Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
Abstract
Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate (ZSBEDP) was prepared and characterised by elemental analysis, IR, TG-DSC, and XRD. ZSBEDP was found to be an efficient catalyst for the Biginelli reaction of aromatic aldehyde, ethyl acetoacetate, and urea or thiourea under solvent-free conditions so as to give 3,4-dihydropyrimidones in good to excellent yields. The catalyst can be separated by simple filtration and reused without significant loss of its catalytic activity.
[1] Abdollahi-Alibeik, M., & Zaghaghi, Z. (2009). 1,3-Dibromo-5,5-dimethylhydantoin as a useful reagent for efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions. Chemical Papers, 63, 97–101. DOI: 10.2478/s11696-008-0084-1. http://dx.doi.org/10.2478/s11696-008-0084-110.2478/s11696-008-0084-1Search in Google Scholar
[2] Banik, B. K., Reddy, A. T., Datta, A., & Mukhopadhyay, C. (2007). Microwave-induced bismuth nitrate-catalyzed synthesis of dihydropyrimidones via Biginelli condensation under solventless conditions. Tetrahedron Letters, 48, 7392–7394. DOI: 10.1016/j.tetlet.2007.08.007. http://dx.doi.org/10.1016/j.tetlet.2007.08.00710.1016/j.tetlet.2007.08.007Search in Google Scholar
[3] Clearfield, A., & Thakur, D. S. (1986). Zirconium and titanium phosphates as catalysts: A review. Applied Catalysis, 26, 1–26. DOI: 10.1016/S0166-9834(00)82538-5. http://dx.doi.org/10.1016/S0166-9834(00)82538-510.1016/S0166-9834(00)82538-5Search in Google Scholar
[4] Clearfield, A., Wang, J. D., Tian, Y., Stein, E., & Bhardwaj, C. (1995). Synthesis and stability of mixed ligand zirconium phosphonate layered compounds. Journal of Solid State Chemistry, 117, 275–289. DOI: 10.1006/jssc.1995.1274. http://dx.doi.org/10.1006/jssc.1995.127410.1006/jssc.1995.1274Search in Google Scholar
[5] Costantino, U., Fringuelli, F., Orrů, M., Nocchetti, M., Piermatti, O., & Pizzo, F. (2009). Direct aza-Diels-Alder reaction in water catalyzed by layered α-zirconium hydrogen phosphate and sodium dodecyl sulfate. European Journal of Organic Chemistry, 2009, 1214–1220. DOI: 10.1002/ejoc.200801132. http://dx.doi.org/10.1002/ejoc.20080113210.1002/ejoc.200801132Search in Google Scholar
[6] Curini, M., Montanari, F., Rosati, O., Lioy, E., & Margarita, R. (2003). Layered zirconium phosphate and phosphonate as heterogeneous catalyst in the preparation of pyrroles. Tetrahedron Letters, 44, 3923–3925. DOI: 10.1016/s0040-4039(03)00810-4. http://dx.doi.org/10.1016/S0040-4039(03)00810-410.1016/S0040-4039(03)00810-4Search in Google Scholar
[7] Dines, M. B., & DiGiacomo, P. M. (1981). Derivatized lamellar phosphates and phosphonates of M(IV) ions. Inorganic Chemistry, 20, 92–97. DOI: 10.1021/ic50215a022. http://dx.doi.org/10.1021/ic50215a02210.1021/ic50215a022Search in Google Scholar
[8] Joseph, J. K., Jain, S. L., & Sain, B. (2006). Ion exchange resins as recyclable and heterogeneous solid acid catalysts for the Biginelli condensation: An improved protocol for the synthesis of 3,4-dihydropyrimidin-2-ones. Journal of Molecular Catalysis A: Chemical, 247, 99–102. DOI: 10.1016/j.molcata.2005.11.028. http://dx.doi.org/10.1016/j.molcata.2005.11.02810.1016/j.molcata.2005.11.028Search in Google Scholar
[9] Kamiya, Y., Sakata, S., Yoshinaga, Y., Ohnishi, R., & Okuhara, T. (2004). Zirconium phosphate with a high surface area as a water-tolerant solid acid. Catalysis Letters, 94, 45–47. DOI: 10.1023/B:CATL.0000019329.82828.e4. http://dx.doi.org/10.1023/B:CATL.0000019329.82828.e410.1023/B:CATL.0000019329.82828.e4Search in Google Scholar
[10] Kappe, C. O. (2000). Biologically active dihydropyrimidones of the Biginelli-type — a literature survey. European Journal of Medicinal Chemistry, 35, 1043–1052. DOI: 10.1016/s0223-5234(00)01189-2. http://dx.doi.org/10.1016/S0223-5234(00)01189-210.1016/S0223-5234(00)01189-2Search in Google Scholar
[11] Kappe, C. O. (1993). 100 years of the Biginelli dihydropyrimidine synthesis. Tetrahedron, 49, 6937–6963. DOI: 10.1016/S0040-4020(01)87971-0. http://dx.doi.org/10.1016/S0040-4020(01)87971-010.1016/S0040-4020(01)87971-0Search in Google Scholar
[12] Kumar, A., & Maurya, R. A. (2008). Organocatalysed threecomponent domino synthesis of 1,4-dihydropyridines under solvent free conditions. Tetrahedron, 64, 3477–3482. DOI: 10.1016/j.tet.2008.02.022. http://dx.doi.org/10.1016/j.tet.2008.02.02210.1016/j.tet.2008.02.022Search in Google Scholar
[13] Ma, X. B., & Fu, X., K. (2004). Synthesis of the novel layered amorphous and crystalline zirconium phosphate-phosphonates Zr(HPO4)[O3PCH2N(CH2CH2)2O]·nH2O, Zr(HPO4)[O3PCH2N(CH2CO2H)2]·nH2O, zirconium phosphonates Zr[(O3PCH2)NCH2CO2H]·nH2O and the catalytic activities of their palladium complexes in hydrogenation. Journal of Molecular Catalysis A: Chemical, 208, 129–133. DOI: 10.1016/j.molcata.2003.07.004. http://dx.doi.org/10.1016/j.molcata.2003.07.00410.1016/j.molcata.2003.07.004Search in Google Scholar
[14] Moedritzer, K., & Irani, R. R. (1966). The direct synthesis of α-aminomethylphosphonic acids. Mannich-type reactions with orthophosphorous Acid. Journal of Organic Chemistry, 31, 1603–1607. DOI: 10.1021/jo01343a067. http://dx.doi.org/10.1021/jo01343a06710.1021/jo01343a067Search in Google Scholar
[15] Okuhara, T. (2002). Water-tolerant solid acid catalysts. Chemical Reviews, 102, 3641–3666. DOI: 10.1021/cr0103569. http://dx.doi.org/10.1021/cr010356910.1021/cr0103569Search in Google Scholar
[16] Patel, S. M., Chudasama, U. V., & Ganeshpure, P. A. (2001). Metal(IV) phosphates as solid acid catalysts for selective cyclodehydration of 1,n-diols. Green Chemistry, 3, 143–145. DOI: 10.1039/b100503k. http://dx.doi.org/10.1039/b100503k10.1039/b100503kSearch in Google Scholar
[17] Patil, A. D., Kumar, N. V., Kokke, W. C., Bean, M. F., Freyer, A. J., De Brosse, C., Mai, S., Truneh, A., Faulkner, D. J., Carte, B., Breen, A. L., Hertzberg, R. P., Johnson, R. K., Westley, J. W., & Potts, B. C. M. (1995). Novel alkaloids from the sponge Batzella sp.: Inhibitors of HIV gp120-human CD4 binding. The Journal of Organic Chemistry, 60, 1182–1188. DOI: 10.1021/jo00110a021. http://dx.doi.org/10.1021/jo00110a02110.1021/jo00110a021Search in Google Scholar
[18] Peng, J. J., & Deng, Y. Q. (2001). Ionic liquids catalyzed Biginelli reaction under solvent-free conditions. Tetrahedron Letters, 42, 5917–5919. DOI: 10.1016/s0040-4039(01)01139-x. http://dx.doi.org/10.1016/S0040-4039(01)01139-X10.1016/S0040-4039(01)01139-XSearch in Google Scholar
[19] Quan, Z.-J., Da, Y.-X., Zhang, Z., & Wang, X.-C. (2009). PS-PEG-SO3H as an efficient catalyst for 3,4-dihydropyrimidones via Biginelli reaction. Catalysis Communications, 10, 1146–1148. DOI: 10.1016/j.catcom.2008.12.017. http://dx.doi.org/10.1016/j.catcom.2008.12.01710.1016/j.catcom.2008.12.017Search in Google Scholar
[20] Reddy, B. M., Sreekanth, P. M., & Lakshmanan, P. (2005). Sulfated zirconia as an efficient catalyst for organic synthesis and transformation reactions. Journal of Molecular Catalysis A: Chemical, 237, 93–100. DOI: 10.1016/j.molcata.2005.04.039. http://dx.doi.org/10.1016/j.molcata.2005.04.03910.1016/j.molcata.2005.04.039Search in Google Scholar
[21] Reddy, C. V., Mahesh, M., Raju, P. V. K., Babu, T. R., & Reddy, V. V. N. (2002). Zirconium(IV) chloride catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Letters, 43, 2657–2659. DOI: 10.1016/s0040-4039(02)00280-0. http://dx.doi.org/10.1016/S0040-4039(02)00280-010.1016/S0040-4039(02)00280-0Search in Google Scholar
[22] Rovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., Di-Marco, J. D., Gougoutas, J., Hedberg, A., Malley, M., McCarthy, J. P., Zhang, R., & Moreland, S. (1995). Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. Journal of Medicinal Chemistry, 38, 119–129. DOI: 10.1021/jm00001a017. http://dx.doi.org/10.1021/jm00001a01710.1021/jm00001a017Search in Google Scholar PubMed
[23] Yang, Y. J., Liu, C. H., Wu, H. X., & Li, R. (2010). Preparation and characterization of films based on zirconium sulfophenyl phosphonate and chitosan. Carbohydrate Research, 345, 148–153. DOI: 10.1016/j.carres.2009.10.012. http://dx.doi.org/10.1016/j.carres.2009.10.01210.1016/j.carres.2009.10.012Search in Google Scholar PubMed
[24] Zima, V., Svoboda, J., Melánová, K., Beneš, L., Casciola, M., Sganappa, M., Brus, J., & Trchová, M. (2010). Synthesis and characterization of new zirconium 4-sulfophenylphosphonates. Solid State Ionics, 181, 705–713. DOI: 10.1016/j.ssi.2010. 03.034. http://dx.doi.org/10.1016/j.ssi.2010.03.03410.1016/j.ssi.2010.03.034Search in Google Scholar
[25] Zou, X.-C., Fu, X.-K., Li, Y.-D., Gong, B.-W., Chen, J.-X., & Tu, X.-B. (2009). Synthesis of crystalline layered zirconium phenylethylamino-N,N-bis methylphosphonates and analysis for its novel interlayer distance. Chinese Journal of Inorganic Chemistry, 25, 290–295. Search in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
- Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
- Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
- Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
- Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
- Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
- Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
- Extraction of phytosterols from tall oil soap using selected organic solvents
- Dynamic simulations of waste water treatment plant operation
- Influence of recycling and temperature on the swelling ability of paper
- Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
- Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
- Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
- Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
- Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
- Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
- DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
- Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
- Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
- A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
- Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
- 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Articles in the same Issue
- Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
- Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
- Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
- Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
- Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
- Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
- Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
- Extraction of phytosterols from tall oil soap using selected organic solvents
- Dynamic simulations of waste water treatment plant operation
- Influence of recycling and temperature on the swelling ability of paper
- Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
- Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
- Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
- Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
- Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
- Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
- DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
- Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
- Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
- A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
- Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
- 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris