Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
Abstract
A comprehensive multinuclear (7Li, 31P, 75As, 77Se, 127I) NMR study has been conducted to characterize local structural configurations and atomic distributions in the crystallographically ordered solid solutions of composition Li6PS5-x Se x I (0 ≤ x ≤ 1) and in Li6AsS5I. Throughout the composition range, structural ordering between the atoms on the Wyckoff sites 4a and 4c is maintained, with the I− ions exclusively occupying the 4a sites. 31P magic-angle spinning nuclear magnetic resonance (MAS NMR) can serve to differentiate between the various possible PS4-n Se n 3− tetrahedral units in a quantitative fashion, indicating a preference of P-S relative to P-Se bonding. Each individual PS4-n Se n 3− tetrahedron is represented by a peak cluster containing up to five resonances, representing the five different configurations in which the PCh4 3− units are surrounded by the four closest chalcogenide anions occupying the 4c sites; the distribution of S2− and Se2− over these sites is close to statistical. Non-linear 7Li chemical shift trends as a function of x are interpreted to indicate that the Coulombic traps created by sulfur-rich PS4-n Se n 3− ions (n ≥ 2) within the energy landscape of the lithium ions are deeper than those of the other anionic species present (i.e. selenium-richer PCh4 3− tetrahedra, isolated chalcogenide or iodide ions), causing the Li+ ions to spend on average more time near them. Temperature dependent static 7Li NMR linewidths measured on Li6PS5I and Li6AsS5I indicate a two-step motional narrowing process characterized by a clear dynamic distinction between a more rapid localized intra-cage process and a slower, long-range inter-cage process. In the solid solutions this differentiation gradually disappears, leading to an overall increase of lithium ionic mobility with increasing selenium content, which can be attributed to the influences of higher anionic polarizability and a widening of the lithium migration pathways caused by lattice expansion. Furthermore, the low-temperature phase transition in Li6PS5I, which tends to immobilize the lithium ions below 170 K, is suppressed in the solid solutions. The results offer interesting new insights into the -structure/ionic mobility correlations in this new class of compounds.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: SFB 458
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Funding by the Deutsche Forschungsgemeinschaft, SFB 458 (2000–2009), is most gratefully acknowledged.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Zheng, F., Kotobuki, M., Song, S., Lai, M. O., Li, L. J. Power Sources 2018, 389, 198; https://doi.org/10.1016/j.jpowsour.2018.04.022.Suche in Google Scholar
2. Wu, Z., Xie, Z., Yoshida, A., Wang, Z., Hao, X., Abudula, A., Guan, G. Renew. Sustain. Energy Rev. 2019, 109, 367; https://doi.org/10.1016/j.rser.2019.04.035.Suche in Google Scholar
3. Chen, S., Xie, D., Liu, G., Mwizerwa, J. P., Zhang, Q., Zhao, Y., Xu, X., Yao, X. Energy Storage Mater. 2018, 14, 58; https://doi.org/10.1016/j.ensm.2018.02.020.Suche in Google Scholar
4. Kuhs, W. P., Nitsche, R., Scheunemann, K. Acta Crystallogr. 1978, B34, 64; https://doi.org/10.1107/s0567740878002307.Suche in Google Scholar
5. Kuhs, W. P., Nitsche, R., Scheunemann, K. Mater. Res. Bull. 1979, 14, 241; https://doi.org/10.1016/0025-5408(79)90125-9.Suche in Google Scholar
6. Belin, R., Aldon, L., Zerouale, A., Belin, C., Ribes, M. Solid State Sci. 2001, 3, 251; https://doi.org/10.1016/s1293-2558(00)01108-0.Suche in Google Scholar
7. Evain, M., Gaudin, E., Boucher, F., Petricek, V., Taulelle, F. Acta Crystallogr. 1998, B54, 376; https://doi.org/10.1107/s0108768197019654.Suche in Google Scholar
8. Gaudin, E., Bouchez, F., Petricek, V., Taulelle, F., Evain, M. Acta Crystallogr. 2000, B56, 402; https://doi.org/10.1107/s0108768199016614.Suche in Google Scholar
9. Gaudin, B., Petricek, V., Boucher, F., Taulelle, F., Evain, M. Acta Crstallogr. 2000, B56, 972; https://doi.org/10.1107/s0108768100010260.Suche in Google Scholar
10. Fiechter, S., Gmelin, E. Thermochim. Acta 1985, 85, 155; https://doi.org/10.1016/0040-6031(85)85553-2.Suche in Google Scholar
11. Brice, J. F. Compt. Rend. C 1976, 283, 581.Suche in Google Scholar
12. Deiseroth, H. J., Kong, S. T., Eckert, H., Vannahme, J., Reiner, C., Zaiß, T., Schlosser, M. Angew. Chem. Int. Ed. 2008, 47, 755; https://doi.org/10.1002/anie.200703900.Suche in Google Scholar PubMed
13. Kong, S. T., Koch, B., Gün, Ö., Deiseroth, H. J., Eckert, H., Reiner, C. Chem. Eur. J. 2010, 16, 5138; https://doi.org/10.1002/chem.200903023.Suche in Google Scholar PubMed
14. Kong, S. T., Deiseroth, H. J., Reiner, C., Gün, Ö., Neumann, E., Ritter, C., Zahn, D. Chem. Eur. J. 2010, 16, 2198; https://doi.org/10.1002/chem.200902470.Suche in Google Scholar PubMed
15. Deiseroth, H. J., Maier, J., Weichert, K., Nickel, V., Kong, S. T., Reiner, C. Z. Anorg. Allg. Chem. 2011, 637, 1287; https://doi.org/10.1002/zaac.201100158.Suche in Google Scholar
16. Yubuchi, S., Uematsu, M., Deguchi, M., Hayashi, A., Tatsumisago, M. ACS Appl. Energy Mater. 2018, 1, 3622; https://doi.org/10.1021/acsaem.8b00280.Suche in Google Scholar
17. Ziolkowska, D., Arnold, W., Druffel, T., Sunkara, M., Wang, H. ACS Appl. Mater. Interfaces 2019, 11, 6015; https://doi.org/10.1021/acsami.8b19181.Suche in Google Scholar PubMed
18. Zhang, Z., Sun, Y., Duan, X., Peng, L., Jia, H., Zhang, Y., Shan, B., Xie, J. J. Mater. Chem. A 2019, 6.Suche in Google Scholar
19. Arnold, W., Buchberger, D. A., Li, Y., Sunkara, M., Druffel, T., Wang, H. J. Power Sources 2020, 464, 228158; https://doi.org/10.1016/j.jpowsour.2020.228158.Suche in Google Scholar
20. Rao, R. P., Sharma, N., Peterson, V. K., Adams, S. Solid State Ion. 2013, 230, 72; https://doi.org/10.1016/j.ssi.2012.09.014.Suche in Google Scholar
21. Maughan, A. E., Ha, Y., Pekarek, R. T., Schulze, M. C. Chem. Mater. 2021, 33, 5127; https://doi.org/10.1021/acs.chemmater.1c01170.Suche in Google Scholar
22. Bernges, T., Culver, S. P., Minafra, N., Koerver, R., Zeier, W. G. Inorg. Chem. 2018, 57, 13920; https://doi.org/10.1021/acs.inorgchem.8b02443.Suche in Google Scholar PubMed
23. Schlem, R., Ghidiu, M., Culver, S. P., Hansen, A. L., Zeier, W. G. ACS Appl. Energy Mater. 2020, 3, 9; https://doi.org/10.1021/acsaem.9b01794.Suche in Google Scholar
24. Stamminger, A. R., Ziebarth, B., Mrovec, M., Hammerschmidt, T., Drautz, R. Chem. Mater. 2019, 31, 8673; https://doi.org/10.1021/acs.chemmater.9b02047.Suche in Google Scholar
25. Kraft, M. A., Ohno, S., Zinkevich, T., Koerver, T., Culver, S. P., Fuchs, T., Senyshyn, A., Indris, S., Morgan, B. J., Zeier, W. G. J. Am. Chem. Soc. 2018, 140, 16330; https://doi.org/10.1021/jacs.8b10282.Suche in Google Scholar PubMed
26. Kraft, M. A., Culver, S. P., Calderon, M., Böcher, F., Krauskopf, T., Senyshyn, A., Dietrich, C., Zevalkink, A., Janek, J., Zeier, W. G. J. Am. Chem. Soc. 2017, 139, 10909; https://doi.org/10.1021/jacs.7b06327.Suche in Google Scholar PubMed
27. Gautam, A., Ghidiu, M., Suard, E., Kraft, M., Zeier, W. G. ACS Appl. Energy Mater. 2021, 4, 7309; https://doi.org/10.1021/acsaem.1c01417.Suche in Google Scholar
28. Zhou, L., Minafra, N., Zeier, W. G., Nazar, L. F. Acc. Chem. Res. 2021, 54, 2717; https://doi.org/10.1021/acs.accounts.0c00874.Suche in Google Scholar PubMed
29. Gautam, A., Sadowski, M., Ghidiu, M., Minafra, N., Senyshyn, A., Albe, K., Zeier, W. G. Adv. Energy Mater. 2021, 11, 2003369; https://doi.org/10.1002/aenm.202003369.Suche in Google Scholar
30. Minafra, N., Hogrefe, K., Barbon, F., Helm, B., Li, C., Wilkening, H. M. R., Zeier, W. G. Chem. Mater. 2021, 33, 727; https://doi.org/10.1021/acs.chemmater.0c04150.Suche in Google Scholar
31. Minafra, N., Kraft, M. A., Bernges, T., Li, C., Schlem, R., Morgan, B. J., Zeier, W. G. Inorg. Chem. 2020, 59, 11009; https://doi.org/10.1021/acs.inorgchem.0c01504.Suche in Google Scholar PubMed
32. Gautam, A., Sadowski, M., Prins, N., Eickhoff, H., Minafra, N., Ghidiu, M., Culver, S. P., Albe, K., Fässler, T., Zobel, M., Zeier, W. G. Chem. Mater. 2019, 31, 10178; https://doi.org/10.1021/acs.chemmater.9b03852.Suche in Google Scholar
33. Ohno, S., Helm, B., Fuchs, T., Dewald, G., Kraft, M., Culver, S. P., Senyshyn, A., Zeier, W. G. Chem. Mater. 2019, 31, 4936; https://doi.org/10.1021/acs.chemmater.9b01857.Suche in Google Scholar
34. Zhang, J., Li, L., Zheng, C., Xia, Y., Gan, Y., Huang, H., Liang, C., He, X., Tao, X., Zhang, W. ACS Appl. Mater. Interfaces 2020, 12, 41538; https://doi.org/10.1021/acsami.0c11683.Suche in Google Scholar PubMed
35. Ganapathy, S., Yu, C., van Eck, E. R. H., Wagemaker, M. ACS Energy Lett. 2019, 4, 1092; https://doi.org/10.1021/acsenergylett.9b00610.Suche in Google Scholar
36. Wenzel, S., Sedlmaier, S. J., Dietrich, C., Zeier, W. G., Janek, J. Solid State Ion. 2018, 318, 102; https://doi.org/10.1016/j.ssi.2017.07.005.Suche in Google Scholar
37. Chen, M., Yin, X., Reddy, M. V., Adams, S. J. Mater. Chem. A 2015, 20.Suche in Google Scholar
38. Chida, S., Miura, A., Rosero-Navarro, N. C., Higuchi, M., Phuc, N. H. H., Muto, H., Matsuda, A., Tadanaga, K. Ceram. Int. 2018, 44, 742; https://doi.org/10.1016/j.ceramint.2017.09.241.Suche in Google Scholar
39. Chen, M., Adams, S. J. Solid State Electrochem. 2015, 19, 697; https://doi.org/10.1007/s10008-014-2654-1.Suche in Google Scholar
40. Chen, M., Rayavarapu, P. R., Adams, S. Solid State Ion. 2014, 268, 300; https://doi.org/10.1016/j.ssi.2014.05.004.Suche in Google Scholar
41. Li, Y., Arnold, W., Thapa, A., Jasinski, J. B., Sumanasekera, G., Sunkara, M., Druffel, T., Wang, H. ACS Appl. Mater. Interfaces 2020, 12, 42653; https://doi.org/10.1021/acsami.0c08261.Suche in Google Scholar PubMed
42. Jiang, Z., Peng, H., Liu, Y., Zhong, Y., Wang, X., Xia, X., Gu, C., Tu, J. ACS Adv. Energy Mater 2021, 11, 2101521; https://doi.org/10.1002/aenm.202101521.Suche in Google Scholar
43. Stadler, F., Fietzek, C. ECS Trans. 2020, 25, 177.10.1149/1.3393854Suche in Google Scholar
44. Song, Y. B., Kim, D. H., Kwak, H., Han, D., Kang, S., Lee, J. H., Bak, S. M., Nam, K. W., Lee, H. W., Jung, Y. S. Nano Lett. 2020, 20, 4337; https://doi.org/10.1021/acs.nanolett.0c01028.Suche in Google Scholar PubMed
45. Pecher, O., Kong, S. T., Goebel, T., Nickel, V., Weichert, K., Reiner, C., Deiseroth, H. J., Maier, J., Haarmann, F., Zahn, D. Chem. Eur. J. 2010, 16, 8347; https://doi.org/10.1002/chem.201000501.Suche in Google Scholar PubMed
46. De Clerk, N. J. J., Roslon, I., Wagemaker, M. Chem. Mater. 2016, 28, 7955.10.1021/acs.chemmater.6b03630Suche in Google Scholar
47. Morgan, B. J. Chem. Mater. 2021, 33, 2004; https://doi.org/10.1021/acs.chemmater.0c03738.Suche in Google Scholar PubMed PubMed Central
48. Epp, V., Gün, Ö., Deiseroth, H. J., Wilkening, M. J. Phys. Chem. Lett. 2013, 4, 2118; https://doi.org/10.1021/jz401003a.Suche in Google Scholar
49. Epp, V., Gün, Ö., Deiseroth, H. J., Wilkening, M. Phys. Chem. Chem. Phys. 2013, 15, 7121; https://doi.org/10.1039/c3cp44379e.Suche in Google Scholar PubMed
50. Yu, C., Ganapathy, S., van Eck, E. R. H., van Eijck, L., Basak, S., Liu, Y., Zhang, L., Zandbergen, H. W., Wagemaker, M. J. Mater. Chem. A 2017, 5, 21178; https://doi.org/10.1039/c7ta05031c.Suche in Google Scholar
51. Yu, C., Ganapathy, S., van Eck, E. R. H., Wange, H., Basak, S., Li, Z., Wagemaker, M. Nat. Commun. 2017, 8, 2086; https://doi.org/10.1038/s41467-017-01187-y.Suche in Google Scholar PubMed PubMed Central
52. Wang, H., Yu, C., Ganapathy, S., van Eck, E. R. H., van Eijck, L., Wagemaker, M. J. Power Sources 2019, 412, 29; https://doi.org/10.1016/j.jpowsour.2018.11.029.Suche in Google Scholar
53. Brinek, M., Hiebl, C., Wilkening, H. M. R. Chem. Mater. 2020, 32, 4754; https://doi.org/10.1021/acs.chemmater.0c01367.Suche in Google Scholar PubMed PubMed Central
54. Brinek, M., Hiebl, C., Hogrefe, K., Hanghofer, I., Wilkening, H. M. R. J. Phys. Chem. 2020, 124, 22934; https://doi.org/10.1021/acs.jpcc.0c06090.Suche in Google Scholar PubMed PubMed Central
55. Hanghofer, I., Gadermaier, B., Wilkening, H. M. R. Chem. Mater. 2019, 31, 4591; https://doi.org/10.1021/acs.chemmater.9b01435.Suche in Google Scholar
56. Schlenker, R., Hansen, A. L., Senyshin, A., Zinkevich, T., Knapp, M., Hupfer, T., Ehrenberg, H., Indris, S. Chem. Mater. 2020, 32, 8420; https://doi.org/10.1021/acs.chemmater.0c02418.Suche in Google Scholar
57. Yu, C., Ganapathy, S., de Klerk, N. J. J., Roslon, I., van Eck, E. R. H., Kentgens, A. P. M., Wagemaker, M. J. Am. Chem. Soc. 2016, 138, 11192; https://doi.org/10.1021/jacs.6b05066.Suche in Google Scholar PubMed
58. Adeli, P., Bazak, J. D., Park, K. H., Kochetkov, I., Huq, A., Goward, G. R., Nazar, L. F. Angew. Chem. Int. Ed. 2019, 58, 8681; https://doi.org/10.1002/anie.201814222.Suche in Google Scholar PubMed
59. Hanghofer, I., Brinek, M., Eisbacher, S. I., Bitschnau, B., Volck, M., Hennige, V., Hanzu, I., Rettenwander, D., Wilkening, H. M. R. Phys. Chem. Chem. Phys. 2019, 21, 8489; https://doi.org/10.1039/c9cp00664h.Suche in Google Scholar PubMed
60. Koch, B. Festkörper-NMR-Studien zur Struktur und Kationenmobilität in kristallinen Lithiumionenleitern. Doctoral Dissertation; University of Münster, 2009.Suche in Google Scholar
61. Kong, S. T. Synthesis, Characterization and Structural Chemistry of Lithium Argyrodites. Doctoral Dissertation; University of Siegen, 2011.Suche in Google Scholar
62. Gün, Ö. Synthesis, Characterization and Structural Chemistry of Lithium Seleno Argyrodites. Doctoral Dissertation; University of Siegen, 2011.Suche in Google Scholar
63. Maxwell, R., Lathrop, D., Franke, D., Eckert, H. Angew. Chem. Int. Ed. 1990, 29, 882; https://doi.org/10.1002/anie.199008821.Suche in Google Scholar
64. Ohki, H., Harazono, K., Erata, T., Tasaki, A., Ikeda, R. Z. Naturforsch. 1993, 48a, 1005; https://doi.org/10.1515/zna-1993-1008.Suche in Google Scholar
65. Gaudin, E., Boucher, F., Evain, M., Taulelle, F. Chem. Mater. 2000, 12, 1715; https://doi.org/10.1021/cm001011u.Suche in Google Scholar
66. Koch, B., Kong, S. T., Gün, Ö., Deiseroth, H. J., Eckert, H. Z. Phys. Chem., submitted for publication.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides
Artikel in diesem Heft
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides