Startseite Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors

  • Bambar Davaasuren , Qianli Ma , Alexandra von der Heiden und Frank Tietz EMAIL logo
Veröffentlicht/Copyright: 3. September 2021

Abstract

Li1.5Al0.5Ti1.5(PO4)3 (LATP) powders were prepared from different NO x -free precursors using an aqueous-based solution-assisted solid-state reaction (SA-SSR). The sintering behavior, phase formation, microstructure and ionic conductivity of the powders were explored as a function of sintering temperature. The powders showed a relatively narrow temperature windows in which shrinkage occurred. Relative densities of 95% were reached upon heating between 900 and 960 °C. Depending on the morphological features of the primary particles, either homogeneous and intact microstructures with fine grains of about <2 µm in size or a broad grain size distribution, micro-cracks and grain cleavages were obtained, indicating the instability of the microstructure. Consequently, the ceramics with a homogeneous microstructure possessed a maximum total ionic conductivity of 0.67 mS cm−1, whereas other ceramics reached only 0.58 mS cm−1 and 0.21 mS cm−1.


Dedicated to Paul Heitjans on the occasion of his 75th birthday.



Corresponding author: Frank Tietz, Forschungszentrum Jülich GmbH, IEK-1: Materials Synthesis and Processing, D-52425 Jülich, Germany; and Forschungszentrum Jülich GmbH, IEK-12: Helmholtz-Institute Münster, D-52425 Jülich, Germany, E-mail:

Funding source: German Federal Ministry of Education and Research (BMBF)

Award Identifier / Grant number: 03XP0109E

Acknowledgements

We thank Dr. D. Grüner (FZJ, IEK-2) for the SEM investigations, M. Andreas and V. Bader for technical assistance, and A. Hilgers for PSD and M.-T. Gerhards for DTA/TG and dilatometry measurements. We also thank our colleagues at the Central Institute of Engineering, Electronics and Analytics (ZEA-3) for the ICP-OES analysis.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The results of this work are part of the project “BCT – Battery Cell Technology” funded by the German Federal Ministry of Education and Research (BMBF) under support code 03XP0109E. The authors take responsibility for the content of this publication.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zhao, E., Ma, F., Jin, Y., Kanamura, K. J. Alloys Comp. 2016, 680, 646–653, https://doi.org/10.1016/j.jallcom.2016.04.173.Suche in Google Scholar

2. Kunshina, G. B., Gromov, O. G., Lokshin, E. P., Kalinnikov, V. T. Russ. J. Inorg. Chem. 2014, 59, 424–430, https://doi.org/10.1134/s0036023614050118.Suche in Google Scholar

3. Xu, X., Wen, Z., Wu, J., Yang, J. Solid State Ionics 2007, 178, 29–34, https://doi.org/10.1016/j.ssi.2006.11.009.Suche in Google Scholar

4. Bucharsky, E. C., Schell, K. G., Hintennach, A., Hoffmann, M. J. Solid State Ionics 2015, 274, 77–82, https://doi.org/10.1016/j.ssi.2015.03.009.Suche in Google Scholar

5. Ma, Q., Xu, Q., Tsai, C.-L., Tietz, F., Guillon, O. J. Am. Ceram. Soc. 2016, 99, 410–414, https://doi.org/10.1111/jace.13997.Suche in Google Scholar

6. Key, B., Schroeder, D. J., Ingram, B. J., Vaughey, J. T. Chem. Mater. 2012, 24, 287–293, https://doi.org/10.1021/cm202773d.Suche in Google Scholar

7. Epp, V., Ma, Q., Tietz, F., Wilkening, M. Phys. Chem. Chem. Phys. 2015, 17, 32115–32121, https://doi.org/10.1039/c5cp05337d.Suche in Google Scholar PubMed

8. Vinod Chandran, C., Pristat, S., Witt, E., Tietz, F., Heitjans, P. J. Phys. Chem. C 2016, 120, 8436–8442, https://doi.org/10.1021/acs.jpcc.6b00318.Suche in Google Scholar

9. Ma, Q., Guin, M., Naqash, S., Tsai, C.-L., Tietz, F., Guillon, O. Chem. Mater. 2016, 28, 4821–4828, https://doi.org/10.1021/acs.chemmater.6b02059.Suche in Google Scholar

10. Naqash, S., Ma, Q., Tietz, F., Guillon, O. Solid State Ionics 2017, 302, 83–91, https://doi.org/10.1016/j.ssi.2016.11.004.Suche in Google Scholar

11. Davaasuren, B., Tietz, F. Solid State Ionics 2019, 338, 144–152, https://doi.org/10.1016/j.ssi.2019.05.016.Suche in Google Scholar

12. Kotobuki, M., Kobayashi, B., Koishi, M., Mizushima, T., Kakuta, N. Mater. Technol. 2014, 29, A93–A97, https://doi.org/10.1179/1753555714y.0000000181.Suche in Google Scholar

13. Degen, T., Sadki, M., Bron, E., König, U., Nénert, G. Powder Diffr. 2014, 29, S13–S18, https://doi.org/10.1017/s0885715614000840.Suche in Google Scholar

14. Hallopeau, L., Bregiroux, D., Rousse, G., Portehault, D., Stevens, P., Toussaint, G., Laberty-Robert, C. J. Power Sources 2018, 378, 48–52, https://doi.org/10.1016/j.jpowsour.2017.12.021.Suche in Google Scholar

15. Woodcock, D. A., Lightfoot, P. J. Mater. Chem. 1999, 9, 2907–2911, https://doi.org/10.1039/a904193a.Suche in Google Scholar

16. Huang, C. Y., Agrawal, D. K., McKinstry, H. A. J. Mater. Sci. 1995, 30, 3509–3514, https://doi.org/10.1007/bf00349902.Suche in Google Scholar

17. Prasada Rao, R., Maohua, C., Adams, S. J. Solid State Electrochem. 2012, 16, 3349–3354, https://doi.org/10.1007/s10008-012-1780-x.Suche in Google Scholar

18. Hupfer, T., Bucharsky, E. C., Schell, K. G., Senyshyn, A., Monchak, M., Hoffmann, M. J., Ehrenberg, H. Solid State Ionics 2016, 288, 235–239, https://doi.org/10.1016/j.ssi.2016.01.036.Suche in Google Scholar

19. Case, D., McSloy, A. J., Sharpe, R., Yeadel, S. R., Bartlett, T., Cookson, J., Dashjav, E., Tietz, F., Kumar, C. M. N., Goddard, P. Solid State Ionics 2020, 346, 115192, https://doi.org/10.1016/j.ssi.2019.115192.Suche in Google Scholar

20. Oota, T., Yamai, I. J. Am. Ceram. Soc. 1986, 69, 1–6, https://doi.org/10.1111/j.1151-2916.1986.tb04682.x.Suche in Google Scholar

21. Yamai, I., Ota, T. J. Am. Ceram. Soc. 1993, 76, 487–491, https://doi.org/10.1111/j.1151-2916.1993.tb03811.x.Suche in Google Scholar

22. Jackman, S. D., Cutler, R. A. J. Power Sources 2012, 218, 65–72, https://doi.org/10.1016/j.jpowsour.2012.06.081.Suche in Google Scholar

23. Sinclair, D. C. Bol. Soc. Esp. Cerám. Vidrio 1995, 34, 55–65.Suche in Google Scholar

24. Kotobuki, M., Koishi, M., Kato, Y. Ionics 2013, 19, 1945–1948, https://doi.org/10.1007/s11581-013-1000-4.Suche in Google Scholar

25. Rossbach, A., Tietz, F., Grieshammer, S. J. Power Sources 2018, 391, 1–9. and references therein, https://doi.org/10.1016/j.jpowsour.2018.04.059.Suche in Google Scholar

26. Kotobuki, M., Koishi, M. Ceram. Int. 2013, 39, 4645–4649, https://doi.org/10.1016/j.ceramint.2012.10.206.Suche in Google Scholar

27. Winter, E., Seipel, P., Zinkevich, T., Indris, S., Davaasuren, B., Tietz, F., Vogel, M., Z. Phys. Chem. 2022, 236, 689.10.1515/zpch-2022-1774Suche in Google Scholar

28. Lang, B., Ziebarth, B., Elsässer, C. Chem. Mater. 2015, 27, 5040–5048, https://doi.org/10.1021/acs.chemmater.5b01582.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2021-3090).


Received: 2021-06-28
Accepted: 2021-08-18
Published Online: 2021-09-03
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Special issue on the occasion of the 75th birthday of Paul Heitjans
  4. Contribution to Special Issue dedicated to Paul Heitjans
  5. Unusual cation coordination in nanostructured mullites
  6. A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
  7. Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
  8. Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
  9. Status and progress of ion-implanted βNMR at TRIUMF
  10. How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
  11. Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
  12. Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
  13. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
  14. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
  15. Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
  16. How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
  17. Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
  18. Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
  19. Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
  20. On the CaF2-BaF2 interface
  21. The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
  22. Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
  23. Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
  24. Ionic transport in K2Ti6O13
  25. F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
  26. An overview of thermotransport in fluorite-related ionic oxides
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3090/html
Button zum nach oben scrollen