Home Life Sciences Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
Article
Licensed
Unlicensed Requires Authentication

Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations

  • Yongnian Ni EMAIL logo , Yao Gu and Serge Kokot
Published/Copyright: September 28, 2011
Become an author with De Gruyter Brill

Abstract

A rapid kinetic method for the simultaneous determination of levodopa, dopamine, and dobutamine was examined and developed. It was based on a consecutive reaction of a reduction of Cu(II) to Cu(I) by catecholamines, followed by the complexation of Cu(I) with neocuproine to form a yellow product in an acetic acid-acetate buffer. Spectrophotometric data were recorded at 453 nm (wavelength at the yellow complex absorption maximum) for 300 s. Linear calibrations were obtained in the concentration ranges of (0.08–1.44) × 10−5 mol L−1, (0.08–1.44) × 10−5 mol L−1, and (0.16–1.44) × 10−5 mol L−1 for levodopa, dopamine, and dobutamine, respectively. A variety of multivariate calibration models was developed for simultaneous analysis of the three analytes; while most models produced satisfactory prediction results for synthetic samples, the hybrid linear analysis method was arguably the best-performing (relative prediction error, RPET = 6.6 %). The proposed method was applied to an analysis of spiked rabbit serum samples and the results showed good agreement with the high performance liquid chromatography measurements.

[1] Bahram, M., & Afkhami, A. (2008). Recent applications of kinetic methods in multi-component analysis. Journal of Iranian Chemical Society, 5, 352–366. 10.1007/BF03245989Search in Google Scholar

[2] Berger, A. J., Koo, T.-W., Itzkan, I., & Feld, M. S. (1998). An enhanced algorithm for linear multivariate calibration. Analytical Chemistry, 70, 623–627. DOI: 10.1021/ac970721p. http://dx.doi.org/10.1021/ac970721p10.1021/ac970721pSearch in Google Scholar

[3] Brereton, R. G. (2003). Chemometrics: Data analysis for the laboratory and chemical plant. Chichester, UK: Wiley. 10.1002/0470863242Search in Google Scholar

[4] Chernyshov, D. V., Shvedene, N. V., & Antipova, E. R. (2008). Ionic liquid-based miniature electrochemical sensors for the voltammetric determination of catecholamines. Analytica Chimica Acta, 621, 178–184. DOI: 10.1016/j.aca.2008.05.042. http://dx.doi.org/10.1016/j.aca.2008.05.04210.1016/j.aca.2008.05.042Search in Google Scholar

[5] Fang, H., Li, H., Li, Y., Zhao, J., & Xu, J. (2009). Simultaneous spectrophotometric determination of three tolualdehyde isomers by artificial neural networks and its comparison with partial least squares. Chinese Journal of Chemistry, 27, 546–550. DOI: 10.1002/cjoc.200990089. http://dx.doi.org/10.1002/cjoc.20099008910.1002/cjoc.200990089Search in Google Scholar

[6] Goicoechea, H. C., & Olivieri, A. C. (1999). Determination of bromhexine in cough-cold syrups by absorption spectrophotometry and multivariate calibration using partial leastsquares and hybrid linear analyses. Application of a novel method of wavelength selection. Talanta, 49, 793–800. DOI: 10.1016/S0039-9140(99)00080-6. http://dx.doi.org/10.1016/S0039-9140(99)00080-610.1016/S0039-9140(99)00080-6Search in Google Scholar

[7] Gottwald, M. D., & Aminoff, M. J. (2011). Therapies for dopaminergic-induced dyskinesias in parkinson disease. Annals of Neurology, 69, 919–927. DOI: 10.1002/ana.22423. http://dx.doi.org/10.1002/ana.2242310.1002/ana.22423Search in Google Scholar PubMed

[8] Haaland, D. M., & Thomas, E. V. (1988). Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Analytical Chemistry, 60, 1193–1202. DOI: 10.1021/ac00162a020. http://dx.doi.org/10.1021/ac00162a02010.1021/ac00162a020Search in Google Scholar

[9] Hasani, M., Yaghoubi, L., & Abdollahi, H. (2007). A kinetic spectrophotometric method for simultaneous determination of glycine and lysine by artificial neural networks. Analytical Biochemistry, 365, 74–81. DOI: 10.1016/j.ab.2007.02.010. http://dx.doi.org/10.1016/j.ab.2007.02.01010.1016/j.ab.2007.02.010Search in Google Scholar PubMed

[10] Iversen, S. D., & Iversen, L. L. (2007). Dopamine: 50 years in perspective. Trends in Neuroscience, 30(5), 188–193. DOI: 10.1016/j.tins.2007.03.002. http://dx.doi.org/10.1016/j.tins.2007.03.00210.1016/j.tins.2007.03.002Search in Google Scholar PubMed

[11] Kvetnansky, R., Sabban, E. L., & Palkovits, M. (2009). Catecholaminergic systems in stress: Structural and molecular genetic approaches. Physiological Reviews, 89, 535–606. DOI: 10.1152/physrev.00042.2006. http://dx.doi.org/10.1152/physrev.00042.200610.1152/physrev.00042.2006Search in Google Scholar PubMed

[12] Mohamed, G. G., Nour-El-Dien, F. A., & El-Nahas, R. G. (2009). Spectrophotometric and standard addition methods for quantitative determination of dopamine hydrochloride and levodopa in tablets and ampoules. Afinidad, 66, 243–251. Search in Google Scholar

[13] Mulugeta, M., Wibetoe, G., Engelsen, C. J., & Asfaw, A. (2009). Multivariate optimization and simultaneous determination of hydride and non-hydride-forming elements in samples of a wide pH range using dual-mode sample introduction with plasma techniques: application on leachates from cement mortar material. Analytical and Bioanalytical Chemistry, 393, 1015–1024. DOI: 10.1007/s00216-008-2494-x. http://dx.doi.org/10.1007/s00216-008-2494-x10.1007/s00216-008-2494-xSearch in Google Scholar PubMed

[14] National standard of the People’s Republic of China (2007). Determination of dopamine hydrochloride in feeds-high performance liquid chromatography. GB/T 21036-2007. Beijing, China. Search in Google Scholar

[15] Nemeček, P., Ďurčeková, T., Mocák, J., & Waisser, K. (2009). Chemometrical analysis of computed QSAR parameters and their use in biological activity prediction. Chemical Papers, 63, 84–91. DOI: 10.2478/s11696-008-0089-9. http://dx.doi.org/10.2478/s11696-008-0089-910.2478/s11696-008-0089-9Search in Google Scholar

[16] Ni, Y., Huang, C., & Kokot, S. (2004). Application of multivariate calibration and artificial neural networks to simultaneous kinetic-spectrophotometric determination of carbamate pesticides. Chemometrics and Intelligent Laboratory Systems, 71, 177–193. DOI: 10.1016/j.chemolab.2004.02.003. http://dx.doi.org/10.1016/j.chemolab.2004.02.00310.1016/j.chemolab.2004.02.003Search in Google Scholar

[17] Ni, Y., & Wang, Y. (2007). Application of chemometrics methods to the simultaneous kinetic spectrophotometric determination of iodate and periodate based on consecutive reactions. Microchemical Journal, 86, 216–226. DOI: 10.1016/j.microc.2007.03.008. http://dx.doi.org/10.1016/j.microc.2007.03.00810.1016/j.microc.2007.03.008Search in Google Scholar

[18] Nour El-Dien, F. A., Frag, E. Y. A., & Mohamed, G. G. (2010). Coupling reaction and complex formation for the spectrophotometric determination of physiologically active catecholamines in bulk, pharmaceutical preparations and urine samples of schizophrenic patients. Drug Testing and Analysis, 2, 234–242. DOI: 10.1002/dta.123. http://dx.doi.org/10.1002/dta.12310.1002/dta.123Search in Google Scholar PubMed

[19] Parissis, J. T., Rafouli-Stergiou P., Stasinos, V., Psarogiannakopoulos, P., & Mebazaa, A. (2010). Inotropes in cardiac patients: update 2011. Current Opinion in Critical Care, 16, 432–441. DOI: 10.1097/MCC.0b013e32833e10fb. http://dx.doi.org/10.1097/MCC.0b013e32833e10fb10.1097/MCC.0b013e32833e10fbSearch in Google Scholar PubMed

[20] Park, H., & Paeng, I. R. (2011). Development of direct competitive enzyme-linked aptamer assay for determination of dopamine in serum. Analytica Chimica Acta, 685, 65–73. DOI: 10.1016/j.aca.2010.11.010. http://dx.doi.org/10.1016/j.aca.2010.11.01010.1016/j.aca.2010.11.010Search in Google Scholar PubMed

[21] Rezaei, B., Khayamian, T., & Mokhtari, A. (2009). Simultaneous determination of codeine and noscapine by flow-injection chemiluminescence method using N-PLS regression. Journal of Pharmaceutical and Biomedical Analysis, 49, 234–239. DOI: 10.1016/j.jpba.2008.10.036. http://dx.doi.org/10.1016/j.jpba.2008.10.03610.1016/j.jpba.2008.10.036Search in Google Scholar PubMed

[22] Safavi, A., & Tohidi, M. (2007). Simultaneous kinetic determination of levodopa and carbidopa by H-point standard addition method. Journal of Pharmaceutical and Biomedical Analysis, 44, 313–318. DOI: 10.1016/j.jpba.2007.02.020. http://dx.doi.org/10.1016/j.jpba.2007.02.02010.1016/j.jpba.2007.02.020Search in Google Scholar PubMed

[23] Samadi-Maybodi, A., & Darzi, S. K. H. N. (2008). Simultaneous determination of vitamin B12 and its derivatives using some of multivariate calibration 1 (MVC1) techniques. Spectrochimica Acta Part A: Molecular and Biomolecular spectroscopy, 70, 1167–1172. DOI: 10.1016/j.saa.2007.10.037. http://dx.doi.org/10.1016/j.saa.2007.10.03710.1016/j.saa.2007.10.037Search in Google Scholar PubMed

[24] Shaikh, S. M. T., Manjunatha, D. H., Harikrishna, K., Ramesh, K. C., Sudhir Kumar, R., & Seetharamappa, J. (2008). Diazocoupling reaction for the spectrophotometric determination of physiologically active catecholamines in bulk and pharmaceutical preparations. Journal of Analytical Chemistry, 6, 637–642. DOI: 10.1134/S106193480807006X. http://dx.doi.org/10.1134/S106193480807006X10.1134/S106193480807006XSearch in Google Scholar

[25] Shin, D. D., Brandimarte, F., De Luca, L., Sabbah, H. N., Fonarow, G. C., Filippatos, G., Komajda, M., & Gheorghiade, M. (2007). Review of current and investigational pharmacologic agents for acute heart failure syndromes. The American Journal of Cardiology, 99(2), S4–S23. DOI: 10.1016/j.amjcard.2006.11.025. http://dx.doi.org/10.1016/j.amjcard.2006.11.02510.1016/j.amjcard.2006.11.025Search in Google Scholar PubMed

[26] Shore, P. A., & Olin, J. S. (1958). Identification and chemical assay of norepinephrine in brain and other tissues. Journal of Pharmacology and Experimental Therapeutics, 122, 295–300. Search in Google Scholar

[27] Thanvi, B. R., & Lo, T. C. N. (2004). Long term motor complications of levodopa: clinical features, mechanisms, and management strategies. Postgraduate Medical Journal, 80, 452–458. DOI: 10.1136/pgmj.2003.013912. http://dx.doi.org/10.1136/pgmj.2003.01391210.1136/pgmj.2003.013912Search in Google Scholar PubMed PubMed Central

[28] Tütem, E., Apak, R., & Baykut, F. (1991). Spectrophotometric determination of trace amounts of copper(I) and reducing agents with neocuproine in the presence of copper(II). Analyst, 116, 89–94. DOI: 10.1039/an9911600089. http://dx.doi.org/10.1039/an991160008910.1039/AN9911600089Search in Google Scholar

[29] Workman, J., & Mark, H. (2007). Limitations in analytical accuracy, Part I: Horwitz’s trumpet. Spectroscopy, 22(2), 18–24. Search in Google Scholar

[30] Xu, L., & Schechter, I. (1997). A calibration method free of optimism factor number selection for automated multivariate analysis. Experimental and theoretical study. Analytical Chemistry, 69, 3722–3730. DOI: 10.1021/ac970402y. http://dx.doi.org/10.1021/ac970402y10.1021/ac970402ySearch in Google Scholar

[31] Yu, C., Tang, Y., Han, X., & Zheng, X. (2006). Sensitive assay for catecholamines in pharmaceutical samples and blood plasma using flow injection chemiluminescence analysis. Analytical Sciences, 22, 25–28. DOI: 10.2116/analsci.22.25. http://dx.doi.org/10.2116/analsci.22.2510.2116/analsci.22.25Search in Google Scholar PubMed

Published Online: 2011-9-28
Published in Print: 2011-12-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
  2. Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
  3. Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
  4. Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
  5. Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
  6. Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
  7. Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
  8. Extraction of phytosterols from tall oil soap using selected organic solvents
  9. Dynamic simulations of waste water treatment plant operation
  10. Influence of recycling and temperature on the swelling ability of paper
  11. Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
  12. Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
  13. Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
  14. Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
  15. Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
  16. Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
  17. DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
  18. Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
  19. Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
  20. A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
  21. Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
  22. 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Downloaded on 20.1.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0090-6/html
Scroll to top button