Home Life Sciences Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
Article
Licensed
Unlicensed Requires Authentication

Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines

  • Kamalakannan Prabakaran EMAIL logo , Fazlur-Rahman Khan , Jong Jin , Euh Jeong and Pitchai Manivel
Published/Copyright: September 28, 2011
Become an author with De Gruyter Brill

Abstract

A new series of 1,2,3-selenadiazoles containing an aryl or a 3-arylisoquinoline sulfanyl moiety at carbons 4 and 5, respectively, was prepared by cyclization of the respective semicarbazones in the presence of selenium(II) oxide and tetrahydrofuran at 70–75°C. Semicarbazones required for the reaction were obtained from 2-((3-arylisoquinolin-1-yl)sulfanyl)-1-phenylethanones, I, by a reaction with semicarbazide hydrochloride in ethanol/water mixture and potassium acetate base.

[1] Al-Smadi, M., & Ratrout, S. (2004a). New many fold 1,2,3-selenadiazole aromatic derivatives. Journal of Heterocyclic Chemistry, 41, 887–891. DOI: 10.1002/jhet.5570410607. http://dx.doi.org/10.1002/jhet.557041060710.1002/jhet.5570410607Search in Google Scholar

[2] Al-Smadi, M., & Ratrout, S. (2004b). New 1,2,3-selenadiazole and 1,2,3-thiadiazole derivatives. Molecules, 9, 957–967. DOI: 10.3390/91100957. http://dx.doi.org/10.3390/9110095710.3390/91100957Search in Google Scholar

[3] Arsenyan, P., Oberte, K., Pudova, O., & Lukevics, E. (2002). Transformations of 1,2,3-selenadiazoles. Chemistry of Heterocyclic Compounds, 38, 1437–1447. DOI: 10.1023/A:1022667309258. http://dx.doi.org/10.1023/A:102266730925810.1023/A:1022667309258Search in Google Scholar

[4] Burger, A., & Abraham, D. J. (2003). Burger’s medicinal chemistry and drug discovery (6th ed.). Hoboken, NJ, USA: Wiley. Search in Google Scholar

[5] Cillo, C. M., & Lash, T. D. (2004). Benzo[1,2-c:3,4-c′]bis[1xx2,5]-selenadiazole, [1,2,5]selenadiazolo-[3,4-e]-2,1,3-benzothiadiazole, furazanobenzo-2,1,3-thiadiazole, furazanobenzo-2,1,3-selenadiazole and related heterocyclic systems. Journal of Heterocyclic Chemistry, 41, 955–962. DOI: 10.1002/jhet.5570410616. http://dx.doi.org/10.1002/jhet.557041061610.1002/jhet.5570410616Search in Google Scholar

[6] Dehaen, W., Bakulev, V. A., Taylor, E. C., & Wipf, P. (2004). The chemistry of 1,2,3-thiadiazoles. The chemistry of heterocyclic compounds (Vol. 62). New York, NY, USA: Wiley. Search in Google Scholar

[7] Hathwar, V. R., Manivel, P., Nawaz Khan, F., & Row, T. N. G. (2007a). 3-Butyl-1H-isochromen-1-one. Acta Crystallographica Section E, 63, o3707. DOI: 10.1107/S1600536807037671. http://dx.doi.org/10.1107/S160053680703767110.1107/S1600536807037671Search in Google Scholar

[8] Hathwar, V. R., Manivel, P., Nawaz Khan, F., & Row, T. N. G. (2007b). 3-Butyl-1H-isochromene-1-thione. Acta Crystallographica Section E, 63, o3708. DOI: 10.1107/S1600536807037683. http://dx.doi.org/10.1107/S160053680703768310.1107/S1600536807037683Search in Google Scholar

[9] Hurd, C. D., & Mori, R. I. (1955). On acylhydrazones and 1,2,3-thiadiazoles. Journal of the American Chemical Society, 77, 5359–5364. DOI: 10.1021/ja01625a047. http://dx.doi.org/10.1021/ja01625a04710.1021/ja01625a047Search in Google Scholar

[10] Kandeel, M., El-meligie, S., Omar, R., Roshdy, S., & Youssef, K. (1994). Synthesis of certain 1,2,3-selenadiazole, 1,2,3-thiadiazole and 1,2-oxazoline derivatives of anticipated antibacterial activity. Zagazig Journal of Pharmaceutical Sciences, 3, 197–205. Search in Google Scholar

[11] Lalezari, I., Shafiee, A., & Yalpani, M. (1973). Selenium heterocycles. VI. Mechanism of the stereoselective formation of 1,4-diselenafulvenes from 1,2,3-selenadiazoles and base. The Journal of Organic Chemistry, 38, 338–340. DOI: 10.1021/jo00942a029. http://dx.doi.org/10.1021/jo00942a02910.1021/jo00942a029Search in Google Scholar

[12] Lalezari, I., Shafiee, A., & Yalpani, M. (1969). A novel synthesis of selenium heterocycles: substituted 1,2,3-selenadiazoles. Tetrahedron Letters, 10, 5105–5106. DOI: 10.1016/S0040-4039(01)88895-X. http://dx.doi.org/10.1016/S0040-4039(01)88895-X10.1016/S0040-4039(01)88895-XSearch in Google Scholar

[13] Manivel, P., Mohana Roopan, S., Prem Kumar, D., & Nawaz Khan, F. (2009a). Isocoumarin thioanalogues as potential antibacterial agents. Phosphorus, Sulfur, and Silicon and the Related Elements, 184, 2576–2582. DOI: 10.1080/10426500802529507. http://dx.doi.org/10.1080/1042650080252950710.1080/10426500802529507Search in Google Scholar

[14] Manivel, P., Mohana Roopan, S., Sathish Kumar, R., & Nawaz Khan, F. (2009b). Synthesis of 3-substituted isoquinolin-1-yl-2-(cycloalk-2-enylidene) hydrazines and their antimicrobial properties. Journal of the Chilean Chemical Society, 54, 183–185. DOI: 10.4067/S0717-97072009000200020. 10.4067/S0717-97072009000200020Search in Google Scholar

[15] Manivel, P., & Nawaz Khan, F. (2009). Synthesis of 2-(2-(hydroxymethyl)phenyl)ethanol derivatives as potential antibacterial agents. Journal of the Chilean Chemical Society, 54, 180–182. DOI: 10.4067/S0717-97072009000200019. 10.4067/S0717-97072009000200019Search in Google Scholar

[16] Manivel, P., Nawaz Khan, F., & Hatwar, V. R. (2010). Synthesis of diversified thioethers,1-aroylalkylisoquinolin-1-yl thioethers, by electrophilic s-alkylation of 3-phenyl isoquinoline-1(2H)-thione. Phosphorus, Sulfur, and Silicon and the Related Elements, 185, 1932–1942. DOI: 10.1080/10426500903383945. http://dx.doi.org/10.1080/1042650090338394510.1080/10426500903383945Search in Google Scholar

[17] Meier, H., & Voigt, E. (1972). Bildung und Fragmentierung von Cycloalkeno-1,2,3-selenadiazolen. Tetrahedron, 28, 187–198. DOI: 10.1016/0040-4020(72)80068-1. http://dx.doi.org/10.1016/0040-4020(72)80068-110.1016/0040-4020(72)80068-1Search in Google Scholar

[18] Mohana Roopan, S., Maiyalagan, T., & Nawaz Khan, F. (2008). Solvent-free syntheses of some quinazolin-4(3H)-ones derivatives. Canadian Journal of Chemistry, 86, 1019–1025. DOI: 10.1139/v08-149. http://dx.doi.org/10.1139/v08-14910.1139/v08-149Search in Google Scholar

[19] Morzherin, Y. Y., Glukhareva, T. V., & Bakulev, V. A. (2003). Rearrangements and transformations of 1,2,3-thiadiazoles in organic synthesis. Chemistry of Heterocyclic Compounds, 39, 679–706. DOI: 10.1023/A:1025689208261. http://dx.doi.org/10.1023/A:102568920826110.1023/A:1025689208261Search in Google Scholar

[20] Murray, J. E., Merrill, J. P., Harrison, J. H., Wilson, R. E., & Dammin, G. J. (1963). Prolonged survival of human kidney homografts by immunosuppressive drug therapy. New England Journal of Medicine, 268, 1315–1323. http://dx.doi.org/10.1056/NEJM19630613268240110.1056/NEJM196306132682401Search in Google Scholar PubMed

[21] Niculescu-Duvaz, I. (2001). Thymitaq (Zarix). Current Opinion in Investigational Drugs, 2, 693–705. Search in Google Scholar

[22] Ostrowski, J. C., Susumu, K., Robinson, M. R., Therien, M. J., & Bazan, G. C. (2003). Near-infrared electroluminescent light-emitting devices based on ethyne-bridged porphyrin fluorophores. Advanced Materials, 15, 1296–1300. DOI: 10.1002/adma.200305228. http://dx.doi.org/10.1002/adma.20030522810.1002/adma.200305228Search in Google Scholar

[23] Prabakaran, K., & Nawaz Khan, F. (2010). Basic alumina-catalysed, solvent-free synthesis of diversified thioethers. Phosphorus, Sulfur, and Silicon and the Related Elements, 185, 825–831. DOI: 10.1080/10426500902998131. http://dx.doi.org/10.1080/1042650090299813110.1080/10426500902998131Search in Google Scholar

[24] Saravanan, S., Nithya, A., & Muthusubramanian, S. (2006). Synthesis and characterization of 4-aryl-5-(1-aryl-2-methyl-2-nitropropyl)-1,2,3-selenadiazoles. Journal of Heterocyclic Compounds, 43, 149–155. DOI: 10.1002/jhet.5570430122. http://dx.doi.org/10.1002/jhet.557043012210.1002/jhet.5570430122Search in Google Scholar

[25] Saravanan, S., Namitharan, K., & Muthusubramanian, S. (2008). Synthesis and characterization of 5-(cyclohexylsulfanyl)-4-aryl-1,2,3-selena/thiadiazoles. Indian Journal of Chemistry, 47B, 305–309. Search in Google Scholar

[26] Schatz, V. B. (1960). Medicinal chemistry (2nd ed.). New York, NY, USA: Wiley-Interscience. Search in Google Scholar

[27] Tajudeen, S. S., & Nawaz Khan, F. (2007). Synthesis of some 3-substituted isochromen-1-ones. Synthetic Communications, 37, 3649–3656. DOI: 10.1080/00397910701557796. http://dx.doi.org/10.1080/0039791070155779610.1080/00397910701557796Search in Google Scholar

[28] Takimiya, K., Kunugi, Y., Konda, Y., Niihara, N., & Otsubo, T. (2004). 2,6-Diphenylbenzo[1,2-b:4,5-b′]dichalcogenophenes: A new class of high-performance semiconductors for organic field-effect transistors. Journal of the American Chemical Society, 126, 5084–5085. DOI: 10.1021/ja0496930. http://dx.doi.org/10.1021/ja049693010.1021/ja0496930Search in Google Scholar

[29] Velusamy, M., Justin Thomas, K. R., Lin, J. T., & Wen, Y. S. (2005). Benzo[1,2,5]selenadiazole bridged amines: electrooptical properties. Tetrahedron Letters, 46, 7647–7651. DOI: 10.1016/j.tetlet.2005.08.166. http://dx.doi.org/10.1016/j.tetlet.2005.08.16610.1016/j.tetlet.2005.08.166Search in Google Scholar

[30] Vernon, J. M., Bryce, M. R., & Dransfield, T. A. (1983). Addition of benzyne to naphtho[2,3-c][1,2,5]selenadiazole. Tetrahedron, 39, 835–837. DOI: 10.1016/S0040-4020(01)91863-0. http://dx.doi.org/10.1016/S0040-4020(01)91863-010.1016/S0040-4020(01)91863-0Search in Google Scholar

[31] Yalpani, M., Lalezari, I., & Shafiee, A. (1971). 1,2,3-Selenadiazole and its derivatives. The Journal of Organic Chemistry, 36, 2836–2838. DOI: 10.1021/jo00818a023. http://dx.doi.org/10.1021/jo00818a02310.1021/jo00818a023Search in Google Scholar

[32] Yang, R., Tian, R., Yan, J., Zhang, Y., Yang, J., Hou, Q., Yang, W., Zhang, C., & Cao, Y. (2005). Deep-red electroluminescent polymers: Synthesis and characterization of new lowband-gap conjugated copolymers for light-emitting diodes and photovoltaic devices. Macromolecules, 38, 244–253. DOI: 10.1021/ma047969i. http://dx.doi.org/10.1021/ma047969i10.1021/ma047969iSearch in Google Scholar

Published Online: 2011-9-28
Published in Print: 2011-12-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
  2. Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
  3. Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
  4. Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
  5. Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
  6. Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
  7. Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
  8. Extraction of phytosterols from tall oil soap using selected organic solvents
  9. Dynamic simulations of waste water treatment plant operation
  10. Influence of recycling and temperature on the swelling ability of paper
  11. Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
  12. Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
  13. Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
  14. Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
  15. Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
  16. Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
  17. DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
  18. Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
  19. Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
  20. A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
  21. Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
  22. 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Downloaded on 20.1.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0074-6/html
Scroll to top button