Abstract
The chemiluminescence behaviour and mechanism of peroxynitrous acid and Ru(bpy)32+ were studied in the presence of short-chain alcohols (methanol, ethanol, propan-1-ol, propan-2-ol, butanol, 2-methylpropan-1-ol, pentanol). It was found that the chemiluminescence intensity of peroxynitrous acid and Ru(bpy)32+ system could be significantly enhanced by these seven short-chain alcohols. The maximum chemiluminescence wavelength of 608 nm of [Ru(bpy)32+]* in the excited state was attributed to the reaction between Ru(bpy)32+ and dihydroxyalkyl radicals which were generated during the redox course of peroxynitrous acid and alcohols. In addition, the chemiluminescence signals of the system presented depended largely on the solubility and branched-chain structure as well as the length of carbon chain. The analytical characteristics and parameters of the peroxynitrous acid/Ru(bpy)32+/alcohols chemiluminescence system were investigated under optimum conditions.
[1] Adcock, J. L., Francis, P. S., & Barnett, N. W. (2007). Acidic potassium permanganate as a chemiluminescence reagent—A review. Analytica Chimica Acta, 601, 36–67. DOI: 10.1016/j.aca.2007.08.027. http://dx.doi.org/10.1016/j.aca.2007.08.02710.1016/j.aca.2007.08.027Search in Google Scholar
[2] Akinshola, B. E. (2001). Straight-chain alcohols exhibit a cutoff in potency for the inhibition of recombinant glutamate receptor subunits. British Journal of Pharmacology, 133, 651–658. DOI: 10.1038/sj.bjp.0704112. http://dx.doi.org/10.1038/sj.bjp.070411210.1038/sj.bjp.0704112Search in Google Scholar
[3] Alekseev, S. I., Alekseev, A. S., & Ziskin, M. C. (1997). Effects of alcohols on A-type K+ currents in Lymnaea neurons. Journal of Pharmacology & Experimental Therapeutics, 281, 84–92. Search in Google Scholar
[4] Alpat, Ş., & Telefoncu, A. (2010). Development of an alcohol dehydrogenase biosensor for ethanol determination with Toluidine Blue O covalently attached to a cellulose acetate modified electrode. Sensors, 10, 748–764. DOI: 10.3390/s100100748. http://dx.doi.org/10.3390/s10010074810.3390/s100100748Search in Google Scholar
[5] Anjos, J. L. V., Neto, D. S., & Alonso, A. (2007). Effects of ethanol/L-menthol on the dynamics and partitioning of spinlabeled lipids in the stratum corneum. European Journal of Pharmaceutics & Biopharmaceutics, 67, 406–412. DOI: 10.1016/j.ejpb.2007.02.004. http://dx.doi.org/10.1016/j.ejpb.2007.02.00410.1016/j.ejpb.2007.02.004Search in Google Scholar
[6] Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., & Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences of the United States of America, 87, 1620–1624. DOI: 10.1073/pnas.87.4.1620. http://dx.doi.org/10.1073/pnas.87.4.162010.1073/pnas.87.4.1620Search in Google Scholar
[7] Boujtita, M., Chapleau, M., & El Murr, N. (1996). Biosensors for analysis of ethanol in food: effect of the pasting liquid. Analytica Chimica Acta, 319, 91–96. DOI: 10.1016/0003-2670(95)00482-3. http://dx.doi.org/10.1016/0003-2670(95)00482-310.1016/0003-2670(95)00482-3Search in Google Scholar
[8] Chen, J., & Fang, Y. (2007). Flow injection technique for biochemical analysis with chemiluminescence detection in acidic media. Sensors, 7, 448–458. DOI: 10.3390/s7040448. http://dx.doi.org/10.3390/s704044810.3390/s7040448Search in Google Scholar
[9] Chen, X., Sato, M., & Lin, Y. (1998). Study of the electrochemiluminescence based on tris(2,2′-bipyridine) ruthenium( II) and alcohols in a flow injection system. Microchemical Journal, 58, 13–20. DOI: 10.1006/mchj.1997.1503. http://dx.doi.org/10.1006/mchj.1997.150310.1006/mchj.1997.1503Search in Google Scholar
[10] Cheng, X., Zhao, L., Wang, X., & Lin, J.-M. (2007). Sensitive monitoring of humic acid in various aquatic environments with acidic cerium chemiluminescence detection. Analytical Sciences, 23, 1189–1193. DOI: 10.2116/analsci.23.1189. http://dx.doi.org/10.2116/analsci.23.118910.2116/analsci.23.1189Search in Google Scholar PubMed
[11] Choi, H. N., Yoon, S. H., Lyu, Y.-K., & Lee, W.-Y. (2007). Electrogenerated chemiluminescence ethanol biosensor based on carbon nanotube-titania-nafion composite film. Electroanalysis, 19, 459–465. DOI: 10.1002/elan.200603747. http://dx.doi.org/10.1002/elan.20060374710.1002/elan.200603747Search in Google Scholar
[12] Deng, L., Zhang, L., Shang, L., Guo, S., Wen, D., Wang, F., & Dong, S. (2009). Electrochemiluminescence detection of NADH and ethanol based on partial sulfonation of sol-gel network with gold nanoparticles. Biosensors & Bioelectronics, 24, 2273–2276. DOI: 10.1016/j.bios.2008.10.031. http://dx.doi.org/10.1016/j.bios.2008.10.03110.1016/j.bios.2008.10.031Search in Google Scholar PubMed
[13] Ferrer-Sueta, G., & Radi, R. (2009). Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chemical Biology, 4, 161–177. DOI: 10.1021/cb800279q. http://dx.doi.org/10.1021/cb800279q10.1021/cb800279qSearch in Google Scholar PubMed
[14] Gatti, R. M., Alvarez, B., Vasquez-Vivar, J., Radi, R., & Augusto, O. (1998). Formation of spin trap adducts during the decomposition of peroxynitrite. Archives of Biochemistry and Biophysics, 349, 36–46. DOI: 10.1006/abbi.1997.0451. http://dx.doi.org/10.1006/abbi.1997.045110.1006/abbi.1997.0451Search in Google Scholar PubMed
[15] Goldstein, S., & Czapski, G. (1995). Direct and indirect oxidations by peroxynitrite. Inorganic Chemistry, 34, 4041–4048. DOI: 10.1021/ic00120a006. http://dx.doi.org/10.1021/ic00120a00610.1021/ic00120a006Search in Google Scholar
[16] Goldstein, S., Meyerstein, D., van Eldik, R., & Czapski, G. (1997). Spontaneous reactions and reduction by iodide of peroxynitrite and peroxynitrate: Mechanistic insight from activation parameters. The Journal of Physical Chemistry A, 101, 7114–7118. DOI: 10.1021/jp971506f. http://dx.doi.org/10.1021/jp971506f10.1021/jp971506fSearch in Google Scholar
[17] Hnaien, M., Lagarde, F., & Jaffrezic-Renault, N. (2010). A rapid and sensitive alcohol oxidase/catalase conductometric biosensor for alcohol determination. Talanta, 81, 222–227. DOI: 10.1016/j.talanta.2009.11.061. http://dx.doi.org/10.1016/j.talanta.2009.11.06110.1016/j.talanta.2009.11.061Search in Google Scholar PubMed
[18] Houk, K. N., Condroski, K. R., & Pryor, W. A. (1996). Radical and concerted mechanisms in oxidations of amines, sulfides, and alkenes by peroxynitrite, peroxynitrous acid, and the peroxynitrite-CO2 adduct: density functional theory transition structures and energetics. Journal of the American Chemical Society, 118, 13002–13006. DOI: 10.1021/ja9619521. http://dx.doi.org/10.1021/ja961952110.1021/ja9619521Search in Google Scholar
[19] Jia, T.-T., Cai, Z.-M., Chen, X.-M., Lin, Z.-J., Huang, X.-L., Chen, X., & Chen, G.-N. (2009). Electrogenerated chemiluminescence ethanol biosensor based on alcohol dehydrogenase functionalized Ru(bpy) 32+ doped silica nanoparticles. Biosensors & Bioelectronics, 25, 263–267. DOI: 10.1016/j.bios.2009.06.030. http://dx.doi.org/10.1016/j.bios.2009.06.03010.1016/j.bios.2009.06.030Search in Google Scholar PubMed
[20] Liang, Y.-D., & Song, J.-F. (2005). Flow-injection chemiluminescence determination of tryptophan through its peroxidation and epoxidation by peroxynitrous acid. Journal of Pharmaceutical and Biomedical Analysis, 38, 100–106. DOI: 10.1016/j.jpba.2004.12.010. http://dx.doi.org/10.1016/j.jpba.2004.12.01010.1016/j.jpba.2004.12.010Search in Google Scholar PubMed
[21] Liang, Y.-D., Song, J.-F., & Tian, T. (2004a). Determination of pipemidic acid based on flow-injection chemiluminescence due to energy transfer from peroxynitrous acid synthesized on-line. Analytical & Bioanalytical Chemistry, 380, 918–923. DOI: 10.1007/s00216-004-2841-5. http://dx.doi.org/10.1007/s00216-004-2841-510.1007/s00216-004-2841-5Search in Google Scholar PubMed
[22] Liang, Y.-D., Song, J.-F., & Yang, X.-F. (2004b). Flow-injection chemiluminescence determination of fluoroquinolones by enhancement of weak chemiluminescence from peroxynitrous acid. Analytica Chimica Acta, 510, 21–28. DOI: 10.1016/j.aca.2003.12.054. http://dx.doi.org/10.1016/j.aca.2003.12.05410.1016/j.aca.2003.12.054Search in Google Scholar
[23] Liang, Y.-D., Song, J.-F., Yang, X.-F., & Guo, W. (2004c). Flow-injection chemiluminescence determination of chloroquine using peroxynitrous acid as oxidant. Talanta, 62, 757–763. DOI: 10.1016/j.talanta.2003.09.017. http://dx.doi.org/10.1016/j.talanta.2003.09.01710.1016/j.talanta.2003.09.017Search in Google Scholar
[24] Lin, J.-M., & Yamada, M. (2000). Chemiluminescence reaction of fluorescent organic compounds with KHSO5 using cobalt(II) as catalyst and its first application to molecular imprinting. Analytical Chemistry, 72, 1148–1155. DOI: 10.1021/ac9911140. http://dx.doi.org/10.1021/ac991114010.1021/ac9911140Search in Google Scholar
[25] Liu, M., Cheng, X., Zhao, L., & Lin, J.-M. (2006). On-line preparation of peroxymonocarbonate and its application for the study of energy transfer chemiluminescence to lanthanide inorganic coordinate complexes. Luminescence, 21, 179–185. DOI: 10.1002/bio.903. http://dx.doi.org/10.1002/bio.90310.1002/bio.903Search in Google Scholar
[26] Liu, M., Lin, Z., & Lin, J.-M. (2010). A review on applications of chemiluminescence detection in food analysis. Analytica Chimica Acta. 670, 1–10. DOI: 10.1016/j.aca.2010.04.039. http://dx.doi.org/10.1016/j.aca.2010.04.03910.1016/j.aca.2010.04.039Search in Google Scholar
[27] Lu, C., Lin, J.-M., & Huie, C. W. (2004a). Determination of total bilirubin in human serum by chemiluminescence from the reaction of bilirubin and peroxynitrite. Talanta, 63, 333–337. DOI: 10.1016/j.talanta.2003.10.049. http://dx.doi.org/10.1016/j.talanta.2003.10.04910.1016/j.talanta.2003.10.049Search in Google Scholar
[28] Lu, C., Lin, J.-M., Huie, C. W., & Yamada, M. (2004b). Chemiluminescence study of carbonate and peroxynitrous acid and its application to the direct determination of nitrite based on solid surface enhancement. Analytica Chimica Acta, 510, 29–34. DOI: 10.1016/j.aca.2003.12.057. http://dx.doi.org/10.1016/j.aca.2003.12.05710.1016/j.aca.2003.12.057Search in Google Scholar
[29] Lu, C., Qu, F., Lin, J.-M., & Yamada, M. (2002). Flow-injection chemiluminescent determination of nitrite in water based on the formation of peroxynitrite from the reaction of nitrite and hydrogen peroxide. Analytica Chimica Acta, 474, 107–114. DOI: 10.1016/S0003-2670(02)01010-3. http://dx.doi.org/10.1016/S0003-2670(02)01010-310.1016/S0003-2670(02)01010-3Search in Google Scholar
[30] Lu, C., Song, G., Lin, J.-M., & Huie, C. W. (2007). Enhancement in sample preconcentration by the on-line incorpora tion of cloud point extraction to flow injection analysis inside the chemiluminescence cell and the determination of total serum bilirubin. Analytica Chimica Acta, 590, 159–165. DOI: 10.1016/j.aca.2007.03.028. http://dx.doi.org/10.1016/j.aca.2007.03.02810.1016/j.aca.2007.03.028Search in Google Scholar PubMed
[31] Lytle, F. E., & Hercules, D. M. (1971). Chemiluminescence from the reduction of aromatic amine cations and ruthenium(III) chelates. Photochemistry and Photobiology, 13, 123–133. DOI: 10.1111/j.1751-1097.1971.tb06098.x. http://dx.doi.org/10.1111/j.1751-1097.1971.tb06098.x10.1111/j.1751-1097.1971.tb06098.xSearch in Google Scholar
[32] Miao, W. (2008). Electrogenerated chemiluminescence and its biorelated applications. Chemical Reviews, 108, 2506–2553. DOI: 10.1021/cr068083a. http://dx.doi.org/10.1021/cr068083a10.1021/cr068083aSearch in Google Scholar
[33] Mullor, S. G., Sánchez-Cabezudo, M., Miranda Ordieres, A. J., & López Ruiz, B. (1996). Alcohol biosensor based on alcohol dehydrogenase and Meldola Blue immobilized into a carbon paste electrode. Talanta, 43, 779–784. DOI: 10.1016/0039-9140(95)01802-6. http://dx.doi.org/10.1016/0039-9140(95)01802-610.1016/0039-9140(95)01802-6Search in Google Scholar
[34] Murphy, M. P., Packer, M. A., Scarlett, J. L., & Martin, S. W. (1998). Peroxynitrite: A biologically significant oxidant. General Pharmacology: The Vascular System, 31, 179–186. DOI: 10.1016/S0306-3623(97)00418-7. http://dx.doi.org/10.1016/S0306-3623(97)00418-710.1016/S0306-3623(97)00418-7Search in Google Scholar
[35] Nakao, L. S., Ouchi, D., & Augusto, O. (1999). Oxidation of acetaldehyde by peroxynitrite and hydrogen peroxide/iron(II). Production of acetate, formate, and methyl radicals. Chemical Research in Toxicology, 12, 1010–1018. DOI: 10.1021/tx990055i. http://dx.doi.org/10.1021/tx990055i10.1021/tx990055iSearch in Google Scholar
[36] Qi, H., Peng, Y., Gao, Q., & Zhang, C. (2009). Applications of nanomaterials in electrogenerated chemiluminescence biosensors. Sensors, 9, 674–695. DOI: 10.3390/s90100674. http://dx.doi.org/10.3390/s9010067410.3390/s90100674Search in Google Scholar
[37] Sprules, S. D., Hartley, I. C., Wedge, R., Hart, J. P., & Pittson, R. (1996). A disposable reagentless screen-printed amperometric biosensor for the measurement of alcohol in beverages. Analytica Chimica Acta, 329, 215–221. DOI: 10.1016/0003-2670(96)00121-3. http://dx.doi.org/10.1016/0003-2670(96)00121-310.1016/0003-2670(96)00121-3Search in Google Scholar
[38] Starodubtseva, M. N., Cherenkevich, S. N., & Semenkova, G. N. (1999). Investigation of the interaction of sodium nitrite with hydrogen peroxide in aqueous solutions by the chemiluminescence method. Journal of Applied Spectroscopy, 66, 473–476. DOI: 10.1007/BF02676785. http://dx.doi.org/10.1007/BF0267678510.1007/BF02676785Search in Google Scholar
[39] Szabó, C., Ischiropoulos, H., & Radi, R. (2007). Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Reviews Drug Discovery, 6, 662–680. DOI: 10.1038/nrd2222. http://dx.doi.org/10.1038/nrd222210.1038/nrd2222Search in Google Scholar PubMed
[40] Thompson, G., & de Pomerai, D. I. (2005). Toxicity of shortchain alcohols to the nematode Caenorhabditis elegans: A comparison of endpoints. Journal of Biochemical and Molecular Toxicology, 19, 87–95. DOI: 10.1002/jbt.20060. http://dx.doi.org/10.1002/jbt.2006010.1002/jbt.20060Search in Google Scholar PubMed
[41] Wan, G.-H., Cui, H., Pan, Y.-L., Zheng, P., & Liu, L.-J. (2006). Determination of quinolones residues in prawn using high-performance liquid chromatography with Ce(IV)-Ru(bpy) 32+-HNO3 chemiluminescence detection. Journal of Chromatography B, 843, 1–9. DOI: 10.1016/j.jchromb.2006.05.017. http://dx.doi.org/10.1016/j.jchromb.2006.05.01710.1016/j.jchromb.2006.05.017Search in Google Scholar PubMed
[42] Wang, X., Liu, M.-L., Cheng, X.-L., & Lin, J.-M. (2009). Flowbased luminescence-sensing methods for environmental water analysis. TrAC Trends in Analytical Chemistry, 28, 75–87. DOI: 10.1016/j.trac.2008.10.005. http://dx.doi.org/10.1016/j.trac.2008.10.00510.1016/j.trac.2008.10.005Search in Google Scholar
[43] Wei, L., Cheng, X., Lin, J.-M., Cai, H., & Huang, F. (2009). Chemiluminescence mechanisms of cerium-norfloxacin and its application in urine analysis. Chemical Papers, 63, 358–365. DOI: 10.2478/s11696-009-0025-7. http://dx.doi.org/10.2478/s11696-009-0025-710.2478/s11696-009-0025-7Search in Google Scholar
[44] Williams, A. K., & Hupp, J. T. (1998). Sol-gel-encapsulated alcohol dehydrogenase as a versatile, environmentally stabilized sensor for alcohols and aldehydes. Journal of the American Chemical Society, 120, 4366–4371. DOI: 10.1021/ja973 772c. http://dx.doi.org/10.1021/ja973772cSearch in Google Scholar
[45] Xing, Q. Y., Xu, R. Q., Zhou, Z., & Pei, W. W. (1994). Basic organic chemistry. Beijing, China: Higher Education Press. Search in Google Scholar
[46] Zhang, L., Xu, Z., Sun, X., & Dong, S. (2007). A novel alcohol dehydrogenase biosensor based on solid-state electrogenerated chemiluminescence by assembling dehydrogenase to Ru(bpy) 32+-Au nanoparticles aggregates. Biosensors & Bioelectronics, 22, 1097–1100. DOI: 10.1016/j.bios.2006.03.026. http://dx.doi.org/10.1016/j.bios.2006.03.02610.1016/j.bios.2006.03.026Search in Google Scholar PubMed
[47] Zhao, L., Sun, L., & Chu, X. (2009). Chemiluminescence immunoassay. TrAC Trends in Analytical Chemistry, 28, 404–415. DOI: 10.1016/j.trac.2008.12.006. http://dx.doi.org/10.1016/j.trac.2008.12.00610.1016/j.trac.2008.12.006Search in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
- Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
- Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
- Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
- Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
- Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
- Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
- Extraction of phytosterols from tall oil soap using selected organic solvents
- Dynamic simulations of waste water treatment plant operation
- Influence of recycling and temperature on the swelling ability of paper
- Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
- Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
- Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
- Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
- Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
- Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
- DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
- Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
- Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
- A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
- Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
- 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Articles in the same Issue
- Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
- Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
- Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
- Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
- Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
- Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
- Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
- Extraction of phytosterols from tall oil soap using selected organic solvents
- Dynamic simulations of waste water treatment plant operation
- Influence of recycling and temperature on the swelling ability of paper
- Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
- Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
- Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
- Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
- Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
- Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
- DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
- Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
- Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
- A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
- Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
- 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris