Home Life Sciences Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
Article
Licensed
Unlicensed Requires Authentication

Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions

  • Xin-Bin Yang EMAIL logo , Xiang-Kai Fu , Yu Huang and Ren-Quan Zeng
Published/Copyright: September 28, 2011
Become an author with De Gruyter Brill

Abstract

Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate (ZSBEDP) was prepared and characterised by elemental analysis, IR, TG-DSC, and XRD. ZSBEDP was found to be an efficient catalyst for the Biginelli reaction of aromatic aldehyde, ethyl acetoacetate, and urea or thiourea under solvent-free conditions so as to give 3,4-dihydropyrimidones in good to excellent yields. The catalyst can be separated by simple filtration and reused without significant loss of its catalytic activity.

[1] Abdollahi-Alibeik, M., & Zaghaghi, Z. (2009). 1,3-Dibromo-5,5-dimethylhydantoin as a useful reagent for efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions. Chemical Papers, 63, 97–101. DOI: 10.2478/s11696-008-0084-1. http://dx.doi.org/10.2478/s11696-008-0084-110.2478/s11696-008-0084-1Search in Google Scholar

[2] Banik, B. K., Reddy, A. T., Datta, A., & Mukhopadhyay, C. (2007). Microwave-induced bismuth nitrate-catalyzed synthesis of dihydropyrimidones via Biginelli condensation under solventless conditions. Tetrahedron Letters, 48, 7392–7394. DOI: 10.1016/j.tetlet.2007.08.007. http://dx.doi.org/10.1016/j.tetlet.2007.08.00710.1016/j.tetlet.2007.08.007Search in Google Scholar

[3] Clearfield, A., & Thakur, D. S. (1986). Zirconium and titanium phosphates as catalysts: A review. Applied Catalysis, 26, 1–26. DOI: 10.1016/S0166-9834(00)82538-5. http://dx.doi.org/10.1016/S0166-9834(00)82538-510.1016/S0166-9834(00)82538-5Search in Google Scholar

[4] Clearfield, A., Wang, J. D., Tian, Y., Stein, E., & Bhardwaj, C. (1995). Synthesis and stability of mixed ligand zirconium phosphonate layered compounds. Journal of Solid State Chemistry, 117, 275–289. DOI: 10.1006/jssc.1995.1274. http://dx.doi.org/10.1006/jssc.1995.127410.1006/jssc.1995.1274Search in Google Scholar

[5] Costantino, U., Fringuelli, F., Orrů, M., Nocchetti, M., Piermatti, O., & Pizzo, F. (2009). Direct aza-Diels-Alder reaction in water catalyzed by layered α-zirconium hydrogen phosphate and sodium dodecyl sulfate. European Journal of Organic Chemistry, 2009, 1214–1220. DOI: 10.1002/ejoc.200801132. http://dx.doi.org/10.1002/ejoc.20080113210.1002/ejoc.200801132Search in Google Scholar

[6] Curini, M., Montanari, F., Rosati, O., Lioy, E., & Margarita, R. (2003). Layered zirconium phosphate and phosphonate as heterogeneous catalyst in the preparation of pyrroles. Tetrahedron Letters, 44, 3923–3925. DOI: 10.1016/s0040-4039(03)00810-4. http://dx.doi.org/10.1016/S0040-4039(03)00810-410.1016/S0040-4039(03)00810-4Search in Google Scholar

[7] Dines, M. B., & DiGiacomo, P. M. (1981). Derivatized lamellar phosphates and phosphonates of M(IV) ions. Inorganic Chemistry, 20, 92–97. DOI: 10.1021/ic50215a022. http://dx.doi.org/10.1021/ic50215a02210.1021/ic50215a022Search in Google Scholar

[8] Joseph, J. K., Jain, S. L., & Sain, B. (2006). Ion exchange resins as recyclable and heterogeneous solid acid catalysts for the Biginelli condensation: An improved protocol for the synthesis of 3,4-dihydropyrimidin-2-ones. Journal of Molecular Catalysis A: Chemical, 247, 99–102. DOI: 10.1016/j.molcata.2005.11.028. http://dx.doi.org/10.1016/j.molcata.2005.11.02810.1016/j.molcata.2005.11.028Search in Google Scholar

[9] Kamiya, Y., Sakata, S., Yoshinaga, Y., Ohnishi, R., & Okuhara, T. (2004). Zirconium phosphate with a high surface area as a water-tolerant solid acid. Catalysis Letters, 94, 45–47. DOI: 10.1023/B:CATL.0000019329.82828.e4. http://dx.doi.org/10.1023/B:CATL.0000019329.82828.e410.1023/B:CATL.0000019329.82828.e4Search in Google Scholar

[10] Kappe, C. O. (2000). Biologically active dihydropyrimidones of the Biginelli-type — a literature survey. European Journal of Medicinal Chemistry, 35, 1043–1052. DOI: 10.1016/s0223-5234(00)01189-2. http://dx.doi.org/10.1016/S0223-5234(00)01189-210.1016/S0223-5234(00)01189-2Search in Google Scholar

[11] Kappe, C. O. (1993). 100 years of the Biginelli dihydropyrimidine synthesis. Tetrahedron, 49, 6937–6963. DOI: 10.1016/S0040-4020(01)87971-0. http://dx.doi.org/10.1016/S0040-4020(01)87971-010.1016/S0040-4020(01)87971-0Search in Google Scholar

[12] Kumar, A., & Maurya, R. A. (2008). Organocatalysed threecomponent domino synthesis of 1,4-dihydropyridines under solvent free conditions. Tetrahedron, 64, 3477–3482. DOI: 10.1016/j.tet.2008.02.022. http://dx.doi.org/10.1016/j.tet.2008.02.02210.1016/j.tet.2008.02.022Search in Google Scholar

[13] Ma, X. B., & Fu, X., K. (2004). Synthesis of the novel layered amorphous and crystalline zirconium phosphate-phosphonates Zr(HPO4)[O3PCH2N(CH2CH2)2O]·nH2O, Zr(HPO4)[O3PCH2N(CH2CO2H)2]·nH2O, zirconium phosphonates Zr[(O3PCH2)NCH2CO2H]·nH2O and the catalytic activities of their palladium complexes in hydrogenation. Journal of Molecular Catalysis A: Chemical, 208, 129–133. DOI: 10.1016/j.molcata.2003.07.004. http://dx.doi.org/10.1016/j.molcata.2003.07.00410.1016/j.molcata.2003.07.004Search in Google Scholar

[14] Moedritzer, K., & Irani, R. R. (1966). The direct synthesis of α-aminomethylphosphonic acids. Mannich-type reactions with orthophosphorous Acid. Journal of Organic Chemistry, 31, 1603–1607. DOI: 10.1021/jo01343a067. http://dx.doi.org/10.1021/jo01343a06710.1021/jo01343a067Search in Google Scholar

[15] Okuhara, T. (2002). Water-tolerant solid acid catalysts. Chemical Reviews, 102, 3641–3666. DOI: 10.1021/cr0103569. http://dx.doi.org/10.1021/cr010356910.1021/cr0103569Search in Google Scholar

[16] Patel, S. M., Chudasama, U. V., & Ganeshpure, P. A. (2001). Metal(IV) phosphates as solid acid catalysts for selective cyclodehydration of 1,n-diols. Green Chemistry, 3, 143–145. DOI: 10.1039/b100503k. http://dx.doi.org/10.1039/b100503k10.1039/b100503kSearch in Google Scholar

[17] Patil, A. D., Kumar, N. V., Kokke, W. C., Bean, M. F., Freyer, A. J., De Brosse, C., Mai, S., Truneh, A., Faulkner, D. J., Carte, B., Breen, A. L., Hertzberg, R. P., Johnson, R. K., Westley, J. W., & Potts, B. C. M. (1995). Novel alkaloids from the sponge Batzella sp.: Inhibitors of HIV gp120-human CD4 binding. The Journal of Organic Chemistry, 60, 1182–1188. DOI: 10.1021/jo00110a021. http://dx.doi.org/10.1021/jo00110a02110.1021/jo00110a021Search in Google Scholar

[18] Peng, J. J., & Deng, Y. Q. (2001). Ionic liquids catalyzed Biginelli reaction under solvent-free conditions. Tetrahedron Letters, 42, 5917–5919. DOI: 10.1016/s0040-4039(01)01139-x. http://dx.doi.org/10.1016/S0040-4039(01)01139-X10.1016/S0040-4039(01)01139-XSearch in Google Scholar

[19] Quan, Z.-J., Da, Y.-X., Zhang, Z., & Wang, X.-C. (2009). PS-PEG-SO3H as an efficient catalyst for 3,4-dihydropyrimidones via Biginelli reaction. Catalysis Communications, 10, 1146–1148. DOI: 10.1016/j.catcom.2008.12.017. http://dx.doi.org/10.1016/j.catcom.2008.12.01710.1016/j.catcom.2008.12.017Search in Google Scholar

[20] Reddy, B. M., Sreekanth, P. M., & Lakshmanan, P. (2005). Sulfated zirconia as an efficient catalyst for organic synthesis and transformation reactions. Journal of Molecular Catalysis A: Chemical, 237, 93–100. DOI: 10.1016/j.molcata.2005.04.039. http://dx.doi.org/10.1016/j.molcata.2005.04.03910.1016/j.molcata.2005.04.039Search in Google Scholar

[21] Reddy, C. V., Mahesh, M., Raju, P. V. K., Babu, T. R., & Reddy, V. V. N. (2002). Zirconium(IV) chloride catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Letters, 43, 2657–2659. DOI: 10.1016/s0040-4039(02)00280-0. http://dx.doi.org/10.1016/S0040-4039(02)00280-010.1016/S0040-4039(02)00280-0Search in Google Scholar

[22] Rovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., Di-Marco, J. D., Gougoutas, J., Hedberg, A., Malley, M., McCarthy, J. P., Zhang, R., & Moreland, S. (1995). Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. Journal of Medicinal Chemistry, 38, 119–129. DOI: 10.1021/jm00001a017. http://dx.doi.org/10.1021/jm00001a01710.1021/jm00001a017Search in Google Scholar PubMed

[23] Yang, Y. J., Liu, C. H., Wu, H. X., & Li, R. (2010). Preparation and characterization of films based on zirconium sulfophenyl phosphonate and chitosan. Carbohydrate Research, 345, 148–153. DOI: 10.1016/j.carres.2009.10.012. http://dx.doi.org/10.1016/j.carres.2009.10.01210.1016/j.carres.2009.10.012Search in Google Scholar PubMed

[24] Zima, V., Svoboda, J., Melánová, K., Beneš, L., Casciola, M., Sganappa, M., Brus, J., & Trchová, M. (2010). Synthesis and characterization of new zirconium 4-sulfophenylphosphonates. Solid State Ionics, 181, 705–713. DOI: 10.1016/j.ssi.2010. 03.034. http://dx.doi.org/10.1016/j.ssi.2010.03.03410.1016/j.ssi.2010.03.034Search in Google Scholar

[25] Zou, X.-C., Fu, X.-K., Li, Y.-D., Gong, B.-W., Chen, J.-X., & Tu, X.-B. (2009). Synthesis of crystalline layered zirconium phenylethylamino-N,N-bis methylphosphonates and analysis for its novel interlayer distance. Chinese Journal of Inorganic Chemistry, 25, 290–295. Search in Google Scholar

Published Online: 2011-9-28
Published in Print: 2011-12-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
  2. Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
  3. Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
  4. Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
  5. Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
  6. Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
  7. Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
  8. Extraction of phytosterols from tall oil soap using selected organic solvents
  9. Dynamic simulations of waste water treatment plant operation
  10. Influence of recycling and temperature on the swelling ability of paper
  11. Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
  12. Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
  13. Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
  14. Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
  15. Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
  16. Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
  17. DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
  18. Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
  19. Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
  20. A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
  21. Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
  22. 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Downloaded on 20.1.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0091-5/html
Scroll to top button