Abstract
A pH-induced conformational transition of atactic poly(2-methylprop-2-enoic acid) (poly(methacrylic acid), PMMA) from the contracted to expanded conformation was investigated by viscometry, potentiometric titration, and anthracene solubilisation in the presence of low-molecular-mass non-ionogenic co-solutes-glucose, α-cyclodextrin (αCD), and γ-cyclodextrin (γCD), respectively. No effect of glucose and αCD on the conformational transition was observed with either of the methods used. On the other hand, the characteristic features of the conformational transition were absent in the presence of γCD. The different effects of the co-solutes indicate that the interaction between PMAA and γCD corresponds to the partial inclusion of the PMAA chain into the γCD cavity. The viscometry and anthracene solubilisation imply that γCD promotes the expanded conformation of PMAA at low pH. The potentiometric titration does not support this conclusion. Even though there is no break on the Henderson-Hasselbalch plot, a characteristic of the conformational transition, the potentiometric behaviour corresponds to that of the contracted PMMA conformation. Thus the results suggest the hierarchical picture of the PMAA conformation at low pH in which the local arrangement of the PMAA chain is a prerequisite for clustering on a larger scale.
[1] Aguilar, M. R., Elvira, C., Gallardo, A., Vázquez, B., & Román, J. S. (2007). Smart polymers and their applications as biomaterials. In N. Ashammakhi, R. Reis, & E. Chiellini (Eds.), Topics in tissue engineering (Vol. 3, pp. 1–27). Retrieved April 19, 2011 from http://www.oulu.fi/spareparts/ebook topics in t e vol3/abstracts/aguilar 01.pdf. Search in Google Scholar
[2] Arnold, R., & Caplan, S. R. (1955). Solutions of polymethacrylic acid. Part 1.-Molecular masses and second virial coefficients of the undissociated acid. Transactions of the Faraday Society, 51, 857–863. DOI: 10.1039/TF9555100857. http://dx.doi.org/10.1039/tf955510085710.1039/TF9555100857Search in Google Scholar
[3] Arnold, R., & Overbeek, J. T. G. (1950). The dissociation and specific viscosity of polymethacrylic acid. Recueil des Travaux Chimiques des Pays-Bas, 69, 192–206. DOI: 10.1002/recl.19500690205. http://dx.doi.org/10.1002/recl.1950069020510.1002/recl.19500690205Search in Google Scholar
[4] Barone, G., Crescenzi, V., Liquori, A. M., & Quadrifoglio, F. (1967). Solubilization of polycyclic aromatic hydrocarbons in poly(methacrylic acid) aqueous solutions. Journal of Physical Chemistry, 71, 2341–2345. DOI: 10.1021/j100866a058. http://dx.doi.org/10.1021/j100866a05810.1021/j100866a058Search in Google Scholar
[5] Borukhov, I., Andelman, D., Borrega, R., Cloitre, M., Leibler, L., & Orland, H. (2000). Polyelectrolyte titration: Theory and experiment. Journal of Physical Chemistry B, 104, 11027–11034. DOI: 10.1021/jp001892s. http://dx.doi.org/10.1021/jp001892s10.1021/jp001892sSearch in Google Scholar
[6] Braud, C., Muller, G., Fenyo, J. C., & Selegny, E. (1974). Conformational transition of poly(methacrylic acid) in methanol-water mixtures. Journal of Polymer Science: Polymer Chemistry Edition, 12, 2767–2778. DOI: 10.1002/pol.1974.170121206. http://dx.doi.org/10.1002/pol.1974.17012120610.1002/pol.1974.170121206Search in Google Scholar
[7] Braud, C., Muller, G., & Sélégny, E. (1978). Effect of urea on poly(methacrylic acid) and poly(acrylic acid) aqueous solutions. European Polymer Journal, 14, 479–484. DOI:10.1016/0014-3057(78)90033-2. http://dx.doi.org/10.1016/0014-3057(78)90033-210.1016/0014-3057(78)90033-2Search in Google Scholar
[8] Connors, K. A. (1997). The stability of cyclodextrin complexes in solution. Chemical Reviews, 97, 1325–1358. DOI: 10.1021/cr960371r. http://dx.doi.org/10.1021/cr960371r10.1021/cr960371rSearch in Google Scholar
[9] Davenport, J. N., & Wright, P. V. (1980). Conformations in partly ionized poly(methacrylic acid): 2. Unperturbed dimensions of syndiotactic chains. Polymer, 21, 293–302. DOI: 10.1016/0032-3861(80)90272-4. http://dx.doi.org/10.1016/0032-3861(80)90272-410.1016/0032-3861(80)90272-4Search in Google Scholar
[10] Fernyhough, C., Ryan, A. J., & Battaglia, G. (2009). pH controlled assembly of a polybutadiene-poly(methacrylic acid) copolymer in water: packing considerations and kinetic limitations. Soft Matter, 5, 1674–1682. DOI: 10.1039/b817218h. http://dx.doi.org/10.1039/b817218h10.1039/b817218hSearch in Google Scholar
[11] Garcés, J. L., Koper, G. J. M., & Borkovec, M. (2006). Ionization equilibria and conformational transitions in polyprotic molecules and polyelectrolytes. Journal of Physical Chemistry B, 110, 10937–10950. DOI: 10.1021/jp060684i. http://dx.doi.org/10.1021/jp060684i10.1021/jp060684iSearch in Google Scholar PubMed
[12] Harada, A. (1997). Construction of supramolecular structures from cyclodextrins, polymers. Carbohydrate Polymers, 34, 183–188. DOI: 10.1016/S0144-8617(97)00023-4. http://dx.doi.org/10.1016/S0144-8617(97)00023-410.1016/S0144-8617(97)00023-4Search in Google Scholar
[13] Harada, A., Hashidzume, A., Yamaguchi, H., & Takashima, Y. (2009). Polymeric rotaxanes. Chemical Reviews, 109, 5974–6023. DOI: 10.1021/cr9000622. http://dx.doi.org/10.1021/cr900062210.1021/cr9000622Search in Google Scholar
[14] Heitz, C., Rawiso, M., & François, J. (1999). X-ray scattering study of a poly(methacrylic acid) sample as a function of its neutralization degree. Polymer, 40, 1637–1650. DOI: 10.1016/S0032-3861(98)00252-3. http://dx.doi.org/10.1016/S0032-3861(98)00252-310.1016/S0032-3861(98)00252-3Search in Google Scholar
[15] Horsky, J. (1998). Solubility and spectrophotometric investigation of α-cyclodextrin and poly(ethylene glycol) complexation. European Polymer Journal, 34, 591–596. DOI: 10.1016/S0014-3057(97)00202-4. http://dx.doi.org/10.1016/S0014-3057(97)00202-410.1016/S0014-3057(97)00202-4Search in Google Scholar
[16] Horský, J., Mikešová, J., Quadrat, O., & Šňupárek, J. (2004). The effect of (2-hydroxypropyl)-β-cyclodextrin on rheology of hydrophobically end-capped poly(ethylene glycol) aqueous solutions. Journal of Rheology, 48, 23–38. DOI: 10.1122/1.1631422. http://dx.doi.org/10.1122/1.163142210.1122/1.1631422Search in Google Scholar
[17] Horský, J., Petrus, V., & Bohdanecky, M. (1986). The characteristic ratio of poly(methacrylic acid) in organic solvents. Die Makromolekulare Chemie, 187, 2621–2628. DOI: 10.1002/macp.1986.021871111. http://dx.doi.org/10.1002/macp.1986.02187111110.1002/macp.1986.021871111Search in Google Scholar
[18] Horský, J., Quadrat, O., Porsch, B., Mrkvičková, L., & Šňupárek, J. (2001). Effect of alkalinization on carboxylated latices prepared with various amount of a non-ionogenic hydrophilic comonomer 2-hydroxyethyl methacrylate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 180, 75–85. DOI: 10.1016/S0927-7757(00)00745-7. http://dx.doi.org/10.1016/S0927-7757(00)00745-710.1016/S0927-7757(00)00745-7Search in Google Scholar
[19] Katchalsky, A. (1951). Solutions of polyelectrolytes and mechanochemical systems. Journal of Polymer Science, 7, 393–412. DOI: 10.1002/pol.1951.120070403. http://dx.doi.org/10.1002/pol.1951.12007040310.1002/pol.1951.120070403Search in Google Scholar
[20] Katchalsky, A., & Eisenberg, H. (1951). Molecular weight of polyacrylic and polymethacrylic acid. Journal of Polymer Science, 6, 145–154. DOI: 10.1002/pol.1951.120060202. http://dx.doi.org/10.1002/pol.1951.12006020210.1002/pol.1951.120060202Search in Google Scholar
[21] Kim, J. O., Kabanov, A. V., & Bronich, T. K. (2009). Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. Journal of Controlled Release, 138, 197–204. DOI: 10.1016/j.jconrel.2009.04.019. http://dx.doi.org/10.1016/j.jconrel.2009.04.01910.1016/j.jconrel.2009.04.019Search in Google Scholar PubMed PubMed Central
[22] Kogej, K., Berghmans, H., Reynaers, H., & Paoletti, S. (2004). Unusual behavior of atactic poly(methacrylic acid) in aqueous solutions monitored by wide-angle light scattering. Journal of Physical Chemistry B, 108, 18164–18173. DOI: 10.1021/jp048657k. http://dx.doi.org/10.1021/jp048657k10.1021/jp048657kSearch in Google Scholar
[23] Koňák, Č., & Sedlák, M. (2007). pH-sensitive micelles formed by interchain hydrogen bonding of poly(methacrylic acid)-blockpoly(ethylene oxide) copolymers. Macromolecular Chemistry and Physics, 208, 1893–1899. DOI: 10.1002/macp.200700214. http://dx.doi.org/10.1002/macp.20070021410.1002/macp.200700214Search in Google Scholar
[24] Leyte, J. C., & Mandel, M. (1964). Potentiometric behavior of polymethacrylic acid. Journal of Polymer Science Part A: General Papers, 2, 1879–1891. DOI: 10.1002/pol.1964.100020429. http://dx.doi.org/10.1002/pol.1964.10002042910.1002/pol.1964.100020429Search in Google Scholar
[25] Liao, Q., Dobrynin, A. V., & Rubinstein, M. (2006). Counterioncorrelation-induced attraction and necklace formation in polyelectrolyte solutions: theory and simulations. Macromolecules, 39, 1920–1938. DOI: 10.1021/ma052086s. http://dx.doi.org/10.1021/ma052086s10.1021/ma052086sSearch in Google Scholar
[26] Miura, T., Kida, T., & Akashi, M. (2011). Recognition of stereoregularity of poly(methacrylic acid)s with γ-cyclodextrin. Macromolecules, 44, 3723–3729. DOI: 10.1021/ma200257z. http://dx.doi.org/10.1021/ma200257z10.1021/ma200257zSearch in Google Scholar
[27] Morawetz, H. (2002). Revisiting some phenomena in polyelectrolyte solutions. Journal of Polymer Science Part B: Polymer Physics, 40, 1080–1086. DOI: 10.1002/polb.10167. http://dx.doi.org/10.1002/polb.1016710.1002/polb.10167Search in Google Scholar
[28] Morawetz, H. (1996). Nature of the “hypercoiled” form of poly(methacrylic acid) in water at low pH. Macromolecules, 29, 2689–2690. DOI: 10.1021/ma951623d. http://dx.doi.org/10.1021/ma951623d10.1021/ma951623dSearch in Google Scholar
[29] Nagasawa, M., Murase, T., & Kondo, K. (1965). Potentiometric titration of stereoregular polyelectrolytes. Journal of Physical Chemistry, 69, 4005–4012. DOI: 10.1021/j100895a060. http://dx.doi.org/10.1021/j100895a06010.1021/j100895a060Search in Google Scholar
[30] Netopilík, M., & Bohdanecky, M. (1995). Ubbelohde viscometer modified for foaming solutions of water soluble polymers. European Polymer Journal, 31, 289–290. DOI: 10.1016/0014-3057(94)00174-X. http://dx.doi.org/10.1016/0014-3057(94)00174-X10.1016/0014-3057(94)00174-XSearch in Google Scholar
[31] Pereira, R. V., & Gehlen, M. H. (2006). Spectroscopy of auramine fluorescent probes free and bound to poly(methacrylic acid). Journal of Physical Chemistry B, 110, 6537–6542. DOI: 10.1021/jp054833t. http://dx.doi.org/10.1021/jp054833t10.1021/jp054833tSearch in Google Scholar PubMed
[32] Quadrat, O., Horský, J., Mrkvičková, L., Mikešová, J., & Šňupárek, J. (2001). Thickening of butyl acrylate/styrene/2-hydroxyethyl methacrylate/acrylic acid latices with an HEUR associative thickener. Progress in Organic Coatings, 42, 110–115. DOI: 10.1016/S0300-9440(01)00167-9. http://dx.doi.org/10.1016/S0300-9440(01)00167-910.1016/S0300-9440(01)00167-9Search in Google Scholar
[33] Silberberg, A., Eliassaf, J., & Katchalsky, A. (1957). Temperature-dependence of light scattering and intrinsic viscosity of hydrogen bonding polymers. Journal of Polymer Science, 23, 259–284. DOI: 10.1002/pol.1957.1202310325. http://dx.doi.org/10.1002/pol.1957.120231032510.1002/pol.1957.1202310325Search in Google Scholar
[34] Weickenmeier, M., Wenz, G., & Huff, J. (1997). Association thickener by host guest interaction of a β-cyclodextrin polymer and a polymer with hydrophobic side-groups. Macromolecular Rapid Communications, 18, 1117–1123. DOI: 10.1002/marc.1997.030181216. http://dx.doi.org/10.1002/marc.1997.03018121610.1002/marc.1997.030181216Search in Google Scholar
[35] Wenz, G., Han, B., & Müller, A. (2006). Cyclodextrin rotaxanes and polyrotaxanes. Chemical Reviews, 106, 782–817. DOI: 10.1021/cr970027+. http://dx.doi.org/10.1021/cr970027+10.1021/cr970027+Search in Google Scholar PubMed
[36] Yang, S. Y., Green, M. M., Schultz, G., Jha, S. K., & Müller, A. H. E. (1997). An on/off circular dichroism signal reveals a pH dependent competition between a cyclodextrin and a polyelectrolyte for an atropisomeric aromatic guest. Journal of the American Chemical Society, 119, 12404–12405. DOI: 10.1021/ja972789s. http://dx.doi.org/10.1021/ja972789s10.1021/ja972789sSearch in Google Scholar
[37] Yang, S. Y., Schultz, G., Green, M. M., & Morawetz, H. (1999). Clustering of poly(methacrylic acid) around appended binaphthyl labels as reflected by the disruption of γ-cyclodextrin complexation and racemization kinetics. Macromolecules, 32, 2577–2584. DOI: 10.1021/ma9818533. http://dx.doi.org/10.1021/ma981853310.1021/ma9818533Search in Google Scholar
[38] Yessine, M.-A., & Leroux, J.-C. (2004). Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules. Advanced Drug Delivery Reviews, 56, 999–1021. DOI: 10.1016/j.addr.2003.10.039. http://dx.doi.org/10.1016/j.addr.2003.10.03910.1016/j.addr.2003.10.039Search in Google Scholar PubMed
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
- Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
- Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
- Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
- Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
- Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
- Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
- Extraction of phytosterols from tall oil soap using selected organic solvents
- Dynamic simulations of waste water treatment plant operation
- Influence of recycling and temperature on the swelling ability of paper
- Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
- Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
- Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
- Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
- Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
- Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
- DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
- Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
- Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
- A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
- Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
- 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Articles in the same Issue
- Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
- Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
- Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
- Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
- Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
- Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
- Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
- Extraction of phytosterols from tall oil soap using selected organic solvents
- Dynamic simulations of waste water treatment plant operation
- Influence of recycling and temperature on the swelling ability of paper
- Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
- Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
- Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
- Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
- Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
- Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
- DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
- Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
- Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
- A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
- Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
- 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris