Home Life Sciences Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
Article
Licensed
Unlicensed Requires Authentication

Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes

  • Tae Kim EMAIL logo , Euh Jeong , Chae Oh , Min Shin , Jong-Pil Kim , Ok-Sang Jung , Hongsuk Suh , Fazlur Khan , Myung Hyun and Jong Jin
Published/Copyright: September 28, 2011
Become an author with De Gruyter Brill

Abstract

A series of neutral gelators and cationic amphiphiles derived from 1,2 diphenylethylenediamine (I) and 1,2-cyclohexanediamine (II) was synthesised. Helical silica nanotubes were prepared utilising these organic gelators through sol-gel polycondensation of tetraethoxy silane, (TEOS-silica source). Right- and left-handed helical nanotubes respectively were obtained from a 1: 1 mass mixture of optically active, (1S,2S)-III-(1S,2S)-V neutral gelator and (1S,2S)-IV-(1S,2S)-VI cationic amphiphile and a 1: 1 mass mixture of optically active, (1R,2R)-III-(1R,2R)-V neutral gelator and (1R,2R)-IV-(1R,2R)-VI cationic amphiphile, indicating that the handedness of the helical nanotubes varied with the change in the neutral gelator precursors used. The nanotubes were characterised by SEM images.

[1] Asefa, T., MacLachlan, M. J., Coombs, N., & Ozin, G. A. (1995). Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature, 402, 867–821. DOI: 10.1038/47229. 10.1038/47229Search in Google Scholar

[2] Bian, S.-W., Ma, Z., Zhang, L.-S., Niu, F., & Song, W.-G. (2009). Silica nanotubes with mesoporous walls and various internal morphologies using hard/soft dual templates. Chemical Communications, 10, 1261–1263. DOI: 10.1039/B821196E. http://dx.doi.org/10.1039/b821196e10.1039/b821196eSearch in Google Scholar

[3] Bruzzoniti, M. C., Mentasti, E., Sarzanini, C., Onida, B., Bonelli, B., & Garrone, E. (2000). Retention properties of mesoporous silica-based materials. Analytica Chimica Acta, 422, 231–238. DOI: 10.1016/S0003-2670(00)01070-9. http://dx.doi.org/10.1016/S0003-2670(00)01070-910.1016/S0003-2670(00)01070-9Search in Google Scholar

[4] Che, S., Liu, Z., Ohsuna, T., Sakamoto, K., Terasaki, O., & Tatsumi, T. (2004). Synthesis and characterization of chiral mesoporous silica. Nature, 429, 281–284. DOI: 10.1038/nature02529. http://dx.doi.org/10.1038/nature0252910.1038/nature02529Search in Google Scholar PubMed

[5] Cho, S. J., Kim, H. J., Lee, J. H., Choi, H. W., Kim, H. G., Chung, H. M., & Do, J. T. (2010). Silica coated titania nanotubes for drug delivery system. Materials Letters, 64, 1664–1667. DOI: 10.1016/j.matlet.2010.05.002. http://dx.doi.org/10.1016/j.matlet.2010.05.00210.1016/j.matlet.2010.05.002Search in Google Scholar

[6] Delclos, T., Aimé, C., Pouget, E., Brizard, A., Huc, I., Delville, M.-H., & Oda, R. (2008). Individualized silica nanohelices and nanotubes: Tuning inorganic nanostructures using lipidic self-assemblies. Nano Letters, 8, 1929–1935. DOI: 10.1021/nl080664n. http://dx.doi.org/10.1021/nl080664n10.1021/nl080664nSearch in Google Scholar PubMed

[7] Huo, Q., Margolese, D. I., Ciesla, U., Feng, P., Gier, T. E., Sieger, P., Leon, R., Petroff, P. M., Schüth, F., & Stucky, G. D. (1994). Generalized synthesis of periodic surfactant/inorganic composite materials. Nature, 368, 317–321. DOI: 10.1038/368317a0. http://dx.doi.org/10.1038/368317a010.1038/368317a0Search in Google Scholar

[8] Hyun, M.-H., Shin, M.-S., Kim, T.-K., Jung, O.-S., Kim, J.-P., Jeong, E.-D., & Jin, J. S. (2009). The role of the neutral and cationic gelators from (1S,2S)-(−)-diphenylethylenediamine for the preparation of silica nano tubes. Bulletin of the Korean Chemical Society, 30, 1641–1643. DOI: 10.5012/bkcs.2009.30.7.1641. http://dx.doi.org/10.5012/bkcs.2009.30.7.164110.5012/bkcs.2009.30.7.1641Search in Google Scholar

[9] Jung, J. H., Kobayashi, H., Masuda, M., Shimizu, T., & Shinkai, S. (2001). Helical ribbon aggregate composed of a crown-appended cholesterol derivative which acts as an amphiphilic gelator of organic solvents and as a template for chiral silica transcription. Journal of the American Chemical Society, 123, 8785–8789. DOI: 10.1021/ja010508h. http://dx.doi.org/10.1021/ja010508h10.1021/ja010508hSearch in Google Scholar PubMed

[10] Jung, J. H., Ono, Y., Hanabusa, K., & Shinkai, S. (2000a). Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivatives. Journal of the American Chemical Society, 122, 5008–5009. DOI: 10.1021/ja000449s. http://dx.doi.org/10.1021/ja000449s10.1021/ja000449sSearch in Google Scholar

[11] Jung, J. H., Ono, Y., & Shinkai, S. (2000b). Sol-gel polycondensation in a cyclohexane-based organogel system in helical silica: Creation of both right- and left-handed silica structures by helical organogel fibers. Chemistry — A European Journal, 6, 4552–4557. DOI: 10.1002/1521-3765(20001215)6:24<4552::AID-CHEM4552>3.0.CO;2-5. http://dx.doi.org/10.1002/1521-3765(20001215)6:24<4552::AID-CHEM4552>3.0.CO;2-510.1002/1521-3765(20001215)6:24<4552::AID-CHEM4552>3.0.CO;2-5Search in Google Scholar

[12] Jung, J. H., Shinkai, S., & Shimizu, T. (2003). Nanometer-level sol-gel transcription of cholesterol assemblies into monodisperse inner helical hollows of the silica. Chemistry of Materials, 15, 2141–2145. DOI: 10.1021/cm0217912. http://dx.doi.org/10.1021/cm021791210.1021/cm0217912Search in Google Scholar

[13] Kim, S. S., Zhang, W., & Pinnavaia, T. J. (1998). Ultrastable mesostructured silica vesicles. Science, 282, 1302–1305. DOI: 10.1126/science.282.5392.1302. http://dx.doi.org/10.1126/science.282.5392.130210.1126/science.282.5392.1302Search in Google Scholar

[14] Kim, T. K., Jeong, E. D., Oh, C. Y., Hyun, M. H., Lee, M. S., Moon, H. K., Kim, J.-P., Jung, O.-S., Nawaz Khan, F., & Jin, J. S. (2011). Morphology dependence of 1,2-diphenylethylenediamine-derived organogelator templates in solvents and their influence in the production of nanostructured silica. Chemical Papers, 65, 495–503, DOI: 10.2478/s11696-011-0042-1. http://dx.doi.org/10.2478/s11696-011-0042-110.2478/s11696-011-0042-1Search in Google Scholar

[15] Kleitz, F., Marlow, F., Stucky, G. D., & Schüth, F. (2001). Mesoporous silica fibers: Synthesis, internal structure, and growth kinetics. Chemistry of Materials, 13, 3587–3595. DOI: 10.1021/cm0110324. http://dx.doi.org/10.1021/cm011032410.1021/cm0110324Search in Google Scholar

[16] Liang, Z., & Susha, A. S. (2004). Mesostructured silica tubes and rods by templating porous membranes. Chemistry — A European Journal, 10, 4910–4914. DOI: 10.1002/chem.200400005. http://dx.doi.org/10.1002/chem.20040000510.1002/chem.200400005Search in Google Scholar PubMed

[17] Mecerreyes, D., Huang, E., Magbitang, T., Volksen, W., Hawker, C. J., Lee, V. Y., Miller, R. D., & Hedrick, J. L. (2001). Application of hyperbranched block copolymers as templates for the generation of nanoporous organosilicates. High Performance Polymers, 13, S11–S19. DOI: 10.1088/0954-0083/13/2/302. http://dx.doi.org/10.1088/0954-0083/13/2/30210.1088/0954-0083/13/2/302Search in Google Scholar

[18] Paik, P., Gedanken, A., & Mastai, Y. (2010). Chiral separation abilities: Aspartic acid block copolymer-imprinted mesoporous silica. Microporous and Mesoporous Materials, 129, 82–89. DOI: 10.1016/j.micromeso.2009.09.001. http://dx.doi.org/10.1016/j.micromeso.2009.09.00110.1016/j.micromeso.2009.09.001Search in Google Scholar

[19] Piepenbrock, M.-O. M., Lloyd, G. O., Clark, N., & Steed, J. W. (2010). Metal- and anion-binding supramolecular gels. Chemical Reviews, 110, 1960–2004. DOI: 10.1021/cr9003067. http://dx.doi.org/10.1021/cr900306710.1021/cr9003067Search in Google Scholar PubMed

[20] Qiao, Y., Lin, Y., Wang, Y., Yang, Z., Liu, J., Zhou, J., Yan, Y., & Huang, J. (2009). Metal-driven hierarchical self-assembled one-dimensional nanohelices. Nano Letters, 9, 4500–4504. DOI: 10.1021/nl9028335. http://dx.doi.org/10.1021/nl902833510.1021/nl9028335Search in Google Scholar PubMed

[21] Qiu, H., Wang, S., Zhang, W., Sakamoto, K., Terasaki, O., Inoue, Y., & Che, S. (2008). Steric and temperature control of enantiopurity of chiral mesoporous silica. The Journal of Physical Chemistry C, 112, 1871–1877. DOI: 10.1021/jp709798q. http://dx.doi.org/10.1021/jp709798q10.1021/jp709798qSearch in Google Scholar

[22] Roopan, S. M., & Nawaz Khan, F. R. (2010a). ZnO nanoparticles in the synthesis of AB ring core of camptothecin. Chemical Papers, 64, 812–817. DOI: 10.2478/s11696-010-0058-y. http://dx.doi.org/10.2478/s11696-010-0058-y10.2478/s11696-010-0058-ySearch in Google Scholar

[23] Roopan, S. M., & Nawaz Khan, F. R. (2010b). ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate. Chemical Papers, 64, 678–682. DOI: 10.2478/s11696-010-0045-3. http://dx.doi.org/10.2478/s11696-010-0045-310.2478/s11696-010-0045-3Search in Google Scholar

[24] Roopan, S. M., & Nawaz Khan, F. R. (2011). SnO2 nanoparticles mediated nontraditional synthesis of biologically active 9-chloro-6,13-dihydro-7-phenyl-5H-indolo [3,2-c]-acridine derivatives. Medicinal Chemistry Research, 20, 732–737. DOI: 10.1007/s00044-010-9381-7. http://dx.doi.org/10.1007/s00044-010-9381-710.1007/s00044-010-9381-7Search in Google Scholar

[25] Roopan, S. M., Nawaz Khan, F. R., & Mandal, B. K. (2010). Fe nano particles mediated C-N bond-forming reaction: Regioselective synthesis of 3-[(2-chloroquinolin-3-yl)methyl]pyrimidin-4(3H)ones. Tetrahedron Letters, 51, 2309–2311. DOI: 10.1016/j.tetlet.2010.02.128. http://dx.doi.org/10.1016/j.tetlet.2010.02.12810.1016/j.tetlet.2010.02.128Search in Google Scholar

[26] Sayari, A. (1996). Catalysis by crystalline mesoporous molecular sieves. Chemistry of Materials, 8, 1840–1852. DOI: 10.1021/cm950585+. http://dx.doi.org/10.1021/cm950585+10.1021/cm950585+Search in Google Scholar

[27] Stupp, S. I., & Braun, P. V. (1997). Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science, 277, 1242–1248. DOI: 10.1126/science.277.5330.1242. http://dx.doi.org/10.1126/science.277.5330.124210.1126/science.277.5330.1242Search in Google Scholar PubMed

[28] Tanev, P. T., Liang, Y., & Pinnavaia, T. J. (1997). Assembly of mesoporous lamellar silicas with hierarchical particle architectures. Journal of the American Chemical Society, 119, 8616–8624. DOI: 10.1021/ja970228v. http://dx.doi.org/10.1021/ja970228v10.1021/ja970228vSearch in Google Scholar

[29] Tanev, P. T., & Pinnavaia, T. J. (1996). Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science, 271, 1267–1269. DOI: 10.1126/science.271.5253.1267. http://dx.doi.org/10.1126/science.271.5253.126710.1126/science.271.5253.1267Search in Google Scholar

[30] Wang, L., Li, Y., Wang, H., Zhang, M., Chen, Y., Li, B., & Yang, Y. (2010). Nanofabrication of helical hybrid silica nanotubes using anionic gelators. Materials Chemistry and Physics, 124, 609–613. DOI: 10.1016/j.matchemphys.2010.07.021. http://dx.doi.org/10.1016/j.matchemphys.2010.07.02110.1016/j.matchemphys.2010.07.021Search in Google Scholar

[31] Yang, H., Coombs, N., & Ozin, G. A. (1997). Morphogenesis of shapes and surface patterns in mesoporous silica. Nature, 386, 692–695. DOI: 10.1038/386692a0. http://dx.doi.org/10.1038/386692a010.1038/386692a0Search in Google Scholar

[32] Yang, Y., Suzuki, M., Owa, S., Shirai, H., & Hanabusa, K. (2006). Control of helical silica nanostructures using a chiral surfactant. Journal of Materials Chemistry, 16, 1644–1650. DOI: 10.1039/B517121K. http://dx.doi.org/10.1039/b517121k10.1039/b517121kSearch in Google Scholar

[33] Yang, Z., Niu, Z., Cao, X., Yang, Z., Lu, Y., Hu, Z., & Han, C. C. (2003). Template synthesis of uniform 1D mesostructured silica materials and their arrays in anodic alumina membranes. Angewandte Chemie International Edition, 42, 4201–4203. DOI: 10.1002/anie.200250808. http://dx.doi.org/10.1002/anie.20025080810.1002/anie.200250808Search in Google Scholar

[34] Yoza, K., Amanokura, N., Ono, Y., Akao, T., Shinmori, H., Takeuchi, M., Shinkai, S., & Reinhoudt, D. N. (1999). Sugar-integrated gelators of organic solvents—Their remarkable diversity in gelation ability and aggregate structure. Chemistry — A European Journal, 5, 2722–2729. DOI: 10.1002/(SICI)1521-3765(19990903)5:9<2722::AID-CHEM 2722>3.0.CO;2-N. http://dx.doi.org/10.1002/(SICI)1521-3765(19990903)5:9<2722::AID-CHEM2722>3.0.CO;2-N10.1002/(SICI)1521-3765(19990903)5:9<2722::AID-CHEM2722>3.0.CO;2-NSearch in Google Scholar

[35] Yu, Y., Qiu, H., Wu, X., Li, H., Li, Y., Sakamoto, Y., Inoue, Y., Sakamoto, K., Terasaki, O., & Che, S. (2008). Synthesis and characterization of silica nanotubes with radially oriented mesopores. Advanced Functional Materials, 18, 541–550. DOI: 10.1002/adfm.200700593. http://dx.doi.org/10.1002/adfm.20070059310.1002/adfm.200700593Search in Google Scholar

[36] Zhang, H., Quan, X., Chen, S., Zhao, H., & Zhao, Y. (2006). The removal of sodium dodecylbenzene sulfonate surfactant from water using silica/titania nanorods/nanotubes composite membrane with photocatalytic capability. Applied Surface Science, 252, 8598–8604. DOI: 10.1016/j.apsusc.2005.11.090. http://dx.doi.org/10.1016/j.apsusc.2005.11.09010.1016/j.apsusc.2005.11.090Search in Google Scholar

[37] Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., & Stucky, G. D. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279, 548–552. DOI: 10.1126/science.279.5350.548. http://dx.doi.org/10.1126/science.279.5350.54810.1126/science.279.5350.548Search in Google Scholar PubMed

[38] Zhu, Y., Shi, J., Shen, W., Dong, X., Feng, J., Ruan, M., & Li, Y. (2005). Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angewandte Chemie International Edition, 44, 5083–5087. DOI: 10.1002/anie.200501500. http://dx.doi.org/10.1002/anie.20050150010.1002/anie.200501500Search in Google Scholar PubMed

Published Online: 2011-9-28
Published in Print: 2011-12-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
  2. Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
  3. Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
  4. Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
  5. Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
  6. Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
  7. Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
  8. Extraction of phytosterols from tall oil soap using selected organic solvents
  9. Dynamic simulations of waste water treatment plant operation
  10. Influence of recycling and temperature on the swelling ability of paper
  11. Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
  12. Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
  13. Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
  14. Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
  15. Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
  16. Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
  17. DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
  18. Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
  19. Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
  20. A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
  21. Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
  22. 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Downloaded on 20.1.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0083-5/html
Scroll to top button