Home Life Sciences A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
Article
Licensed
Unlicensed Requires Authentication

A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions

  • Eskandar Kolvari EMAIL logo , Mohammad Zolfigol , Nadiya Koukabi and Behzad Shirmardi-Shaghasemi
Published/Copyright: September 28, 2011
Become an author with De Gruyter Brill

Abstract

A simple, inexpensive and efficient one-pot synthesis of 1,4-dihydropyridine derivatives under solvent-free conditions using silica sulphuric acid (SSA) as a heterogeneous and recyclable catalyst is reported.

[1] Adharvana Chari, M., & Syamasundar, K. (2005). Silica gel/NaHSO4 catalyzed one-pot synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Catalysis Communications, 6, 624–626. DOI: 10.1016/j.catcom.2005.03.010. http://dx.doi.org/10.1016/j.catcom.2005.03.01010.1016/j.catcom.2005.03.010Search in Google Scholar

[2] Adibi, H., Samimi, H. A., & Beygzadeh, M. (2007). Iron(III) trifluoroacetate and trifluoromethanesulfonate: Recyclable Lewis acid catalysts for one-pot synthesis of 3,4-dihydropyrimidinones or their sulfur analogues and 1,4-dihydropyridines via solvent-free Biginelli and Hantzsch condensation protocols. Catalysis Communications, 8, 2119–2124. DOI: 10.1016/j.catcom.2007.04.022. http://dx.doi.org/10.1016/j.catcom.2007.04.02210.1016/j.catcom.2007.04.022Search in Google Scholar

[3] Badathala, V. (2004). Clay catalysts in organic synthesis. Synlett, 2004, 388–389. DOI: 10.1055/s-2004-815396. http://dx.doi.org/10.1055/s-2004-81539610.1055/s-2004-815396Search in Google Scholar

[4] Beigly, S., Ghiaee, S., Ebrahimi, S. A., & Mahmoudian, M. (2004). Effects of mebudipine and dibudipine, two new calcium channel blockers, on guinea-pig isolated common bile duct. Acta Physiologica Hungarica, 91, 111–118. DOI: 10.1556/APhysiol.91.2004.2.3. http://dx.doi.org/10.1556/APhysiol.91.2004.2.310.1556/APhysiol.91.2004.2.3Search in Google Scholar

[5] Comins, D. L., & O’Connor, S. (1988). Regioselective substitution in aromatic six-membered nitrogen heterocycles. Advances in Heterocyclic Chemistry, 44, 199–267. DOI: 10.1016/S0065-2725(08)60263-9. http://dx.doi.org/10.1016/S0065-2725(08)60263-910.1016/S0065-2725(08)60263-9Search in Google Scholar

[6] Das, B., Ravikanth, B., Ramu, R., & Vittal Rao, B. (2006). An efficient one-pot synthesis of polyhydroquinolines at room temperature using HY-zeolite. Chemical & Pharmaceutical Bulletin, 54, 1044–1045. DOI: 10.1248/cpb.54.1044. http://dx.doi.org/10.1248/cpb.54.104410.1248/cpb.54.1044Search in Google Scholar PubMed

[7] Debache, A., Boulcina, R., Belfaitah, A., Rhouati, S., & Carboni, B. (2008). One-pot synthesis of 1,4-dihydropyridines via a phenylboronic acid catalyzed Hantzsch three-component reaction. Synlett, 2008, 509–512. DOI: 10.1055/s-2008-1032093. http://dx.doi.org/10.1055/s-2008-103209310.1055/s-2008-1032093Search in Google Scholar

[8] Debache, A., Ghalem, W., Boulcina, R., Belfaitah, A., Rhouati, S., & Carboni, B. (2009). An efficient one-step synthesis of 1,4-dihydropyridines via a triphenylphosphine-catalyzed three-component Hantzsch reaction under mild conditions. Tetrahedron Letters, 50, 5248–5250. DOI: 10.1016/j.tetlet.2009.07.018. http://dx.doi.org/10.1016/j.tetlet.2009.07.01810.1016/j.tetlet.2009.07.018Search in Google Scholar

[9] Donelson, J. L., Gibbs, R. A., & De, S. K. (2006). An efficient one-pot synthesis of polyhydroquinoline derivatives through the Hantzsch four component condensation. Journal of Molecular Catalysis A: Chemical, 256, 309–311. DOI: 10.1016/j.molcata.2006.03.079. http://dx.doi.org/10.1016/j.molcata.2006.03.07910.1016/j.molcata.2006.03.079Search in Google Scholar

[10] Faizi, M., Janahmadi, M., & Mahmoudian, M. (2003). The effect of mebudipine and dibudipine, two new Ca2+ channel blockers, in comparison with nifedipine on Ca2+ spikes of F1 neuronal soma membrane in Helix aspersa. Acta Physiologica Hungarica, 90, 243–254. DOI: 10.1556/APhysiol.90.2003.3.7. http://dx.doi.org/10.1556/APhysiol.90.2003.3.710.1556/APhysiol.90.2003.3.7Search in Google Scholar PubMed

[11] Gupta, R., Gupta, R., Paul, S., & Loupy, A. (2007). Covalently anchored sulfonic acid on silica gel as an efficient and reusable heterogeneous catalyst for the one-pot synthesis of Hantzsch 1,4-dihydropyridines under solvent-free conditions. Synthesis, 2007, 2835–2838. DOI: 10.1055/s-2007-983839. http://dx.doi.org/10.1055/s-2007-98383910.1055/s-2007-983839Search in Google Scholar

[12] Hantzsch, A. (1881). Condensationprodukte aus Aldehydammoniak und Ketonartigen Verbindungen. Berichte der Deutschen Chemischen Gesellschaft, 14, 1637–1638. DOI: 10.1002/cber.18810140214. http://dx.doi.org/10.1002/cber.1881014021410.1002/cber.18810140214Search in Google Scholar

[13] Heravi, M. M., Bakhtiari, K., Javadi, N. M., Bamoharram, F. F., Saeedi, M., & Oskooie, H. A. (2007). K7[PW11CoO40]-catalyzed one-pot synthesis of polyhydroquinoline derivatives via the Hantzsch three component condensation. Journal of Molecular Catalysis A: Chemical, 264, 50–52. DOI: 10.1016/j.molcata.2006.09.004. http://dx.doi.org/10.1016/j.molcata.2006.09.00410.1016/j.molcata.2006.09.004Search in Google Scholar

[14] Ji, S.-J., Jiang, Z.-Q., Lu, J., & Loh, T.-P. (2004). Facile ionic liquids-promoted one-pot synthesis of polyhydroquinoline derivatives under solvent free conditions. Synlett, 2004, 831–835. DOI: 10.1055/s-2004-820035. http://dx.doi.org/10.1055/s-2004-82003510.1055/s-2004-820035Search in Google Scholar

[15] Karimi, B., & Khalkhali, M. (2007). Silica functionalized sulfonic acid as a recyclable interphase catalyst for chemoselective thioacetalization of carbonyl compounds in water. Journal of Molecular Catalysis A: Chemical, 271, 75–79. DOI: 10.1016/j.molcata.2007.02.018. http://dx.doi.org/10.1016/j.molcata.2007.02.01810.1016/j.molcata.2007.02.018Search in Google Scholar

[16] Katritzky, A. R., Ostercamp, D. L., & Yousaf, T. I. (1986). The mechanism of the Hantzsch pyridine synthesis: A study by 15N and 13CNMR spectroscopy. Tetrahedron, 42, 5729–5738. DOI: 10.1016/S0040-4020(01)88178-3. http://dx.doi.org/10.1016/S0040-4020(01)88178-310.1016/S0040-4020(01)88178-3Search in Google Scholar

[17] Kumar, A., & Maurya, R. A. (2008). Efficient synthesis of Hantzsch esters and polyhydroquinoline derivatives in aqueous micelles. Synlett, 2008, 883–885. DOI: 10.1016/S0040-4020(01)88178-3. http://dx.doi.org/10.1055/s-2008-104290810.1016/S0040-4020(01)88178-3Search in Google Scholar

[18] Kumar, R., & Chandra, R. (2001). Stereocontrolled additions to dihydropyridines and tetrahydropyridines: Access to N-heterocyclic compounds related to natural products Advances in Heterocyclic Chemistry, 78, 269–313. DOI: 10.1016/S0065-2725(01)78005-1. http://dx.doi.org/10.1016/S0065-2725(01)78005-110.1016/S0065-2725(01)78005-1Search in Google Scholar

[19] Lavilla, R. (2002). Recent developments in the chemistry of dihydropyridines. Journal of the Chemical Society, Perkin Transactions 1, 2002, 1141–1156. DOI: 10.1039/B101371H. http://dx.doi.org/10.1039/b101371h10.1039/b101371hSearch in Google Scholar

[20] Li, M., Zuo, Z., Wen, L., & Wang, S. (2008). Microwaveassisted combinatorial synthesis of hexa-substituted 1,4-dihydropyridines scaffolds using one-pot two-step multicomponent reaction followed by a S-alkylation. Journal of Combinatorial Chemistry, 10, 436–441. DOI: 10.1021/cc700194b. http://dx.doi.org/10.1021/cc700194b10.1021/cc700194bSearch in Google Scholar PubMed

[21] Morrison, R. T., & Boyd, R. N. (1992). Organic Chemistry (6th ed.). Englewood Cliffs, NJ, USA: Prentice-Hall Inc. Search in Google Scholar

[22] Niknam, K., Saberi, D., & Baghernejad, M. (2009). Silicabonded S-sulfonic acid a recyclable catalyst for the synthesis of coumarins. Chinese Chemical Letters, 20, 1444–1448 DOI: 10.1016/j.cclet.2009.06.039. http://dx.doi.org/10.1016/j.cclet.2009.06.03910.1016/j.cclet.2009.06.039Search in Google Scholar

[23] Sabitha, G., Reddy, G. S. K. K., Reddy, Ch. S., & Yadav, J. S. (2003). A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Tetrahedron Letters, 44, 4129–4131. DOI: 10.1016/S0040-4039(03)00813-X. http://dx.doi.org/10.1016/S0040-4039(03)00813-X10.1016/S0040-4039(03)00813-XSearch in Google Scholar

[24] Song, G., Wang, B., Wu, X., Kang, Y., & Yang, L. (2005). Montmorillonite K10 clay: An effective solid catalyst for one-pot synthesis of polyhydroquinoline derivatives. Synthetic Communications, 35, 2875–2880. DOI: 10.1080/00397910500297255. http://dx.doi.org/10.1080/0039791050029725510.1080/00397910500297255Search in Google Scholar

[25] Stout, D. M., & Meyers, A. I. (1982). Recent advances in the chemistry of dihydropyridines. Chemical Reviews, 82, 223–243. DOI: 10.1021/cr00048a004. http://dx.doi.org/10.1021/cr00048a00410.1021/cr00048a004Search in Google Scholar

[26] Zolfigol, M. A. (2001). Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions. Tetrahedron, 57, 9509–9511. DOI: 10.1016/S0040-4020(01)00960-7. http://dx.doi.org/10.1016/S0040-4020(01)00960-710.1016/S0040-4020(01)00960-7Search in Google Scholar

[27] Zolfigol, M. A., & Safaiee, M. (2004). Synthesis of 1,4-dihydropyridines under solvent-free conditions. Synlett, 2004, 827–828. DOI: 10.1055/s-2004-820010. http://dx.doi.org/10.1055/s-2004-82001010.1055/s-2004-820010Search in Google Scholar

Published Online: 2011-9-28
Published in Print: 2011-12-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
  2. Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
  3. Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
  4. Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
  5. Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
  6. Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
  7. Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
  8. Extraction of phytosterols from tall oil soap using selected organic solvents
  9. Dynamic simulations of waste water treatment plant operation
  10. Influence of recycling and temperature on the swelling ability of paper
  11. Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
  12. Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
  13. Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
  14. Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
  15. Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
  16. Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
  17. DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
  18. Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
  19. Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
  20. A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
  21. Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
  22. 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Downloaded on 20.1.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0087-1/html
Scroll to top button