Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
-
Tae Kim
, Euh Jeong
, Chae Oh , Min Shin , Jong-Pil Kim , Ok-Sang Jung , Hongsuk Suh , Fazlur Khan , Myung Hyun and Jong Jin
Abstract
A series of neutral gelators and cationic amphiphiles derived from 1,2 diphenylethylenediamine (I) and 1,2-cyclohexanediamine (II) was synthesised. Helical silica nanotubes were prepared utilising these organic gelators through sol-gel polycondensation of tetraethoxy silane, (TEOS-silica source). Right- and left-handed helical nanotubes respectively were obtained from a 1: 1 mass mixture of optically active, (1S,2S)-III-(1S,2S)-V neutral gelator and (1S,2S)-IV-(1S,2S)-VI cationic amphiphile and a 1: 1 mass mixture of optically active, (1R,2R)-III-(1R,2R)-V neutral gelator and (1R,2R)-IV-(1R,2R)-VI cationic amphiphile, indicating that the handedness of the helical nanotubes varied with the change in the neutral gelator precursors used. The nanotubes were characterised by SEM images.
[1] Asefa, T., MacLachlan, M. J., Coombs, N., & Ozin, G. A. (1995). Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature, 402, 867–821. DOI: 10.1038/47229. 10.1038/47229Search in Google Scholar
[2] Bian, S.-W., Ma, Z., Zhang, L.-S., Niu, F., & Song, W.-G. (2009). Silica nanotubes with mesoporous walls and various internal morphologies using hard/soft dual templates. Chemical Communications, 10, 1261–1263. DOI: 10.1039/B821196E. http://dx.doi.org/10.1039/b821196e10.1039/b821196eSearch in Google Scholar
[3] Bruzzoniti, M. C., Mentasti, E., Sarzanini, C., Onida, B., Bonelli, B., & Garrone, E. (2000). Retention properties of mesoporous silica-based materials. Analytica Chimica Acta, 422, 231–238. DOI: 10.1016/S0003-2670(00)01070-9. http://dx.doi.org/10.1016/S0003-2670(00)01070-910.1016/S0003-2670(00)01070-9Search in Google Scholar
[4] Che, S., Liu, Z., Ohsuna, T., Sakamoto, K., Terasaki, O., & Tatsumi, T. (2004). Synthesis and characterization of chiral mesoporous silica. Nature, 429, 281–284. DOI: 10.1038/nature02529. http://dx.doi.org/10.1038/nature0252910.1038/nature02529Search in Google Scholar PubMed
[5] Cho, S. J., Kim, H. J., Lee, J. H., Choi, H. W., Kim, H. G., Chung, H. M., & Do, J. T. (2010). Silica coated titania nanotubes for drug delivery system. Materials Letters, 64, 1664–1667. DOI: 10.1016/j.matlet.2010.05.002. http://dx.doi.org/10.1016/j.matlet.2010.05.00210.1016/j.matlet.2010.05.002Search in Google Scholar
[6] Delclos, T., Aimé, C., Pouget, E., Brizard, A., Huc, I., Delville, M.-H., & Oda, R. (2008). Individualized silica nanohelices and nanotubes: Tuning inorganic nanostructures using lipidic self-assemblies. Nano Letters, 8, 1929–1935. DOI: 10.1021/nl080664n. http://dx.doi.org/10.1021/nl080664n10.1021/nl080664nSearch in Google Scholar PubMed
[7] Huo, Q., Margolese, D. I., Ciesla, U., Feng, P., Gier, T. E., Sieger, P., Leon, R., Petroff, P. M., Schüth, F., & Stucky, G. D. (1994). Generalized synthesis of periodic surfactant/inorganic composite materials. Nature, 368, 317–321. DOI: 10.1038/368317a0. http://dx.doi.org/10.1038/368317a010.1038/368317a0Search in Google Scholar
[8] Hyun, M.-H., Shin, M.-S., Kim, T.-K., Jung, O.-S., Kim, J.-P., Jeong, E.-D., & Jin, J. S. (2009). The role of the neutral and cationic gelators from (1S,2S)-(−)-diphenylethylenediamine for the preparation of silica nano tubes. Bulletin of the Korean Chemical Society, 30, 1641–1643. DOI: 10.5012/bkcs.2009.30.7.1641. http://dx.doi.org/10.5012/bkcs.2009.30.7.164110.5012/bkcs.2009.30.7.1641Search in Google Scholar
[9] Jung, J. H., Kobayashi, H., Masuda, M., Shimizu, T., & Shinkai, S. (2001). Helical ribbon aggregate composed of a crown-appended cholesterol derivative which acts as an amphiphilic gelator of organic solvents and as a template for chiral silica transcription. Journal of the American Chemical Society, 123, 8785–8789. DOI: 10.1021/ja010508h. http://dx.doi.org/10.1021/ja010508h10.1021/ja010508hSearch in Google Scholar PubMed
[10] Jung, J. H., Ono, Y., Hanabusa, K., & Shinkai, S. (2000a). Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivatives. Journal of the American Chemical Society, 122, 5008–5009. DOI: 10.1021/ja000449s. http://dx.doi.org/10.1021/ja000449s10.1021/ja000449sSearch in Google Scholar
[11] Jung, J. H., Ono, Y., & Shinkai, S. (2000b). Sol-gel polycondensation in a cyclohexane-based organogel system in helical silica: Creation of both right- and left-handed silica structures by helical organogel fibers. Chemistry — A European Journal, 6, 4552–4557. DOI: 10.1002/1521-3765(20001215)6:24<4552::AID-CHEM4552>3.0.CO;2-5. http://dx.doi.org/10.1002/1521-3765(20001215)6:24<4552::AID-CHEM4552>3.0.CO;2-510.1002/1521-3765(20001215)6:24<4552::AID-CHEM4552>3.0.CO;2-5Search in Google Scholar
[12] Jung, J. H., Shinkai, S., & Shimizu, T. (2003). Nanometer-level sol-gel transcription of cholesterol assemblies into monodisperse inner helical hollows of the silica. Chemistry of Materials, 15, 2141–2145. DOI: 10.1021/cm0217912. http://dx.doi.org/10.1021/cm021791210.1021/cm0217912Search in Google Scholar
[13] Kim, S. S., Zhang, W., & Pinnavaia, T. J. (1998). Ultrastable mesostructured silica vesicles. Science, 282, 1302–1305. DOI: 10.1126/science.282.5392.1302. http://dx.doi.org/10.1126/science.282.5392.130210.1126/science.282.5392.1302Search in Google Scholar
[14] Kim, T. K., Jeong, E. D., Oh, C. Y., Hyun, M. H., Lee, M. S., Moon, H. K., Kim, J.-P., Jung, O.-S., Nawaz Khan, F., & Jin, J. S. (2011). Morphology dependence of 1,2-diphenylethylenediamine-derived organogelator templates in solvents and their influence in the production of nanostructured silica. Chemical Papers, 65, 495–503, DOI: 10.2478/s11696-011-0042-1. http://dx.doi.org/10.2478/s11696-011-0042-110.2478/s11696-011-0042-1Search in Google Scholar
[15] Kleitz, F., Marlow, F., Stucky, G. D., & Schüth, F. (2001). Mesoporous silica fibers: Synthesis, internal structure, and growth kinetics. Chemistry of Materials, 13, 3587–3595. DOI: 10.1021/cm0110324. http://dx.doi.org/10.1021/cm011032410.1021/cm0110324Search in Google Scholar
[16] Liang, Z., & Susha, A. S. (2004). Mesostructured silica tubes and rods by templating porous membranes. Chemistry — A European Journal, 10, 4910–4914. DOI: 10.1002/chem.200400005. http://dx.doi.org/10.1002/chem.20040000510.1002/chem.200400005Search in Google Scholar PubMed
[17] Mecerreyes, D., Huang, E., Magbitang, T., Volksen, W., Hawker, C. J., Lee, V. Y., Miller, R. D., & Hedrick, J. L. (2001). Application of hyperbranched block copolymers as templates for the generation of nanoporous organosilicates. High Performance Polymers, 13, S11–S19. DOI: 10.1088/0954-0083/13/2/302. http://dx.doi.org/10.1088/0954-0083/13/2/30210.1088/0954-0083/13/2/302Search in Google Scholar
[18] Paik, P., Gedanken, A., & Mastai, Y. (2010). Chiral separation abilities: Aspartic acid block copolymer-imprinted mesoporous silica. Microporous and Mesoporous Materials, 129, 82–89. DOI: 10.1016/j.micromeso.2009.09.001. http://dx.doi.org/10.1016/j.micromeso.2009.09.00110.1016/j.micromeso.2009.09.001Search in Google Scholar
[19] Piepenbrock, M.-O. M., Lloyd, G. O., Clark, N., & Steed, J. W. (2010). Metal- and anion-binding supramolecular gels. Chemical Reviews, 110, 1960–2004. DOI: 10.1021/cr9003067. http://dx.doi.org/10.1021/cr900306710.1021/cr9003067Search in Google Scholar PubMed
[20] Qiao, Y., Lin, Y., Wang, Y., Yang, Z., Liu, J., Zhou, J., Yan, Y., & Huang, J. (2009). Metal-driven hierarchical self-assembled one-dimensional nanohelices. Nano Letters, 9, 4500–4504. DOI: 10.1021/nl9028335. http://dx.doi.org/10.1021/nl902833510.1021/nl9028335Search in Google Scholar PubMed
[21] Qiu, H., Wang, S., Zhang, W., Sakamoto, K., Terasaki, O., Inoue, Y., & Che, S. (2008). Steric and temperature control of enantiopurity of chiral mesoporous silica. The Journal of Physical Chemistry C, 112, 1871–1877. DOI: 10.1021/jp709798q. http://dx.doi.org/10.1021/jp709798q10.1021/jp709798qSearch in Google Scholar
[22] Roopan, S. M., & Nawaz Khan, F. R. (2010a). ZnO nanoparticles in the synthesis of AB ring core of camptothecin. Chemical Papers, 64, 812–817. DOI: 10.2478/s11696-010-0058-y. http://dx.doi.org/10.2478/s11696-010-0058-y10.2478/s11696-010-0058-ySearch in Google Scholar
[23] Roopan, S. M., & Nawaz Khan, F. R. (2010b). ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate. Chemical Papers, 64, 678–682. DOI: 10.2478/s11696-010-0045-3. http://dx.doi.org/10.2478/s11696-010-0045-310.2478/s11696-010-0045-3Search in Google Scholar
[24] Roopan, S. M., & Nawaz Khan, F. R. (2011). SnO2 nanoparticles mediated nontraditional synthesis of biologically active 9-chloro-6,13-dihydro-7-phenyl-5H-indolo [3,2-c]-acridine derivatives. Medicinal Chemistry Research, 20, 732–737. DOI: 10.1007/s00044-010-9381-7. http://dx.doi.org/10.1007/s00044-010-9381-710.1007/s00044-010-9381-7Search in Google Scholar
[25] Roopan, S. M., Nawaz Khan, F. R., & Mandal, B. K. (2010). Fe nano particles mediated C-N bond-forming reaction: Regioselective synthesis of 3-[(2-chloroquinolin-3-yl)methyl]pyrimidin-4(3H)ones. Tetrahedron Letters, 51, 2309–2311. DOI: 10.1016/j.tetlet.2010.02.128. http://dx.doi.org/10.1016/j.tetlet.2010.02.12810.1016/j.tetlet.2010.02.128Search in Google Scholar
[26] Sayari, A. (1996). Catalysis by crystalline mesoporous molecular sieves. Chemistry of Materials, 8, 1840–1852. DOI: 10.1021/cm950585+. http://dx.doi.org/10.1021/cm950585+10.1021/cm950585+Search in Google Scholar
[27] Stupp, S. I., & Braun, P. V. (1997). Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science, 277, 1242–1248. DOI: 10.1126/science.277.5330.1242. http://dx.doi.org/10.1126/science.277.5330.124210.1126/science.277.5330.1242Search in Google Scholar PubMed
[28] Tanev, P. T., Liang, Y., & Pinnavaia, T. J. (1997). Assembly of mesoporous lamellar silicas with hierarchical particle architectures. Journal of the American Chemical Society, 119, 8616–8624. DOI: 10.1021/ja970228v. http://dx.doi.org/10.1021/ja970228v10.1021/ja970228vSearch in Google Scholar
[29] Tanev, P. T., & Pinnavaia, T. J. (1996). Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science, 271, 1267–1269. DOI: 10.1126/science.271.5253.1267. http://dx.doi.org/10.1126/science.271.5253.126710.1126/science.271.5253.1267Search in Google Scholar
[30] Wang, L., Li, Y., Wang, H., Zhang, M., Chen, Y., Li, B., & Yang, Y. (2010). Nanofabrication of helical hybrid silica nanotubes using anionic gelators. Materials Chemistry and Physics, 124, 609–613. DOI: 10.1016/j.matchemphys.2010.07.021. http://dx.doi.org/10.1016/j.matchemphys.2010.07.02110.1016/j.matchemphys.2010.07.021Search in Google Scholar
[31] Yang, H., Coombs, N., & Ozin, G. A. (1997). Morphogenesis of shapes and surface patterns in mesoporous silica. Nature, 386, 692–695. DOI: 10.1038/386692a0. http://dx.doi.org/10.1038/386692a010.1038/386692a0Search in Google Scholar
[32] Yang, Y., Suzuki, M., Owa, S., Shirai, H., & Hanabusa, K. (2006). Control of helical silica nanostructures using a chiral surfactant. Journal of Materials Chemistry, 16, 1644–1650. DOI: 10.1039/B517121K. http://dx.doi.org/10.1039/b517121k10.1039/b517121kSearch in Google Scholar
[33] Yang, Z., Niu, Z., Cao, X., Yang, Z., Lu, Y., Hu, Z., & Han, C. C. (2003). Template synthesis of uniform 1D mesostructured silica materials and their arrays in anodic alumina membranes. Angewandte Chemie International Edition, 42, 4201–4203. DOI: 10.1002/anie.200250808. http://dx.doi.org/10.1002/anie.20025080810.1002/anie.200250808Search in Google Scholar
[34] Yoza, K., Amanokura, N., Ono, Y., Akao, T., Shinmori, H., Takeuchi, M., Shinkai, S., & Reinhoudt, D. N. (1999). Sugar-integrated gelators of organic solvents—Their remarkable diversity in gelation ability and aggregate structure. Chemistry — A European Journal, 5, 2722–2729. DOI: 10.1002/(SICI)1521-3765(19990903)5:9<2722::AID-CHEM 2722>3.0.CO;2-N. http://dx.doi.org/10.1002/(SICI)1521-3765(19990903)5:9<2722::AID-CHEM2722>3.0.CO;2-N10.1002/(SICI)1521-3765(19990903)5:9<2722::AID-CHEM2722>3.0.CO;2-NSearch in Google Scholar
[35] Yu, Y., Qiu, H., Wu, X., Li, H., Li, Y., Sakamoto, Y., Inoue, Y., Sakamoto, K., Terasaki, O., & Che, S. (2008). Synthesis and characterization of silica nanotubes with radially oriented mesopores. Advanced Functional Materials, 18, 541–550. DOI: 10.1002/adfm.200700593. http://dx.doi.org/10.1002/adfm.20070059310.1002/adfm.200700593Search in Google Scholar
[36] Zhang, H., Quan, X., Chen, S., Zhao, H., & Zhao, Y. (2006). The removal of sodium dodecylbenzene sulfonate surfactant from water using silica/titania nanorods/nanotubes composite membrane with photocatalytic capability. Applied Surface Science, 252, 8598–8604. DOI: 10.1016/j.apsusc.2005.11.090. http://dx.doi.org/10.1016/j.apsusc.2005.11.09010.1016/j.apsusc.2005.11.090Search in Google Scholar
[37] Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., & Stucky, G. D. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279, 548–552. DOI: 10.1126/science.279.5350.548. http://dx.doi.org/10.1126/science.279.5350.54810.1126/science.279.5350.548Search in Google Scholar PubMed
[38] Zhu, Y., Shi, J., Shen, W., Dong, X., Feng, J., Ruan, M., & Li, Y. (2005). Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angewandte Chemie International Edition, 44, 5083–5087. DOI: 10.1002/anie.200501500. http://dx.doi.org/10.1002/anie.20050150010.1002/anie.200501500Search in Google Scholar PubMed
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
- Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
- Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
- Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
- Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
- Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
- Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
- Extraction of phytosterols from tall oil soap using selected organic solvents
- Dynamic simulations of waste water treatment plant operation
- Influence of recycling and temperature on the swelling ability of paper
- Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
- Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
- Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
- Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
- Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
- Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
- DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
- Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
- Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
- A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
- Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
- 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Articles in the same Issue
- Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
- Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
- Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
- Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
- Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
- Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
- Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
- Extraction of phytosterols from tall oil soap using selected organic solvents
- Dynamic simulations of waste water treatment plant operation
- Influence of recycling and temperature on the swelling ability of paper
- Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
- Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
- Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
- Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
- Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
- Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
- DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
- Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
- Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
- A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
- Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
- 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris