Abstract
A new series of 1,2,3-selenadiazoles containing an aryl or a 3-arylisoquinoline sulfanyl moiety at carbons 4 and 5, respectively, was prepared by cyclization of the respective semicarbazones in the presence of selenium(II) oxide and tetrahydrofuran at 70–75°C. Semicarbazones required for the reaction were obtained from 2-((3-arylisoquinolin-1-yl)sulfanyl)-1-phenylethanones, I, by a reaction with semicarbazide hydrochloride in ethanol/water mixture and potassium acetate base.
[1] Al-Smadi, M., & Ratrout, S. (2004a). New many fold 1,2,3-selenadiazole aromatic derivatives. Journal of Heterocyclic Chemistry, 41, 887–891. DOI: 10.1002/jhet.5570410607. http://dx.doi.org/10.1002/jhet.557041060710.1002/jhet.5570410607Search in Google Scholar
[2] Al-Smadi, M., & Ratrout, S. (2004b). New 1,2,3-selenadiazole and 1,2,3-thiadiazole derivatives. Molecules, 9, 957–967. DOI: 10.3390/91100957. http://dx.doi.org/10.3390/9110095710.3390/91100957Search in Google Scholar
[3] Arsenyan, P., Oberte, K., Pudova, O., & Lukevics, E. (2002). Transformations of 1,2,3-selenadiazoles. Chemistry of Heterocyclic Compounds, 38, 1437–1447. DOI: 10.1023/A:1022667309258. http://dx.doi.org/10.1023/A:102266730925810.1023/A:1022667309258Search in Google Scholar
[4] Burger, A., & Abraham, D. J. (2003). Burger’s medicinal chemistry and drug discovery (6th ed.). Hoboken, NJ, USA: Wiley. Search in Google Scholar
[5] Cillo, C. M., & Lash, T. D. (2004). Benzo[1,2-c:3,4-c′]bis[1xx2,5]-selenadiazole, [1,2,5]selenadiazolo-[3,4-e]-2,1,3-benzothiadiazole, furazanobenzo-2,1,3-thiadiazole, furazanobenzo-2,1,3-selenadiazole and related heterocyclic systems. Journal of Heterocyclic Chemistry, 41, 955–962. DOI: 10.1002/jhet.5570410616. http://dx.doi.org/10.1002/jhet.557041061610.1002/jhet.5570410616Search in Google Scholar
[6] Dehaen, W., Bakulev, V. A., Taylor, E. C., & Wipf, P. (2004). The chemistry of 1,2,3-thiadiazoles. The chemistry of heterocyclic compounds (Vol. 62). New York, NY, USA: Wiley. Search in Google Scholar
[7] Hathwar, V. R., Manivel, P., Nawaz Khan, F., & Row, T. N. G. (2007a). 3-Butyl-1H-isochromen-1-one. Acta Crystallographica Section E, 63, o3707. DOI: 10.1107/S1600536807037671. http://dx.doi.org/10.1107/S160053680703767110.1107/S1600536807037671Search in Google Scholar
[8] Hathwar, V. R., Manivel, P., Nawaz Khan, F., & Row, T. N. G. (2007b). 3-Butyl-1H-isochromene-1-thione. Acta Crystallographica Section E, 63, o3708. DOI: 10.1107/S1600536807037683. http://dx.doi.org/10.1107/S160053680703768310.1107/S1600536807037683Search in Google Scholar
[9] Hurd, C. D., & Mori, R. I. (1955). On acylhydrazones and 1,2,3-thiadiazoles. Journal of the American Chemical Society, 77, 5359–5364. DOI: 10.1021/ja01625a047. http://dx.doi.org/10.1021/ja01625a04710.1021/ja01625a047Search in Google Scholar
[10] Kandeel, M., El-meligie, S., Omar, R., Roshdy, S., & Youssef, K. (1994). Synthesis of certain 1,2,3-selenadiazole, 1,2,3-thiadiazole and 1,2-oxazoline derivatives of anticipated antibacterial activity. Zagazig Journal of Pharmaceutical Sciences, 3, 197–205. Search in Google Scholar
[11] Lalezari, I., Shafiee, A., & Yalpani, M. (1973). Selenium heterocycles. VI. Mechanism of the stereoselective formation of 1,4-diselenafulvenes from 1,2,3-selenadiazoles and base. The Journal of Organic Chemistry, 38, 338–340. DOI: 10.1021/jo00942a029. http://dx.doi.org/10.1021/jo00942a02910.1021/jo00942a029Search in Google Scholar
[12] Lalezari, I., Shafiee, A., & Yalpani, M. (1969). A novel synthesis of selenium heterocycles: substituted 1,2,3-selenadiazoles. Tetrahedron Letters, 10, 5105–5106. DOI: 10.1016/S0040-4039(01)88895-X. http://dx.doi.org/10.1016/S0040-4039(01)88895-X10.1016/S0040-4039(01)88895-XSearch in Google Scholar
[13] Manivel, P., Mohana Roopan, S., Prem Kumar, D., & Nawaz Khan, F. (2009a). Isocoumarin thioanalogues as potential antibacterial agents. Phosphorus, Sulfur, and Silicon and the Related Elements, 184, 2576–2582. DOI: 10.1080/10426500802529507. http://dx.doi.org/10.1080/1042650080252950710.1080/10426500802529507Search in Google Scholar
[14] Manivel, P., Mohana Roopan, S., Sathish Kumar, R., & Nawaz Khan, F. (2009b). Synthesis of 3-substituted isoquinolin-1-yl-2-(cycloalk-2-enylidene) hydrazines and their antimicrobial properties. Journal of the Chilean Chemical Society, 54, 183–185. DOI: 10.4067/S0717-97072009000200020. 10.4067/S0717-97072009000200020Search in Google Scholar
[15] Manivel, P., & Nawaz Khan, F. (2009). Synthesis of 2-(2-(hydroxymethyl)phenyl)ethanol derivatives as potential antibacterial agents. Journal of the Chilean Chemical Society, 54, 180–182. DOI: 10.4067/S0717-97072009000200019. 10.4067/S0717-97072009000200019Search in Google Scholar
[16] Manivel, P., Nawaz Khan, F., & Hatwar, V. R. (2010). Synthesis of diversified thioethers,1-aroylalkylisoquinolin-1-yl thioethers, by electrophilic s-alkylation of 3-phenyl isoquinoline-1(2H)-thione. Phosphorus, Sulfur, and Silicon and the Related Elements, 185, 1932–1942. DOI: 10.1080/10426500903383945. http://dx.doi.org/10.1080/1042650090338394510.1080/10426500903383945Search in Google Scholar
[17] Meier, H., & Voigt, E. (1972). Bildung und Fragmentierung von Cycloalkeno-1,2,3-selenadiazolen. Tetrahedron, 28, 187–198. DOI: 10.1016/0040-4020(72)80068-1. http://dx.doi.org/10.1016/0040-4020(72)80068-110.1016/0040-4020(72)80068-1Search in Google Scholar
[18] Mohana Roopan, S., Maiyalagan, T., & Nawaz Khan, F. (2008). Solvent-free syntheses of some quinazolin-4(3H)-ones derivatives. Canadian Journal of Chemistry, 86, 1019–1025. DOI: 10.1139/v08-149. http://dx.doi.org/10.1139/v08-14910.1139/v08-149Search in Google Scholar
[19] Morzherin, Y. Y., Glukhareva, T. V., & Bakulev, V. A. (2003). Rearrangements and transformations of 1,2,3-thiadiazoles in organic synthesis. Chemistry of Heterocyclic Compounds, 39, 679–706. DOI: 10.1023/A:1025689208261. http://dx.doi.org/10.1023/A:102568920826110.1023/A:1025689208261Search in Google Scholar
[20] Murray, J. E., Merrill, J. P., Harrison, J. H., Wilson, R. E., & Dammin, G. J. (1963). Prolonged survival of human kidney homografts by immunosuppressive drug therapy. New England Journal of Medicine, 268, 1315–1323. http://dx.doi.org/10.1056/NEJM19630613268240110.1056/NEJM196306132682401Search in Google Scholar PubMed
[21] Niculescu-Duvaz, I. (2001). Thymitaq (Zarix). Current Opinion in Investigational Drugs, 2, 693–705. Search in Google Scholar
[22] Ostrowski, J. C., Susumu, K., Robinson, M. R., Therien, M. J., & Bazan, G. C. (2003). Near-infrared electroluminescent light-emitting devices based on ethyne-bridged porphyrin fluorophores. Advanced Materials, 15, 1296–1300. DOI: 10.1002/adma.200305228. http://dx.doi.org/10.1002/adma.20030522810.1002/adma.200305228Search in Google Scholar
[23] Prabakaran, K., & Nawaz Khan, F. (2010). Basic alumina-catalysed, solvent-free synthesis of diversified thioethers. Phosphorus, Sulfur, and Silicon and the Related Elements, 185, 825–831. DOI: 10.1080/10426500902998131. http://dx.doi.org/10.1080/1042650090299813110.1080/10426500902998131Search in Google Scholar
[24] Saravanan, S., Nithya, A., & Muthusubramanian, S. (2006). Synthesis and characterization of 4-aryl-5-(1-aryl-2-methyl-2-nitropropyl)-1,2,3-selenadiazoles. Journal of Heterocyclic Compounds, 43, 149–155. DOI: 10.1002/jhet.5570430122. http://dx.doi.org/10.1002/jhet.557043012210.1002/jhet.5570430122Search in Google Scholar
[25] Saravanan, S., Namitharan, K., & Muthusubramanian, S. (2008). Synthesis and characterization of 5-(cyclohexylsulfanyl)-4-aryl-1,2,3-selena/thiadiazoles. Indian Journal of Chemistry, 47B, 305–309. Search in Google Scholar
[26] Schatz, V. B. (1960). Medicinal chemistry (2nd ed.). New York, NY, USA: Wiley-Interscience. Search in Google Scholar
[27] Tajudeen, S. S., & Nawaz Khan, F. (2007). Synthesis of some 3-substituted isochromen-1-ones. Synthetic Communications, 37, 3649–3656. DOI: 10.1080/00397910701557796. http://dx.doi.org/10.1080/0039791070155779610.1080/00397910701557796Search in Google Scholar
[28] Takimiya, K., Kunugi, Y., Konda, Y., Niihara, N., & Otsubo, T. (2004). 2,6-Diphenylbenzo[1,2-b:4,5-b′]dichalcogenophenes: A new class of high-performance semiconductors for organic field-effect transistors. Journal of the American Chemical Society, 126, 5084–5085. DOI: 10.1021/ja0496930. http://dx.doi.org/10.1021/ja049693010.1021/ja0496930Search in Google Scholar
[29] Velusamy, M., Justin Thomas, K. R., Lin, J. T., & Wen, Y. S. (2005). Benzo[1,2,5]selenadiazole bridged amines: electrooptical properties. Tetrahedron Letters, 46, 7647–7651. DOI: 10.1016/j.tetlet.2005.08.166. http://dx.doi.org/10.1016/j.tetlet.2005.08.16610.1016/j.tetlet.2005.08.166Search in Google Scholar
[30] Vernon, J. M., Bryce, M. R., & Dransfield, T. A. (1983). Addition of benzyne to naphtho[2,3-c][1,2,5]selenadiazole. Tetrahedron, 39, 835–837. DOI: 10.1016/S0040-4020(01)91863-0. http://dx.doi.org/10.1016/S0040-4020(01)91863-010.1016/S0040-4020(01)91863-0Search in Google Scholar
[31] Yalpani, M., Lalezari, I., & Shafiee, A. (1971). 1,2,3-Selenadiazole and its derivatives. The Journal of Organic Chemistry, 36, 2836–2838. DOI: 10.1021/jo00818a023. http://dx.doi.org/10.1021/jo00818a02310.1021/jo00818a023Search in Google Scholar
[32] Yang, R., Tian, R., Yan, J., Zhang, Y., Yang, J., Hou, Q., Yang, W., Zhang, C., & Cao, Y. (2005). Deep-red electroluminescent polymers: Synthesis and characterization of new lowband-gap conjugated copolymers for light-emitting diodes and photovoltaic devices. Macromolecules, 38, 244–253. DOI: 10.1021/ma047969i. http://dx.doi.org/10.1021/ma047969i10.1021/ma047969iSearch in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
- Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
- Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
- Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
- Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
- Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
- Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
- Extraction of phytosterols from tall oil soap using selected organic solvents
- Dynamic simulations of waste water treatment plant operation
- Influence of recycling and temperature on the swelling ability of paper
- Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
- Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
- Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
- Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
- Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
- Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
- DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
- Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
- Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
- A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
- Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
- 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Articles in the same Issue
- Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
- Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
- Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
- Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
- Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
- Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
- Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
- Extraction of phytosterols from tall oil soap using selected organic solvents
- Dynamic simulations of waste water treatment plant operation
- Influence of recycling and temperature on the swelling ability of paper
- Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
- Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
- Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
- Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
- Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
- Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
- DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
- Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
- Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
- A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
- Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
- 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris