80068-KSuche in Google Scholar

[2] Evans, D. G., & Slade, R. C. T. (2006). Structural aspects of layered double hydroxides. Structure & Bonding, 119, 1–87. DOI: 10.1007/430 005. Suche in Google Scholar

[3] Feitknecht, W., & Gerber, M. (1942). Zur kenntnis der Doppelhydroxyde und basischen Doppelsalze III. Über Magnesium-Aluminiumdoppelhydroxyd. Helvetica Chimica Acta, 25, 131–137. http://dx.doi.org/10.1002/hlca.1942025011510.1002/hlca.19420250115Suche in Google Scholar

[4] Hirahara, H., Sawai, Y., Aisawa, S., Takahashi, S., Umetsu, Y., & Narita, E. (2002). Synthesis and antacid property of Mg-Fe layered double hydroxide. Nendo Kagaku, 42, 70–75. (in Japanese) Suche in Google Scholar

[5] Liang, X., Hou, W., & Xu, J. (2009). Sorption of Pb(II) on Mg-Fe layered double hydroxide. Chinese Journal of Chemistry, 27, 1981–1988. DOI: 10.1002/cjoc.200990333. http://dx.doi.org/10.1002/cjoc.20099033310.1002/cjoc.200990333Suche in Google Scholar

[6] Meng, W., Li, F., Evans, D. G., & Duan, X. (2004). Preparation and intercalation chemistry of magnesium-iron(III) layered double hydroxides containing exchangeable interlayer chlo ride and nitrate ions. Materials Research Bulletin, 39, 1185–1193. DOI: 10.1016/j.materresbull.2004.04.016. http://dx.doi.org/10.1016/j.materresbull.2004.04.01610.1016/j.materresbull.2004.04.016Suche in Google Scholar

[7] Pálinkó, I. (2006). Organic-inorganic nanohybrids of biologically important molecules and layered double hydroxides. Nanopages, 1, 295–314. DOI: 10.1556/Nano.1.2006.3.2. http://dx.doi.org/10.1556/NANO.1.2006.3.210.1556/NANO.1.2006.3.2Suche in Google Scholar

[8] Prasanna, S. V., Kamath, P. V., & Shivakumara, C. (2007). Synthesis and characterization of layered double hydroxides (LDHs) with intercalated chromate ions. Materials Research Bulletin, 42, 1028–1039. DOI: 10.1016/j.materresbull.2006.09.021. http://dx.doi.org/10.1016/j.materresbull.2006.09.02110.1016/j.materresbull.2006.09.021Suche in Google Scholar

[9] Rives, V. (2001). Study of layered double hydroxides by thermal methods. In V. Rives (Ed.), Layered double hydroxides present and future (pp. 127–151). New York, NY, USA: Nova Science Publisher Inc. Suche in Google Scholar

[10] Seida, Y., & Nakano, Y. (2000). Removal of humic substances by layered double hydroxide containing iron. Water Research, 34, 1487–1494. DOI: 10.1016/S0043-1354(99)00295-X. http://dx.doi.org/10.1016/S0043-1354(99)00295-X10.1016/S0043-1354(99)00295-XSuche in Google Scholar

[11] Srankó, D., Pallagi, A., Kuzmann, E., Canton, S. E., Walczak, M., Sápi, A., Kukovecz, Á., Kónya, Z., Sipos, P., & Pálinkó, I. (2010). Synthesis and properties of novel Ba(II)Fe(III) layered double hydroxides. Applied Clay Science, 48, 214–217. DOI: 10.1016/j.clay.2009.11.028. http://dx.doi.org/10.1016/j.clay.2009.11.02810.1016/j.clay.2009.11.028Suche in Google Scholar

[12] Srankó, D., Pallagi, A., Pálinkó, I., Kuzmann, E., Canton, S. E., Walczak, M., & Sipos, P. (2009). Synthesis and structural features of a novel Ba(II)-Fe(III)-layered double hydroxide. In M. Melník, P. Segl’a, & M. Tatarko (Eds.), Insights into coordination, bioinorganic and applied inorganic chemistry (pp. 380–385). Bratislava, Slovakia: Slovak University of Technology Press. Suche in Google Scholar

[13] Srankó, D., Sipiczki, M., Bajnóczi, É. G., Darányi, M., Kukovecz, Á., Kónya, Z., Canton, S. E., Norén, K., Sipos, P., & Pálinkó, I. (2011). A SEM, EDX and XAS characterization of Ba(II)Fe(III) layered double hydroxides. Journal of Molecular Structure, 993, 62–66. DOI: 10.1016/j.molstruc.2010.10.004. http://dx.doi.org/10.1016/j.molstruc.2010.10.00410.1016/j.molstruc.2010.10.004Suche in Google Scholar

[14] Vaccari, A. (1998). Preparation and catalytic properties of cationic and anionic clays. Catalysis Today, 41, 53–71. DOI: 10.1016/S0920-5861(98)00038-8. http://dx.doi.org/10.1016/S0920-5861(98)00038-810.1016/S0920-5861(98)00038-8Suche in Google Scholar

[15] Wang, L., Xu, X., Evans, D. G., Duan, X., & Li, D. (2010). Synthesis and selective IR absorption properties of iminodiacetic-acid intercalated MgAl-layered double hydroxide. Journal of Solid State Chemistry, 183, 1114–1119. DOI:10.1016/j.jssc.2010.03.022. http://dx.doi.org/10.1016/j.jssc.2010.03.02210.1016/j.jssc.2010.03.022Suche in Google Scholar

[16] Woo, M. A., Kim, T.W., Paek, M.-J., Ha, H.-W., Choy, J.-H., & Hwang, S.-J. (2011). Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate. Journal of Solid State Chemistry, 184, 171–176. DOI: 10.1016/j.jssc.2010.11.003. http://dx.doi.org/10.1016/j.jssc.2010.11.00310.1016/j.jssc.2010.11.003Suche in Google Scholar

Published Online: 2011-9-28
Published in Print: 2011-12-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
  2. Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
  3. Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
  4. Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
  5. Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
  6. Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
  7. Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
  8. Extraction of phytosterols from tall oil soap using selected organic solvents
  9. Dynamic simulations of waste water treatment plant operation
  10. Influence of recycling and temperature on the swelling ability of paper
  11. Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
  12. Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
  13. Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
  14. Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
  15. Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
  16. Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
  17. DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
  18. Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
  19. Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
  20. A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
  21. Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
  22. 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0079-1/html
Button zum nach oben scrollen