Home Life Sciences Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
Article
Licensed
Unlicensed Requires Authentication

Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives

  • Thitipone Suwunwong EMAIL logo , Suchada Chantrapromma and Hoong-Kun Fun
Published/Copyright: September 28, 2011
Become an author with De Gruyter Brill

Abstract

Three series of heteroaryl chalcones, (E)-1-(2-pyridyl)-3-(X)prop-2-en-1-one (Ia-Ic), (E)-1-(2-thienyl)-3-(X)prop-2-en-1-one (IIa-IIc), and (E)-1-(2-furyl)-3-(X)prop-2-en-1-one (IIIa-IIIc), where X = 2,4,5-trimethoxyphenyl (for series a), X = 2,4,6-trimethoxyphenyl (for series b), and X = 3,4,5-trimethoxyphenyl (for series c) were synthesised using basic catalysed aldol condensation and characterised using 1H NMR and FT-IR spectroscopies. Compound IIa was also characterised by single crystal X-ray analysis. The absorption and fluorescence emission spectra of these compounds revealed that the absorption and fluorescence depended on the heterocycle rings and trimethoxysubstituted phenyl rings linked to the enone system. The position of methoxy groups substantially affected the fluorescent properties. Compounds Ia-IIIa containing the 2,4,5-trimethoxyphenyl moiety exhibited the red-shift phenomenon and strong emission fluorescence.

[1] Batovska, D., Parushev, St., Slavova, A., Bankova, V., Tsvetkova, I., Ninova, M., & Najdenski, H. (2007). Study on the substituents’ effects of a series of synthetic chalcones against the yeast Candida albicans. European Journal of Medicinal Chemistry, 42, 87–92. DOI: 10.1016/j.ejmech.2006.08.012. http://dx.doi.org/10.1016/j.ejmech.2006.08.01210.1016/j.ejmech.2006.08.012Search in Google Scholar PubMed

[2] Bruker AXS (2005). APEX2 software. Madison, WI, USA: Bruker AXS Inc. Search in Google Scholar

[3] Bruker AXS (2001). SHELXTL, Version 6.10. Madison, WI, USA: Bruker AXS Inc. Search in Google Scholar

[4] Cordaro, J. G., McCusker, J. K., & Bergman, R. G. (2002). Synthesis of mono-substituted 2,2′-bipyridines. Chemical Communications, 2002, 1496–1497. DOI: 10.1039/b203595b. http://dx.doi.org/10.1039/b203595b10.1039/b203595bSearch in Google Scholar PubMed

[5] Crasta, V., Ravindrachary, V., Bhajantri, R. F., & Gonsalves, R. (2004). Growth and characterization of an organic NLO crystal: 1-(4-methylphenyl)-3-(4-methoxyphenyl)-2-propen-1-one. Journal of Crystal Growth, 267, 129–133. DOI: 10.1016/j.jcrysgro.2004.03.037. http://dx.doi.org/10.1016/j.jcrysgro.2004.03.03710.1016/j.jcrysgro.2004.03.037Search in Google Scholar

[6] Dudeja, M., Malhotra, R., Gupta, M. P., & Dhindsa, K. S. (1993). Synthesis and characterization of cobalt(II), nickel(II) and copper(II) complexes of 1-acetyl-5-aryl-3-(substituted thienyl)-2-pyrazolines and their microbiocidal activity. Indian Journal of Chemistry, 32A, 975–979. Search in Google Scholar

[7] Dulawat, S. S., Chundawat, J. S., Roy, R. S., Chundawat, S. S., & Verma, B. L. (2010). Microwave assisted improved synthesis of 6-carbethoxy-5-aryl-3-(2-thienyl)-2-cyclohexenones using inorganic solid support and their antibacterial activities. Journal of the Indian Chemical Society, 87, 981–986. Search in Google Scholar

[8] Fahrni, C. J., Yang, L., & VanDerveer, D. G. (2003). Tuning the photoinduced electron-transfer thermodynamics in 1,3,5-triaryl-2-pyrazoline fluorophores: X-ray structures, photophysical characterization, computational analysis, and in vivo evaluation. Journal of the American Chemical Society, 125, 3799–3812. DOI: 10.1021/ja028266o. http://dx.doi.org/10.1021/ja028266o10.1021/ja028266oSearch in Google Scholar PubMed

[9] Fayed, T. A., & Awad, M. K. (2004). Dual emission of chalconeanalogue dyes emitting in the red region. Chemical Physics, 303, 317–326. DOI: 10.1016/j.chemphys.2004.06.023. http://dx.doi.org/10.1016/j.chemphys.2004.06.02310.1016/j.chemphys.2004.06.023Search in Google Scholar

[10] Fun, H.-K., Jebas, S. R., Patil, P. S., & Dharmaprakash, S. M. (2008). (E)-1-(2-Thienyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one. Acta Crystallographica Section E, E64, o1510–o1511. DOI: 10.1107/S1600536808021375. http://dx.doi.org/10.1107/S160053680802137510.1107/S1600536808021375Search in Google Scholar PubMed PubMed Central

[11] Fun, H.-K., Suwunwong, T., Chantrapromma, S., & Karalai, C. (2010a). (E)-1-(2-Furyl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one. Acta Crystallographica Section E, E66, o2559–o2560. DOI: 10.1107/S1600536810035762. http://dx.doi.org/10.1107/S160053681003576210.1107/S1600536810035762Search in Google Scholar PubMed PubMed Central

[12] Fun, H.-K., Suwunwong, T., Chantrapromma, S., & Karalai, C. (2010b). (E)-1-(2-Furyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one. Acta Crystallographica Section E, E66, o3070–o3071. DOI: 10.1107/S160053681004451X. http://dx.doi.org/10.1107/S160053681004451X10.1107/S160053681004451XSearch in Google Scholar PubMed PubMed Central

[13] Gaber, M., El-Daly, S. A., Fayed, T. A., & El-Sayed, Y. S. (2008). Photophysical properties, laser activity and photoreactivity of a heteroaryl chalcone. A model of solvatochromic fluorophore. Optics & Laser Technology, 40, 528–537. DOI: 10.1016/j.optlastec.2007.08.006. http://dx.doi.org/10.1016/j.optlastec.2007.08.00610.1016/j.optlastec.2007.08.006Search in Google Scholar

[14] Hirano, J., Hamase, K., Fukuda, H., Tomita, T., & Zaitsu, K. (2004). Novel stable fluorophore, 6-methoxy-4-quinolone, with strong fluorescence in wide pH range of aqueous media, and its application as a fluorescent labeling reagent. Journal of Chromatography A, 1059, 225–231. DOI: 10.1016/j.chroma.2004.10.020. http://dx.doi.org/10.1016/j.chroma.2004.10.02010.1016/j.chroma.2004.10.020Search in Google Scholar PubMed

[15] Jung, Y. J., Son, K.-I., Oh, Y. E., & Noh, D.-Y. (2008). Ferrocenyl chalcones containing anthracenyl group: Synthesis, Xray crystal structures and electrochemical properties. Polyhedron, 27, 861–867. DOI: 10.1016/j.poly.2007.11.015. http://dx.doi.org/10.1016/j.poly.2007.11.01510.1016/j.poly.2007.11.015Search in Google Scholar

[16] Katiyar, S. S., Lalithambika, M., & Joshi, G. C. (1974). Polarographic investigations on α,β-unsaturated ketones: 1-(2-thienyl)-3-phenyl-2-propenones. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 53, 439–447. DOI: 10.1016/S0022-0728(74)80080-X. http://dx.doi.org/10.1016/S0022-0728(74)80080-X10.1016/S0022-0728(74)80080-XSearch in Google Scholar

[17] Knyazhansky, M. I., Kharlanov, V. A., & Tymiansky, Y. R. (1998). Adiabatic structural relaxation in heterocyclic nitrogen-containing cations. The structure, absorption and fuorescence of the 2,4,6-triarylsubstituted pyridinium cations. Journal of Photochemistry and Photobiology A: Chemistry, 118, 151–156. DOI: 10.1016/S1010-6030(98)00377-3. http://dx.doi.org/10.1016/S1010-6030(98)00377-310.1016/S1010-6030(98)00377-3Search in Google Scholar

[18] Lavrushin, V. F., Tsukerman, S. V., & Nikitchenko, V. M. (1962). Spectra of and halochromism in thiophene analogs of methoxychalcones and their vinylogs. Zhurnal Obshchei Khimii, 32, 3971–3977. Search in Google Scholar

[19] Lavrushin, V. F., Tsukerman, S. V., & Nikitchenko, V. M. (1961). Synthesis of thiophene analogs of di- and trimethoxychalcones and their vinylogs. Zhurnal Obshchei Khimii, 31, 2845–2850. Search in Google Scholar

[20] Lawrence, N. J., McGown, A. T., Ducki, S., & Hadfield, J. A. (2000). The interaction of chalcones with tubulin. Anti-Cancer Drug Design, 15, 135–141. Search in Google Scholar

[21] Lin, R.-H., & Chuang, L.-M. (2007). U.S. Patent No. 2007037193. Alexandria, VA, USA: U.S. Patent and Trademark Office. Search in Google Scholar

[22] Lin, R.-H., Lin, L., Lin, S.-Y., & Lee, S.-H. (2007). International Patent No. WO 2007082178. Geneva, Switzerland: World Intellectual Property Organization Search in Google Scholar

[23] López, S. N., Castelli, M. V., Zacchino, S. A., Domínguez, J. N., Lobo, G., Charris-Charris, J., Cortés, J. C. G., Ribas, J. C., Devia, C., Rodríguez, A. M., & Enriz, R. D. (2001). In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorganic & Medicinal Chemistry, 9, 1999–2013. DOI: 10.1016/S0968-0896(01)00116-X. http://dx.doi.org/10.1016/S0968-0896(01)00116-X10.1016/S0968-0896(01)00116-XSearch in Google Scholar

[24] Maiti, M., Sinha, S., Deb, C., De, A., & Ganguly, T. (1999). Photophysics of 4-methoxy-benzo[b]thiophene in different environments. Its role in non-radiative transitions both as an electron and as an energy donor. Journal of Luminescence, 82, 259–276. DOI: 10.1016/S0022-2313(99)00062-9. 10.1016/S0022-2313(99)00062-9Search in Google Scholar

[25] Musil, Z., Zimcik, P., Miletin, M., Kopecky, K., Petrik, P., & Lenco, J. (2007). Influence of electron-withdrawing and electron-donating substituents on photophysical properties of azaphthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 186, 316–322. DOI: 10.1016/j.jphotochem.2006.08.024. http://dx.doi.org/10.1016/j.jphotochem.2006.08.02410.1016/j.jphotochem.2006.08.024Search in Google Scholar

[26] Navarini, A. L. F., Chiaradia, L. D., Mascarello, A., Fritzen, M., Nunes, R. J., Yunes, R. A., & Creczynski-Pasa, T. B. (2009). Hydroxychalcones induce apoptosis in B16–F10 melanoma cells via GSH and ATP depletion. European Journal of Medicinal Chemistry, 44, 1630–1637. DOI: 10.1016/j.ejmech.2008.09.009. http://dx.doi.org/10.1016/j.ejmech.2008.09.00910.1016/j.ejmech.2008.09.009Search in Google Scholar PubMed

[27] Nepali, K., Singh, G., Turan, A., Agarwal, A., Sapra, S., Kumar, R., Banerjee, U. C., Verma, P. K., Satti, N. K., Gupta, M. K., Suri, O. P., & Dhar, K. L. (2011). A rational approach for the design and synthesis of 1-acetyl-3,5-diaryl-4,5-dihydro(1H)pyrazoles as a new class of potential non-purine xanthine oxidase inhibitors. Bioorganic & Medicinal Chemistry, 19, 1950–1958. DOI: 10.1016/j.bmc.2011.01.058. http://dx.doi.org/10.1016/j.bmc.2011.01.05810.1016/j.bmc.2011.01.058Search in Google Scholar PubMed

[28] Nielsen, S. F., Boesen, T., Larsen, M., Schønning, K., & Kromann, H. (2004). Antibacterial chalcones—bioisosteric replacement of the 4′-hydroxy group. Bioorganic & Medicinal Chemistry, 12, 3047–3054. DOI: 10.1016/j.bmc.2004.03.071. http://dx.doi.org/10.1016/j.bmc.2004.03.07110.1016/j.bmc.2004.03.071Search in Google Scholar PubMed

[29] Niu, C.-G., Guan, A.-L., Zeng, G.-M., Liu, Y.-G., & Li, Z.-W. (2006). Fluorescence water sensor based on covalent immobilization of chalcone derivative. Analytica Chimica Acta, 577, 264–270. DOI: 10.1016/j.aca.2006.06.046. http://dx.doi.org/10.1016/j.aca.2006.06.04610.1016/j.aca.2006.06.046Search in Google Scholar PubMed

[30] Percino, M. J., Chapela, V. M., Pérez-Gutiérrez, E., Cerón, M., & Soriano, G. (2011). Synthesis, optical, and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles. Chemical Papers, 65, 42–51. DOI: 10.2478/s11696-010-0075-x. http://dx.doi.org/10.2478/s11696-010-0075-x10.2478/s11696-010-0075-xSearch in Google Scholar

[31] Prasad, Y. R., Kumar P. P., & Kumar, P. R. (2007a). Synthesis and biological evaluation of some new 2,4,6-trisubstituted pyrimidines. Oriental Journal of Chemistry, 23, 1069–1072. Search in Google Scholar

[32] Prasad, Y. R., Kumar, P. P., Kumar, P. R., & Rao, A. S. (2008). Synthesis and antimicrobial activity of some new chalcones of 2-acetyl pyridine. E-Journal of Chemistry, 5, 144–148. 10.1155/2008/602458Search in Google Scholar

[33] Prasad, Y. R., Kumar, P. R., Sarath, N., & Rao, A. S. (2007b). Synthesis and antimicrobial activity of some new chalcones of 2-acetylthiophene. International Journal of Chemical Sciences, 5, 2372–2378. 10.1155/2008/602458Search in Google Scholar

[34] Ramesh, B., Kulakarni, S. V., & Ravindra, R. (2010). Synthesis, spectral studies and anti-cancer activities of some new pyrimidine derivatives. International Journal of Pharmaceutical Sciences, 2, 426–428. Search in Google Scholar

[35] Ramesh, B., Prasad, Y. R., & Ahmed, S. M. (2009a). Synthesis and anti-microbial activity of some new pyrimidine derivatives. Pharmacologyonline, 2, 331–335. Search in Google Scholar

[36] Ramesh, B., Prasad, Y. R., & Ahmed, S. M. (2009b). Synthesis and antimicrobial activity of some 2-pyrazoline derivatives. Pharmacologyonline, 2, 327–330. Search in Google Scholar

[37] Ramesh, B., & Rao, B. S. (2010). Synthesis, spectral studies and anti-inflammatory activity of 2-acetyl thiophene. E-Journal of Chemistry, 7, 433–436. 10.1155/2010/404715Search in Google Scholar

[38] Rhys Williams, A. T., Winfield, S. A., & Miller, J. N. (1983). Relative fluorescence quantum yields using a computercontrolled luminescence spectrometer. Analyst, 108, 1067–1071. DOI: 10.1039/an9830801067. http://dx.doi.org/10.1039/an983080106710.1039/an9830801067Search in Google Scholar

[39] Romagnoli, R., Baraldi, P. G., Carrion, M. D., Cara, C. L., Cruz-Lopez, O., Preti, D., Tolomeo, M., Grimaudo, S., Di Cristina, A., Zonta, N., Balzarini, J., Brancale, A., Sarkar, T., & Hamel, E. (2008). Design, synthesis, and biological evaluation of thiophene analogues of chalcones. Bioorganic & Medicinal Chemistry, 16, 5367–5376. DOI: 10.1016/j.bmc.2008.04.026. http://dx.doi.org/10.1016/j.bmc.2008.04.02610.1016/j.bmc.2008.04.026Search in Google Scholar PubMed

[40] Roman, G. (2004). Cyclohexenones through addition of ethyl acetoacetate to chalcones derived from 2-acetylthiophene. Acta Chimica Slovenica, 51, 537–544. Search in Google Scholar

[41] Salem, M. M., & Werbovetz, K. A. (2005). Antiprotozoal compounds from Psorothamnus polydenius. Journal of Natural Products, 68, 108–111. DOI: 10.1021/np049682k. http://dx.doi.org/10.1021/np049682k10.1021/np049682kSearch in Google Scholar PubMed

[42] Schlangen, K., Miosic, S., Topuz, F., Muster, G., Marosits, T., Seitz, C., & Halbwirth, H. (2009). Chalcone 3-hydroxylation is not a general property of flavonoid 3′-hydroxylase. Plant Science, 177, 97–102. DOI: 10.1016/j.plantsci.2009.04.002. http://dx.doi.org/10.1016/j.plantsci.2009.04.00210.1016/j.plantsci.2009.04.002Search in Google Scholar

[43] Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A, A64, 112–122. DOI: 10.1107/S0108767307043930. 10.1107/S0108767307043930Search in Google Scholar PubMed

[44] Sheldrick, G. M. (2003). SADABS, Version 2.10. Göttingen, Germany: University of Göttingen. Search in Google Scholar

[45] Siemens AXS (1998). SMART and SAINT, Version 5.0 Area detector control and integration software. Madison, WI, USA: Siemens AXS Inc. Search in Google Scholar

[46] Singhal, R. K., & Mishra, N. K. (1985). Studies on cycloimmonium ylides: synthesis of some new 2,4,6-triarylsubstituted pyridines via pyridinium ylides. Indian Journal of Chemistry Section B, 24B, 1079–1080. Search in Google Scholar

[47] Singhal, R. K., & Misra, N. K. (1986). Studies on aroylmethylenesulfonium ylides: synthesis of some new 1,2,3-trisubstituted cyclopropanes via sulfonium ylides. Current Science, 55, 783–784. Search in Google Scholar

[48] Sivakumar, P. M., Prabhawathi, V., & Doble, M. (2010). 2-Methoxy-2′,4′-dichloro chalcone as an antimicrofoulant against marine bacterial biofilm. Colloids and Surfaces B: Biointerfaces, 81, 439–446. DOI: 10.1016/j.colsurfb.2010.07.037. http://dx.doi.org/10.1016/j.colsurfb.2010.07.03710.1016/j.colsurfb.2010.07.037Search in Google Scholar PubMed

[49] Sivakumar, P. M., Priya, S., & Doble, M. (2009). Synthesis, biological evaluation, mechanism of action and quantitative structure-activity relationship studies of chalcones as antibacterial agents. Chemical Biology & Drug Design, 73, 403–415. DOI: 10.1111/j.1747-0285.2009.00793.x. http://dx.doi.org/10.1111/j.1747-0285.2009.00793.x10.1111/j.1747-0285.2009.00793.xSearch in Google Scholar PubMed

[50] Spek, A. L. (2003). Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography, 36, 7–13. DOI: 10.1107/S0021889802022112. http://dx.doi.org/10.1107/S002188980202211210.1107/S0021889802022112Search in Google Scholar

[51] Sun, X., Zhang, J., & He, B. (2005). The synthesis and photochemical characterization of meso-tetra-thienyl porphyrins. Journal of Photochemistry and Photobiology A: Chemistry, 172, 283–288. DOI: 10.1016/j.jphotochem.2004.12.016. http://dx.doi.org/10.1016/j.jphotochem.2004.12.01610.1016/j.jphotochem.2004.12.016Search in Google Scholar

[52] Sun, Y.-F., & Cui, Y.-P. (2009). The synthesis, structure and spectroscopic properties of novel oxazolone-, pyrazolone- and pyrazoline-containing heterocycle chromophores. Dyes and Pigments, 81, 27–34. DOI: 10.1016/j.dyepig.2008.08.010. http://dx.doi.org/10.1016/j.dyepig.2008.08.01010.1016/j.dyepig.2008.08.010Search in Google Scholar

[53] Sun, Y.-F., & Cui, Y.-P. (2008). The synthesis, characterization and properties of coumarin-based chromophores containing a chalcone moiety. Dyes and Pigments, 78, 65–76. DOI: 10.1016/j.dyepig.2007.10.014. http://dx.doi.org/10.1016/j.dyepig.2007.10.01410.1016/j.dyepig.2007.10.014Search in Google Scholar

[54] Suwunwong, T., Chantrapromma, S., Pakdeevanich, P., & Fun, H.-K. (2009). (E)-1-(2-Thienyl)-3-(3,4,5-trimethoxyphenyl) prop-2-en-1-one. Acta Crystallographica Section E, E65, o1575–o1576. DOI: 10.1107/S1600536809021850. http://dx.doi.org/10.1107/S160053680902185010.1107/S1600536809021850Search in Google Scholar PubMed PubMed Central

[55] Suzuki, T., Shinkai, M., & Nanba, N. (1995a). Japan Patent No. 7126543. Tokyo, Japan: Japan Patent Office. Search in Google Scholar

[56] Suzuki, T., Shinkai, M., & Nanba, N. (1995b). Japan Patent No. 7085499. Tokyo, Japan: Japan Patent Office. Search in Google Scholar

[57] Tsukerman, S. V., Nikitchenko, V. M., Orlov, V. D., & Lavrushin, V. F. (1969). Dipole moments of thiophene analogs of chalcones and their vinylogs. Chemistry of Heterocyclic Compounds, 3, 173–177. DOI: 10.1007/BF01172541. http://dx.doi.org/10.1007/BF0117254110.1007/BF01172541Search in Google Scholar

[58] Tsukerman, S. V., Nikitchenko, V. M., Rozum, Y. S., & Lavrushin, V. F. (1967). Infrared spectra of thiophene analogs of chalcones and their vinylogs. Chemistry of Heterocyclic Compounds, 3, 361–366. DOI: 10.1007/BF00945365. http://dx.doi.org/10.1007/BF0094536510.1007/BF00945365Search in Google Scholar

[59] Werts, M. H. V., Nerambourg, N., Pélégry, D., Le Grand, Y., & Blanchard-Desce, M. (2005). Action cross sections of twophoton excited luminescence of some Eu(III) and Tb(III) complexes. Photochemical & Photobiological Sciences, 4, 531–538. DOI: 10.1039/b504495b. http://dx.doi.org/10.1039/b504495b10.1039/b504495bSearch in Google Scholar PubMed

[60] Won, S.-J., Liu, C.-T., Tsao, L.-T., Weng, J.-R., Ko, H.-H., Wang, J.-P., & Lin, C.-N. (2005). Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. European Journal of Medicinal Chemistry, 40, 103–112. DOI: 10.1016/j.ejmech.2004.09.006. http://dx.doi.org/10.1016/j.ejmech.2004.09.00610.1016/j.ejmech.2004.09.006Search in Google Scholar PubMed

[61] Xu, Z., Bai, G., & Dong, C. (2005). Studies on interaction of an intramolecular charge transfer fluorescence probe: 4′-Dimethylamino-2,5-dihydroxychalcone with DNA. Bioorganic & Medicinal Chemistry, 13, 5694–5699. DOI: 10.1016/j.bmc.2005.06.023. http://dx.doi.org/10.1016/j.bmc.2005.06.02310.1016/j.bmc.2005.06.023Search in Google Scholar PubMed

[62] Zangade, S. B., Jadhav, J. D., Lalpod, Vibhute, Y. B., & Dawane, B. S. (2010). Synthesis and antimicrobial activity of some new chalcones and flavones containing substituted naphthalene moiety. Journal of Chemical and Pharmaceutical Research, 2, 310–314. Search in Google Scholar

[63] Zhang, J., Xu, Z., Wei, Y., Shuang, S., & Dong, C. (2008). Spectral properties of intramolecular charge transfer fluorescence probe 1-keto-2-(p-dimethylaminobenzal)-tetrahydronaphthalene. Spectrochimica Acta Part A, 70, 888–891. DOI: 10.1016/j.saa.2007.10.002. http://dx.doi.org/10.1016/j.saa.2007.10.00210.1016/j.saa.2007.10.002Search in Google Scholar PubMed

Published Online: 2011-9-28
Published in Print: 2011-12-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
  2. Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
  3. Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
  4. Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
  5. Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
  6. Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
  7. Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
  8. Extraction of phytosterols from tall oil soap using selected organic solvents
  9. Dynamic simulations of waste water treatment plant operation
  10. Influence of recycling and temperature on the swelling ability of paper
  11. Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
  12. Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
  13. Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
  14. Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
  15. Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
  16. Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
  17. DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
  18. Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
  19. Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
  20. A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
  21. Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
  22. 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Downloaded on 20.1.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0084-4/html
Scroll to top button