Startseite Naturwissenschaften Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies

  • Alexander V. Skripov EMAIL logo , Olga A. Babanova , Roman V. Skoryunov , Alexei V. Soloninin und Terrence J. Udovic
Veröffentlicht/Copyright: 15. September 2021

Abstract

Polyhydroborate-based salts of lithium and sodium have attracted much recent interest as promising solid-state electrolytes for energy-related applications. A member of this family, sodium dicarba-nido-undecahydroborate Na-7,9-C2B9H12 exhibits superionic conductivity above its order-disorder phase transition temperature, ∼360 K. To investigate the dynamics of the anions and cations in this compound at the microscopic level, we have measured the 1H and 23Na nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates over the temperature range of 148–384 K. It has been found that the transition from the low-T ordered to the high-T disordered phase is accompanied by an abrupt, several-orders-of-magnitude acceleration of both the reorientational jump rate of the complex anions and the diffusive jump rate of Na+ cations. These results support the idea that reorientations of large [C2B9H12] anions can facilitate cation diffusion and, thus, the ionic conductivity. The apparent activation energies for anion reorientations obtained from the 1H spin-lattice relaxation data are 314 meV for the ordered phase and 272 meV for the disordered phase. The activation energies for Na+ diffusive jumps derived from the 23Na spin-lattice relaxation data are 350 and 268 meV for the ordered and disordered phases, respectively.


Corresponding author: Alexander V. Skripov, Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi 18, Ekaterinburg 620108, Russia, E-mail:
Dedicated to Paul Heitjans on the occasion of his 75th birthday.

Funding source: Russian Foundation for Basic Research

Award Identifier / Grant number: 19-03-00133

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was performed within the assignment of the Russian federal scientific program “Function” No. AAAA-A19-119012990095-0, supported in part by the Russian Foundation for Basic Research (Grant. No. 19-03-00133).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Udovic, T. J., Matsuo, M., Unemoto, A., Verdal, N., Stavila, V., Skripov, A. V., Rush, J. J., Takamura, H., Orimo, S. Chem. Commun. 2014, 50, 3750–3752; https://doi.org/10.1039/c3cc49805k.Suche in Google Scholar PubMed

2. Udovic, T. J., Matsuo, M., Tang, W. S., Wu, H., Stavila, V., Soloninin, A. V., Skoryunov, R. V., Babanova, O. A., Skripov, A. V., Rush, J. J., Unemoto, A., Takamura, H., Orimo, S. Adv. Mater. 2014, 26, 7622–7626; https://doi.org/10.1002/adma.201403157.Suche in Google Scholar PubMed

3. Tang, W. S., Unemoto, A., Zhou, W., Stavila, V., Matsuo, M., Wu, H., Orimo, S., Udovic, T. J. Energ. Environ. Sci. 2015, 8, 3637–3645; https://doi.org/10.1039/c5ee02941d.Suche in Google Scholar PubMed PubMed Central

4. Tang, W. S., Matsuo, M., Wu, H., Stavila, V., Zhou, W., Talin, A., Soloninin, A. V., Skoryunov, R. V., Babanova, O. A., Skripov, A. V., Unemoto, A., Orimo, S., Udovic, T. J. Adv. Energy Mater. 2016, 6, 1502237; https://doi.org/10.1002/aenm.201502237.Suche in Google Scholar

5. Sadikin, Y., Schouwink, P., Brighi, M., Łodziana, Z., Černý, R. Inorg. Chem. 2017, 56, 5006–5016; https://doi.org/10.1021/acs.inorgchem.7b00013.Suche in Google Scholar PubMed

6. Hansen, B. R. S., Paskevicius, M., Jørgensen, M., Jensen, T. R. Chem. Mater. 2017, 29, 3423–3430; https://doi.org/10.1021/acs.chemmater.6b04797.Suche in Google Scholar

7. Tang, W. S., Dimitrievska, M., Stavila, V., Zhou, W., Wu, H., Talin, A. A., Udovic, T. J. Chem. Mater. 2017, 29, 10496–10509; https://doi.org/10.1021/acs.chemmater.7b04332.Suche in Google Scholar

8. Skripov, A. V., Babanova, O. A., Soloninin, A. V., Stavila, V., Verdal, N., Udovic, T. J., Rush, J. J. J. Phys. Chem. C 2013, 117, 25961–25968; https://doi.org/10.1021/jp4106585.Suche in Google Scholar

9. Verdal, N., Her, J.-H., Stavila, V., Soloninin, A. V., Babanova, O. A., Skripov, A. V., Udovic, T. J., Rush, J. J. J. Solid State Chem. 2014, 212, 81–91; https://doi.org/10.1016/j.jssc.2014.01.006.Suche in Google Scholar

10. Verdal, N., Udovic, T. J., Stavila, V., Tang, W. S., Rush, J. J., Skripov, A. V. J. Phys. Chem. C 2014, 118, 17483–17489; https://doi.org/10.1021/jp506252c.Suche in Google Scholar

11. Skripov, A. V., Skoryunov, R. V., Soloninin, A. V., Babanova, O. A., Tang, W. S., Stavila, V., Udovic, T. J. J. Phys. Chem. C 2015, 119, 26912–26918; https://doi.org/10.1021/acs.jpcc.5b10055.Suche in Google Scholar

12. Tang, W. S., Matsuo, M., Wu, H., Stavila, V., Unemoto, A., Orimo, S., Udovic, T. J. Energy Storage Mater. 2016, 4, 79–83; https://doi.org/10.1016/j.ensm.2016.03.004.Suche in Google Scholar

13. Tang, W. S., Yoshida, K., Soloninin, A. V., Skoryunov, R. V., Babanova, O. A., Skripov, A. V., Dimitrievska, M., Stavila, V., Orimo, S., Udovic, T. J. ACS Energy Lett. 2016, 1, 659–664; https://doi.org/10.1021/acsenergylett.6b00310.Suche in Google Scholar

14. Duchêne, L., Kühnel, R.-S., Rentsch, D., Remhof, A., Hagemann, H., Battaglia, C. Chem. Commun. 2017, 53, 4195–4198; https://doi.org/10.1039/c7cc00794a.Suche in Google Scholar PubMed

15. Brighi, M., Murgia, F., Černý, R. Cell Rep. Phys. Sci. 2020, 1, 100217; https://doi.org/10.1016/j.xcrp.2020.100217.Suche in Google Scholar

16. Payandeh, S., Rentsch, D., Łodziana, Z., Asakura, R., Bigler, L., Černý, R., Battaglia, C., Remhof, A. Adv. Funct. Mater. 2021, 31, 2010046; https://doi.org/10.1002/adfm.202010046.Suche in Google Scholar

17. Andersson, M. S., Stavila, V., Skripov, A. V., Dimitrievska, M., Psurek, M. T., Leão, J. B., Babanova, O. A., Skoryunov, R. V., Soloninin, A. V., Karlsson, M., Udovic, T. J. J. Phys. Chem. C 2021, 125, 16689–16699; https://doi.org/10.1021/acs.jpcc.1c03589.Suche in Google Scholar PubMed PubMed Central

18. Souza, D. H. P., Møller, K. T., Moggach, S. A., Humphries, T. D., D’Angelo, A. M., Buckley, C. E., Paskevicius, M. J. Mater. Chem. A 2021, 9, 15027–15037; https://doi.org/10.1039/d1ta01551f.Suche in Google Scholar

19. Payandeh, S., Asakura, R., Avramidou, P., Rentsch, D., Łodziana, Z., Černý, R., Remhof, A., Battaglia, C. Chem. Mater. 2020, 32, 1101–1110; https://doi.org/10.1021/acs.chemmater.9b03933.Suche in Google Scholar

20. Heitjans, P., Indris, S. J. Phys. Condens. Matter 2003, 15, R1257–R1289; https://doi.org/10.1088/0953-8984/15/30/202.Suche in Google Scholar

21. Wilkening, M., Heitjans, P. ChemPhysChem 2012, 13, 53–65; https://doi.org/10.1002/cphc.201100580.Suche in Google Scholar PubMed

22. Skripov, A. V., Volgmann, K., Chandran, C. V., Skoryunov, R. V., Babanova, O. A., Soloninin, A. V., Orimo, S., Heitjans, P. Z. Phys. Chem. 2017, 231, 1455–1465; https://doi.org/10.1515/zpch-2016-0925.Suche in Google Scholar

23. Lu, Z., Ciucci, F. J. Mater. Chem. 2016, 4, 17740–17748; https://doi.org/10.1039/c6ta07443j.Suche in Google Scholar

24. Varley, J. B., Kweon, K., Mehta, P., Shea, P., Heo, T. W., Udovic, T. J., Stavila, V., Wood, B. C. ACS Energy Lett. 2017, 2, 250–255; https://doi.org/10.1021/acsenergylett.6b00620.Suche in Google Scholar

25. Kweon, K., Varley, J. B., Shea, P., Adelstein, N., Mehta, P., Heo, T. W., Udovic, T. J., Stavila, V., Wood, B. C. Chem. Mater. 2017, 29, 9142–9153; https://doi.org/10.1021/acs.chemmater.7b02902.Suche in Google Scholar

26. Dimitrievska, M., Shea, P., Kweon, K. E., Bercx, M., Varley, J. B., Tang, W. S., Skripov, A. V., Stavila, V., Udovic, T. J., Wood, B. C. Adv. Energy Mater. 2018, 6, 1703422; https://doi.org/10.1002/aenm.201703422.Suche in Google Scholar

27. Skripov, A. V., Majer, G., Babanova, O. A., Skoryunov, R. V., Soloninin, A. V., Dimitrievska, M., Udovic, T. J. J. Alloys Compd. 2021, 850, 156781; https://doi.org/10.1016/j.jallcom.2020.156781.Suche in Google Scholar

28. The mention of all commercial suppliers in this paper is for clarity and does not imply the recommendation or endorsement of these suppliers by NIST.Suche in Google Scholar

29. Skripov, A. V., Soloninin, A. V., Babanova, O. A., Skoryunov, R. V. J. Alloys Compd. 2015, 645, S428–S433; https://doi.org/10.1016/j.jallcom.2014.12.089.Suche in Google Scholar

30. Skripov, A. V., Soloninin, A. V., Babanova, O. A., Skoryunov, R. V. Molecules 2020, 25, 2940; https://doi.org/10.3390/molecules25122940.Suche in Google Scholar PubMed PubMed Central

31. Abragam, A. The Principles of Nuclear Magnetism; Clarendon Press: Oxford, 1961.10.1063/1.3057238Suche in Google Scholar

32. Markert, J. T., Cotts, E. J., Cotts, R. M. Phys. Rev. B 1988, 37, 6446–6452; https://doi.org/10.1103/physrevb.37.6446.Suche in Google Scholar PubMed

33. Soloninin, A. V., Skoryunov, R. V., Babanova, O. A., Skripov, A. V., Dimitrievska, M., Udovic, T. J. J. Alloys Compd. 2019, 800, 247–253; https://doi.org/10.1016/j.jallcom.2019.06.019.Suche in Google Scholar

34. Kaus, M., Guin, M., Yavuz, M., Knapp, M., Tietz, F., Guillon, O., Ehrenberg, H., Indris, S. J. Phys. Chem. C 2017, 121, 1449–1454; https://doi.org/10.1021/acs.jpcc.6b10523.Suche in Google Scholar

Received: 2021-08-05
Accepted: 2021-09-07
Published Online: 2021-09-15
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Special issue on the occasion of the 75th birthday of Paul Heitjans
  4. Contribution to Special Issue dedicated to Paul Heitjans
  5. Unusual cation coordination in nanostructured mullites
  6. A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
  7. Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
  8. Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
  9. Status and progress of ion-implanted βNMR at TRIUMF
  10. How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
  11. Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
  12. Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
  13. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
  14. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
  15. Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
  16. How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
  17. Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
  18. Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
  19. Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
  20. On the CaF2-BaF2 interface
  21. The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
  22. Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
  23. Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
  24. Ionic transport in K2Ti6O13
  25. F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
  26. An overview of thermotransport in fluorite-related ionic oxides
Heruntergeladen am 17.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3108/html
Button zum nach oben scrollen