Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
-
Alexander V. Skripov
, Olga A. Babanova
, Roman V. Skoryunov , Alexei V. Soloninin und Terrence J. Udovic
Abstract
Polyhydroborate-based salts of lithium and sodium have attracted much recent interest as promising solid-state electrolytes for energy-related applications. A member of this family, sodium dicarba-nido-undecahydroborate Na-7,9-C2B9H12 exhibits superionic conductivity above its order-disorder phase transition temperature, ∼360 K. To investigate the dynamics of the anions and cations in this compound at the microscopic level, we have measured the 1H and 23Na nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates over the temperature range of 148–384 K. It has been found that the transition from the low-T ordered to the high-T disordered phase is accompanied by an abrupt, several-orders-of-magnitude acceleration of both the reorientational jump rate of the complex anions and the diffusive jump rate of Na+ cations. These results support the idea that reorientations of large [C2B9H12]− anions can facilitate cation diffusion and, thus, the ionic conductivity. The apparent activation energies for anion reorientations obtained from the 1H spin-lattice relaxation data are 314 meV for the ordered phase and 272 meV for the disordered phase. The activation energies for Na+ diffusive jumps derived from the 23Na spin-lattice relaxation data are 350 and 268 meV for the ordered and disordered phases, respectively.
Funding source: Russian Foundation for Basic Research
Award Identifier / Grant number: 19-03-00133
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was performed within the assignment of the Russian federal scientific program “Function” No. AAAA-A19-119012990095-0, supported in part by the Russian Foundation for Basic Research (Grant. No. 19-03-00133).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Udovic, T. J., Matsuo, M., Unemoto, A., Verdal, N., Stavila, V., Skripov, A. V., Rush, J. J., Takamura, H., Orimo, S. Chem. Commun. 2014, 50, 3750–3752; https://doi.org/10.1039/c3cc49805k.Suche in Google Scholar PubMed
2. Udovic, T. J., Matsuo, M., Tang, W. S., Wu, H., Stavila, V., Soloninin, A. V., Skoryunov, R. V., Babanova, O. A., Skripov, A. V., Rush, J. J., Unemoto, A., Takamura, H., Orimo, S. Adv. Mater. 2014, 26, 7622–7626; https://doi.org/10.1002/adma.201403157.Suche in Google Scholar PubMed
3. Tang, W. S., Unemoto, A., Zhou, W., Stavila, V., Matsuo, M., Wu, H., Orimo, S., Udovic, T. J. Energ. Environ. Sci. 2015, 8, 3637–3645; https://doi.org/10.1039/c5ee02941d.Suche in Google Scholar PubMed PubMed Central
4. Tang, W. S., Matsuo, M., Wu, H., Stavila, V., Zhou, W., Talin, A., Soloninin, A. V., Skoryunov, R. V., Babanova, O. A., Skripov, A. V., Unemoto, A., Orimo, S., Udovic, T. J. Adv. Energy Mater. 2016, 6, 1502237; https://doi.org/10.1002/aenm.201502237.Suche in Google Scholar
5. Sadikin, Y., Schouwink, P., Brighi, M., Łodziana, Z., Černý, R. Inorg. Chem. 2017, 56, 5006–5016; https://doi.org/10.1021/acs.inorgchem.7b00013.Suche in Google Scholar PubMed
6. Hansen, B. R. S., Paskevicius, M., Jørgensen, M., Jensen, T. R. Chem. Mater. 2017, 29, 3423–3430; https://doi.org/10.1021/acs.chemmater.6b04797.Suche in Google Scholar
7. Tang, W. S., Dimitrievska, M., Stavila, V., Zhou, W., Wu, H., Talin, A. A., Udovic, T. J. Chem. Mater. 2017, 29, 10496–10509; https://doi.org/10.1021/acs.chemmater.7b04332.Suche in Google Scholar
8. Skripov, A. V., Babanova, O. A., Soloninin, A. V., Stavila, V., Verdal, N., Udovic, T. J., Rush, J. J. J. Phys. Chem. C 2013, 117, 25961–25968; https://doi.org/10.1021/jp4106585.Suche in Google Scholar
9. Verdal, N., Her, J.-H., Stavila, V., Soloninin, A. V., Babanova, O. A., Skripov, A. V., Udovic, T. J., Rush, J. J. J. Solid State Chem. 2014, 212, 81–91; https://doi.org/10.1016/j.jssc.2014.01.006.Suche in Google Scholar
10. Verdal, N., Udovic, T. J., Stavila, V., Tang, W. S., Rush, J. J., Skripov, A. V. J. Phys. Chem. C 2014, 118, 17483–17489; https://doi.org/10.1021/jp506252c.Suche in Google Scholar
11. Skripov, A. V., Skoryunov, R. V., Soloninin, A. V., Babanova, O. A., Tang, W. S., Stavila, V., Udovic, T. J. J. Phys. Chem. C 2015, 119, 26912–26918; https://doi.org/10.1021/acs.jpcc.5b10055.Suche in Google Scholar
12. Tang, W. S., Matsuo, M., Wu, H., Stavila, V., Unemoto, A., Orimo, S., Udovic, T. J. Energy Storage Mater. 2016, 4, 79–83; https://doi.org/10.1016/j.ensm.2016.03.004.Suche in Google Scholar
13. Tang, W. S., Yoshida, K., Soloninin, A. V., Skoryunov, R. V., Babanova, O. A., Skripov, A. V., Dimitrievska, M., Stavila, V., Orimo, S., Udovic, T. J. ACS Energy Lett. 2016, 1, 659–664; https://doi.org/10.1021/acsenergylett.6b00310.Suche in Google Scholar
14. Duchêne, L., Kühnel, R.-S., Rentsch, D., Remhof, A., Hagemann, H., Battaglia, C. Chem. Commun. 2017, 53, 4195–4198; https://doi.org/10.1039/c7cc00794a.Suche in Google Scholar PubMed
15. Brighi, M., Murgia, F., Černý, R. Cell Rep. Phys. Sci. 2020, 1, 100217; https://doi.org/10.1016/j.xcrp.2020.100217.Suche in Google Scholar
16. Payandeh, S., Rentsch, D., Łodziana, Z., Asakura, R., Bigler, L., Černý, R., Battaglia, C., Remhof, A. Adv. Funct. Mater. 2021, 31, 2010046; https://doi.org/10.1002/adfm.202010046.Suche in Google Scholar
17. Andersson, M. S., Stavila, V., Skripov, A. V., Dimitrievska, M., Psurek, M. T., Leão, J. B., Babanova, O. A., Skoryunov, R. V., Soloninin, A. V., Karlsson, M., Udovic, T. J. J. Phys. Chem. C 2021, 125, 16689–16699; https://doi.org/10.1021/acs.jpcc.1c03589.Suche in Google Scholar PubMed PubMed Central
18. Souza, D. H. P., Møller, K. T., Moggach, S. A., Humphries, T. D., D’Angelo, A. M., Buckley, C. E., Paskevicius, M. J. Mater. Chem. A 2021, 9, 15027–15037; https://doi.org/10.1039/d1ta01551f.Suche in Google Scholar
19. Payandeh, S., Asakura, R., Avramidou, P., Rentsch, D., Łodziana, Z., Černý, R., Remhof, A., Battaglia, C. Chem. Mater. 2020, 32, 1101–1110; https://doi.org/10.1021/acs.chemmater.9b03933.Suche in Google Scholar
20. Heitjans, P., Indris, S. J. Phys. Condens. Matter 2003, 15, R1257–R1289; https://doi.org/10.1088/0953-8984/15/30/202.Suche in Google Scholar
21. Wilkening, M., Heitjans, P. ChemPhysChem 2012, 13, 53–65; https://doi.org/10.1002/cphc.201100580.Suche in Google Scholar PubMed
22. Skripov, A. V., Volgmann, K., Chandran, C. V., Skoryunov, R. V., Babanova, O. A., Soloninin, A. V., Orimo, S., Heitjans, P. Z. Phys. Chem. 2017, 231, 1455–1465; https://doi.org/10.1515/zpch-2016-0925.Suche in Google Scholar
23. Lu, Z., Ciucci, F. J. Mater. Chem. 2016, 4, 17740–17748; https://doi.org/10.1039/c6ta07443j.Suche in Google Scholar
24. Varley, J. B., Kweon, K., Mehta, P., Shea, P., Heo, T. W., Udovic, T. J., Stavila, V., Wood, B. C. ACS Energy Lett. 2017, 2, 250–255; https://doi.org/10.1021/acsenergylett.6b00620.Suche in Google Scholar
25. Kweon, K., Varley, J. B., Shea, P., Adelstein, N., Mehta, P., Heo, T. W., Udovic, T. J., Stavila, V., Wood, B. C. Chem. Mater. 2017, 29, 9142–9153; https://doi.org/10.1021/acs.chemmater.7b02902.Suche in Google Scholar
26. Dimitrievska, M., Shea, P., Kweon, K. E., Bercx, M., Varley, J. B., Tang, W. S., Skripov, A. V., Stavila, V., Udovic, T. J., Wood, B. C. Adv. Energy Mater. 2018, 6, 1703422; https://doi.org/10.1002/aenm.201703422.Suche in Google Scholar
27. Skripov, A. V., Majer, G., Babanova, O. A., Skoryunov, R. V., Soloninin, A. V., Dimitrievska, M., Udovic, T. J. J. Alloys Compd. 2021, 850, 156781; https://doi.org/10.1016/j.jallcom.2020.156781.Suche in Google Scholar
28. The mention of all commercial suppliers in this paper is for clarity and does not imply the recommendation or endorsement of these suppliers by NIST.Suche in Google Scholar
29. Skripov, A. V., Soloninin, A. V., Babanova, O. A., Skoryunov, R. V. J. Alloys Compd. 2015, 645, S428–S433; https://doi.org/10.1016/j.jallcom.2014.12.089.Suche in Google Scholar
30. Skripov, A. V., Soloninin, A. V., Babanova, O. A., Skoryunov, R. V. Molecules 2020, 25, 2940; https://doi.org/10.3390/molecules25122940.Suche in Google Scholar PubMed PubMed Central
31. Abragam, A. The Principles of Nuclear Magnetism; Clarendon Press: Oxford, 1961.10.1063/1.3057238Suche in Google Scholar
32. Markert, J. T., Cotts, E. J., Cotts, R. M. Phys. Rev. B 1988, 37, 6446–6452; https://doi.org/10.1103/physrevb.37.6446.Suche in Google Scholar PubMed
33. Soloninin, A. V., Skoryunov, R. V., Babanova, O. A., Skripov, A. V., Dimitrievska, M., Udovic, T. J. J. Alloys Compd. 2019, 800, 247–253; https://doi.org/10.1016/j.jallcom.2019.06.019.Suche in Google Scholar
34. Kaus, M., Guin, M., Yavuz, M., Knapp, M., Tietz, F., Guillon, O., Ehrenberg, H., Indris, S. J. Phys. Chem. C 2017, 121, 1449–1454; https://doi.org/10.1021/acs.jpcc.6b10523.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides
Artikel in diesem Heft
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides