Home Life Sciences Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
Article
Licensed
Unlicensed Requires Authentication

Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media

  • Yu He EMAIL logo , Cui Ma , Dong Xia , Liang Ding , Liang Li and Mu Xian
Published/Copyright: September 28, 2011
Become an author with De Gruyter Brill

Abstract

Ionic liquid (IL) 1-ethyl-3-methylimidazolium dimethylphosphate ([Emim]DMP) was chosen as an environment-friendly solvent to enzymatically hydrolyze cellulose in situ. Under optimal reaction condition, 80.2 % of cellulose (10 mg mL−1) were converted to glucose in aqueous-IL-DMSO (φ r = 74: 25: 1) media at 55°C in 18 h. Finally, fermentability of the recovered hydrolyzates was evaluated using Saccharomyces cerevisiae which is able to ferment hydrolyzates efficiently, the ethanol production was 0.44 g g−1 of glucose within 24 h of the process. Such information is vital for the saccharification of more complex cellulose materials and for the fermentation of hydrolyzates into biofuel.

[1] Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., & Saddler, J. N. (2007). Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? Advances in Biochemical Engineering/Biotechnology, 108, 67–93. DOI: 10.1007/10 2007 064. http://dx.doi.org/10.1007/10_2007_064Search in Google Scholar

[2] Dadi, A. P., Varanasi, S., & Schall, C. A. (2006). Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnology and Bioengineering, 95, 904–910. DOI: 10.1002/bit.21047. http://dx.doi.org/10.1002/bit.2104710.1002/bit.21047Search in Google Scholar

[3] Heinze, T., & Liebert, T. (2001). Unconventional methods in cellulose functionalization. Progress in Polymer Science, 26, 1689–1762. DOI: 10.1016/S0079-6700(01)00022-3. http://dx.doi.org/10.1016/S0079-6700(01)00022-310.1016/S0079-6700(01)00022-3Search in Google Scholar

[4] Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18. DOI: 10.1016/j.biortech.2008. 05.027. http://dx.doi.org/10.1016/j.biortech.2008.05.02710.1016/j.biortech.2008.05.027Search in Google Scholar PubMed

[5] Jeihanipour, A., & Taherzadeh, M. J. (2009). Ethanol production from cotton-based waste textiles. Bioresource Technology, 100, 1007–1010. DOI: 10.1016/j.biortech.2008.07.020. http://dx.doi.org/10.1016/j.biortech.2008.07.02010.1016/j.biortech.2008.07.020Search in Google Scholar PubMed

[6] Kamiya, N., Matsushita, Y., Hanaki, M., Nakashima, K., Narita, M., Goto, M., & Takahashi, H. (2008). Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media. Biotechnology Letters, 30, 1037–1040. DOI: 10.1007/s10529-008-9638-0. http://dx.doi.org/10.1007/s10529-008-9638-010.1007/s10529-008-9638-0Search in Google Scholar PubMed

[7] Lucas, R., Robles, A., García, M. T., Alvarez de Cienfuegos, G., & Gálvez, A. (2001). Production, purification, and properties of an endoglucanase produced by the hyphomycete Chalara (syn. Thielaviopsis) paradoxa CH32. Journal of Agricultural and Food Chemistry, 49, 79–85. DOI: 10.1021/jf000916p. http://dx.doi.org/10.1021/jf000916p10.1021/jf000916pSearch in Google Scholar PubMed

[8] Mikkola, J.-P., Kirilin, A., Tuuf, J.-C., Pranovich, A., Holmbom, B., Kustov, L. M., Murzin, D. Y., & Salmi, T. (2007). Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chemistry, 9, 1229–1237. DOI: 10.1039/b708533h. http://dx.doi.org/10.1039/b708533h10.1039/b708533hSearch in Google Scholar

[9] Moulthrop, J. S., Swatloski, R. P., Moyna, G., & Rogers, R. D. (2005). High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chemical Communications, 12, 1557–1559. DOI: 10.1039/b417745b. http://dx.doi.org/10.1039/b417745b10.1039/b417745bSearch in Google Scholar PubMed

[10] Petersson, A., Thomsen, M. H., Hauggaard-Nielsen, H., & Thomsen, A.-B. (2007). Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass and Bioenergy, 31, 812–819. DOI: 10.1016/j.biombioe.2007.06.001. http://dx.doi.org/10.1016/j.biombioe.2007.06.00110.1016/j.biombioe.2007.06.001Search in Google Scholar

[11] Remsing, R. C., Hernandez, G., Swatloski, R. P., Massefski, W. W., Rogers, R. D., & Moyna, G. (2008). Solvation of carbohydrates in N,N′-dialkylimidazolium ionic liquids: A multinuclear NMR spectroscopy study. The Journal of Physical Chemistry B, 112, 11071–11078. DOI: 10.1021/jp8042895. http://dx.doi.org/10.1021/jp804289510.1021/jp8042895Search in Google Scholar PubMed

[12] Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemistry, 40, 3693–3700. DOI: 10.1016/j.procbio.2005.04.006. http://dx.doi.org/10.1016/j.procbio.2005.04.00610.1016/j.procbio.2005.04.006Search in Google Scholar

[13] Xian, M., Li, L., He, Y., Tan, W., Li, Q., & Yang, F. (2009). Chinese Patent No. 200910093300.8. Shanghai, China: China Patent & Trademark Office. Search in Google Scholar

[14] Yáñez, R., Alonso, J. L., & Parajó, J. C. (2006). Enzymatic saccharification of hydrogen peroxide-treated solids from hydrothermal processing of rice husks. Process Biochemistry, 41, 1244–1252. DOI: 10.1016/j.procbio.2005.12.020. http://dx.doi.org/10.1016/j.procbio.2005.12.02010.1016/j.procbio.2005.12.020Search in Google Scholar

[15] Zhao, H., Baker, G. A., Song, Z., Olujabo, O., Crittle, T., & Peters, D. (2008). Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chemistry, 10, 696–705. DOI: 10.1039/B801489B. http://dx.doi.org/10.1039/b801489b10.1039/b801489bSearch in Google Scholar

[16] Zhao, H., Jones, C. L., Baker, G. A., Xia, S., Olujabo, O., & Person, V. N. (2009). Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. Journal of Biotechnology, 139, 47–54. DOI: 10.1016/j.jbiotec.2008.08.009. http://dx.doi.org/10.1016/j.jbiotec.2008.08.00910.1016/j.jbiotec.2008.08.009Search in Google Scholar PubMed

Published Online: 2011-9-28
Published in Print: 2011-12-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
  2. Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
  3. Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
  4. Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
  5. Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
  6. Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
  7. Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
  8. Extraction of phytosterols from tall oil soap using selected organic solvents
  9. Dynamic simulations of waste water treatment plant operation
  10. Influence of recycling and temperature on the swelling ability of paper
  11. Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
  12. Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
  13. Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
  14. Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
  15. Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
  16. Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
  17. DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
  18. Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
  19. Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
  20. A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
  21. Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
  22. 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Downloaded on 20.1.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0066-6/html
Scroll to top button