Home Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
Article
Licensed
Unlicensed Requires Authentication

Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12

  • Marc Christoffer Paulus , Anja Paulus , Rüdiger-Albert Eichel and Josef Granwehr EMAIL logo
Published/Copyright: November 4, 2021

Abstract

The use of independent component analysis (ICA) for the analysis of two-dimensional (2D) spin-alignment echo–T 1 7Li NMR correlation data with transient echo detection as a third dimension is demonstrated for the superionic conductor Li10GeP2S12 (LGPS). ICA was combined with Laplace inversion, or discrete inverse Laplace transform (ILT), to obtain spectrally resolved 2D correlation maps. Robust results were obtained with the spectra as well as the vectorized correlation maps as independent components. It was also shown that the order of ICA and ILT steps can be swapped. While performing the ILT step before ICA provided better contrast, a substantial data compression can be achieved if ICA is executed first. Thereby the overall computation time could be reduced by one to two orders of magnitude, since the number of computationally expensive ILT steps is limited to the number of retained independent components. For LGPS, it was demonstrated that physically meaningful independent components and mixing matrices are obtained, which could be correlated with previously investigated material properties yet provided a clearer, better separation of features in the data. LGPS from two different batches was investigated, which showed substantial differences in their spectral and relaxation behavior. While in both cases this could be attributed to ionic mobility, the presented analysis may also clear the way for a more in-depth theoretical analysis based on numerical simulations. The presented method appears to be particularly suitable for samples with at least partially resolved static quadrupolar spectra, such as alkali metal ions in superionic conductors. The good stability of the ICA analysis makes this a prospect algorithm for preprocessing of data for a subsequent automatized analysis using machine learning concepts.


Corresponding author: Josef Granwehr, Institute of Energy and Climate Research – Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52056 Aachen, Germany, E-mail:
Dedicated to Paul Heitjans on the occasion of his 75th birthday.

Award Identifier / Grant number: 03XP0176

Acknowledgments

Helpful discussions during different stages of the project with Philipp Schleker, Christoph Scheurer, Simone Köcher and Paul Heitjans, who also provided us with magnet time to conduct experiments at 14.1 T in his lab at the Leibnitz University Hannover, are gratefully acknowledged. We are thankful for LGPS synthesis support by Peter-Paul Harks and Peter Notten.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research has been financially supported by the German Federal Ministry of Education and Research (BMBF), project FestBatt-Charakterisierung (grant number 03XP0176), and by the Ministry of Innovation, Science and Research (MIWF) of the State North Rhine-Westphalia through project “Ionic conductors for efficient energy storage”. Computing resources had been granted by RWTH Aachen University under project rwth0204.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Kalidindi, S., Kalinin, S. V., Eds. Handbook on Big Data and Machine Learning in the Physical Sciences. Volume 1: Big Data Methods in Experimental Materials Discovery; World Scientific: Singapore, 2020.10.1142/11389-vol1Search in Google Scholar

2. Zaki, M. J., Meira, W. Data Mining and Analysis: Fundamental Concepts and Algorithms; Cambridge University Press: New York, 2014.10.1017/CBO9780511810114Search in Google Scholar

3. Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., Zdeborová, L. Rev. Mod. Phys. 2019, 91, 045002; https://doi.org/10.1103/revmodphys.91.045002.Search in Google Scholar

4. Succi, S., Coveney, P. V. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20180145; https://doi.org/10.1098/rsta.2018.0145.Search in Google Scholar

5. Frydman, L., Scherf, T., Lupulescu, A. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 15858–15862; https://doi.org/10.1073/pnas.252644399.Search in Google Scholar

6. Granwehr, J., Panek, R., Leggett, J., Koeckenberger, W. J. Chem. Phys. 2010, 132, 244507; https://doi.org/10.1063/1.3446804.Search in Google Scholar

7. Ahola, S., Zhivonitko, V. V., Mankinen, O., Zhang, G., Kantola, A. M., Chen, H.-Y., Hilty, C., Koptyug, I. V., Telkki, V.-V. Nat. Commun. 2019, 6, 8363.10.1038/ncomms9363Search in Google Scholar

8. Ernst, R. R., Bodenhausen, G., Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions; Clarendon Press: Oxford, 1987.Search in Google Scholar

9. Stallmach, F., Galvosas, P. Annu. Rep. NMR Spectrosc. 2007, 61, 51–131; https://doi.org/10.1016/s0066-4103(07)61102-8.Search in Google Scholar

10. Monakhova, Y. B., Tsikin, A. M., Mushtakova, S. P. J. Anal. Chem. 2016, 71, 554–560; https://doi.org/10.1134/s1061934816060113.Search in Google Scholar

11. Spiess, H. W. J. Chem. Phys. 2008, 72, 6755–6762.10.1063/1.439165Search in Google Scholar

12. Wilkening, M., Küchler, W., Heitjans, P. Phys. Rev. Lett. 2006, 97, 065901; https://doi.org/10.1103/physrevlett.97.065901.Search in Google Scholar PubMed

13. Böhmer, R., Jeffrey, K. R., Vogel, M. Prog. Nucl. Magn. Reson. Spectrosc. 2007, 50, 87–174; https://doi.org/10.1016/j.pnmrs.2006.12.001.Search in Google Scholar

14. Wilkening, M., Amade, R., Iwaniak, W., Heitjans, P. Phys. Chem. Chem. Phys. 2007, 9, 1239–1246; https://doi.org/10.1039/b616269j.Search in Google Scholar PubMed

15. Venkataramanan, L., Song, Y.-Q., Hürlimann, M. D. IEEE Trans. Signal Process. 2002, 50, 1017–1026; https://doi.org/10.1109/78.995059.Search in Google Scholar

16. Borgia, G. C., Brown, R. J. S., Fantazzini, P. J. Magn. Reson. 1998, 132, 65–77; https://doi.org/10.1006/jmre.1998.1387.Search in Google Scholar PubMed

17. Rodts, S., Bytchenkoff, D. J. Magn. Reson. 2010, 205, 315–318; https://doi.org/10.1016/j.jmr.2010.04.021.Search in Google Scholar PubMed

18. Fantazzini, P., Galassi, F., Bortolotti, V., Brown, R. J. S., Vittur, F. New J. Phys. 2011, 13, 065007; https://doi.org/10.1088/1367-2630/13/6/065007.Search in Google Scholar

19. Granwehr, J., Roberts, P. J. J. Chem. Theor. Comput. 2012, 8, 3473–3482; https://doi.org/10.1021/ct3001393.Search in Google Scholar PubMed

20. Graf, M. F., Tempel, H., Köcher, S. S., Schierholz, R., Scheurer, C., Kungl, H., Eichel, R.-A., Granwehr, J. RSC Adv. 2017, 7, 25276–25284; https://doi.org/10.1039/c7ra01622k.Search in Google Scholar

21. Merz, S., Jakes, P., Taranenko, S., Eichel, R.-A., Granwehr, J. Phys. Chem. Chem. Phys. 2019, 21, 17018–17028; https://doi.org/10.1039/c9cp02651g.Search in Google Scholar PubMed

22. Bachman, J. C., Muy, S., Grimaud, A., Chang, H.-H., Pour, N., Lux, S. F., Paschos, O., Maglia, F., Lupart, S., Lamp, P., Giordano, L., Shao-Horn, Y. Chem. Rev. 2016, 116, 140–162; https://doi.org/10.1021/acs.chemrev.5b00563.Search in Google Scholar PubMed

23. Lau, J., DeBlock, R. H., Butts, D. M., Ashby, D. S., Choi, C. S., Dunn, B. S. Adv. Energy Mater. 2018, 8, 1800933; https://doi.org/10.1002/aenm.201800933.Search in Google Scholar

24. Tatsumisago, M., Nagao, M., Hayashi, A. J. Asian Ceram. Soc. 2013, 1, 17–25; https://doi.org/10.1016/j.jascer.2013.03.005.Search in Google Scholar

25. Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., Mitsui, A. Nat. Mater. 2011, 10, 682–686; https://doi.org/10.1038/nmat3066.Search in Google Scholar PubMed

26. Weber, D. A., Senyshyn, A., Weldert, K. S., Wenzel, S., Zhang, W., Kaiser, R., Berendts, S., Janek, J., Zeier, W. G. Chem. Mater. 2016, 28, 5905–5915; https://doi.org/10.1021/acs.chemmater.6b02424.Search in Google Scholar

27. Kuhn, A., Kohler, J., Lotsch, B. V. Phys. Chem. Chem. Phys. 2013, 15, 11620–11622; https://doi.org/10.1039/c3cp51985f.Search in Google Scholar PubMed

28. Kuhn, A., Duppel, V., Lotsch, B. V. Energy Environ. Sci. 2013, 6, 3548–3552; https://doi.org/10.1039/c3ee41728j.Search in Google Scholar

29. Bertermann, R., Müller-Warmuth, W. Z. Naturforsch. 1998, 53, 863–873; https://doi.org/10.1515/zna-1998-10-1110.Search in Google Scholar

30. Hogrefe, K., Minafra, N., Zeier, W. G., Wilkening, H. M. R. J. Phys. Chem. C 2021, 125, 2306–2317; https://doi.org/10.1021/acs.jpcc.0c10224.Search in Google Scholar PubMed PubMed Central

31. Liang, X., Wang, L., Jiang, Y., Wang, J., Luo, H., Liu, C., Feng, J. Chem. Mater. 2015, 27, 5503–5510; https://doi.org/10.1021/acs.chemmater.5b01384.Search in Google Scholar

32. Paulus, M. C., Graf, M. F., Harks, P. P. R. M. L., Paulus, A., Schleker, P. P. M., Notten, P. H. L., Eichel, R.-A., Granwehr, J. J. Magn. Reson. 2018, 294, 133–142; https://doi.org/10.1016/j.jmr.2018.07.008.Search in Google Scholar

33. Paulus, M. C., Paulus, A., Schleker, P. P. M., Jakes, P., Eichel, R.-A., Heitjans, P., Granwehr, J. J. Magn. Reson. 2019, 303, 57–66; https://doi.org/10.1016/j.jmr.2019.04.006.Search in Google Scholar

34. Wilkening, M., Gebauer, D., Heitjans, P. J. Phys. Condens. Matter 2008, 20, 022201; https://doi.org/10.1088/0953-8984/20/02/022201.Search in Google Scholar

35. Storek, M., Jeffrey, K. R., Böhmer, R. Solid State Nucl. Magn. Reson. 2014, 59–60, 8–19; https://doi.org/10.1016/j.ssnmr.2014.01.002.Search in Google Scholar

36. Hyvärinen, A. IEEE Trans. Neural Network. 1999, 10, 626–634; https://doi.org/10.1109/72.761722.Search in Google Scholar

37. Hyvärinen, A., Oja, E. Neural Network. 2000, 13, 411–430; https://doi.org/10.1016/s0893-6080(00)00026-5.Search in Google Scholar

38. Comon, P. Signal Process. 1994, 36, 287–314; https://doi.org/10.1016/0165-1684(94)90029-9.Search in Google Scholar

39. Särelä, J., Vigário, R. J. Mach. Learn. Res. 2003, 4, 1447–1469.Search in Google Scholar

40. Brown, R. J. S. J. Magn. Reson. 1989, 82, 539–561; https://doi.org/10.1016/0022-2364(89)90217-5.Search in Google Scholar

41. Ostroff, E. D., Waugh, J. S. Phys. Rev. Lett. 1966, 16, 1097–1098; https://doi.org/10.1103/physrevlett.16.1097.Search in Google Scholar

42. Callaghan, P. T. Translational Dynamics and Magnetic Resonance: Principles of Pulsed Gradient Spin Echo NMR; Oxford University Press: Oxford, UK, 2011.10.1093/acprof:oso/9780199556984.001.0001Search in Google Scholar

43. Hansen, P. C. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion; SIAM: Philadelphia, 1997.10.1137/1.9780898719697Search in Google Scholar

44. Kazimierczuk, K., Orekhov, V. Y. Angew. Chem. Int. Ed. 2011, 50, 5556–5559; https://doi.org/10.1002/anie.201100370.Search in Google Scholar

45. Eaton, J. W., Bateman, D., Hauberg, S., Wehbring, R. GNU Octave Version 4.0.0 Manual: A High-Level Interactive Language for Numerical Computations; Free Software Foundation: Boston, MA, 2015.Search in Google Scholar

46. Qi, F., Rier, C., Böhmer, R., Franke, W., Heitjans, P. Phys. Rev. B 2005, 72, 104301; https://doi.org/10.1103/physrevb.72.104301.Search in Google Scholar

47. Granwehr, J. Appl. Magn. Reson. 2007, 32, 113–156; https://doi.org/10.1007/s00723-007-0006-3.Search in Google Scholar

48. Petit, D., Korb, J.-P., Delville, A., Grandjean, J., Laszlo, P. J. Magn. Reson. 1992, 96, 252–279; https://doi.org/10.1016/0022-2364(92)90080-q.Search in Google Scholar

49. Wilkening, M., Heitjans, P. ChemPhysChem 2012, 13, 53–65; https://doi.org/10.1002/cphc.201100580.Search in Google Scholar PubMed

50. Stöffler, H., Zinkevich, T., Yavuz, M., Senyshyn, A., Kulisch, J., Hartmann, P., Adermann, T., Randau, S., Richter, F. H., Janek, J., Indris, S., Ehrenberg, H. J. Phys. Chem. C 2018, 122, 15954–15965; https://doi.org/10.1021/acs.jpcc.8b05431.Search in Google Scholar

51. Prutsch, D., Gadermaier, B., Brandsttter, H., Pregartner, V., Stanje, B., Wohlmuth, D., Epp, V., Rettenwander, D., Hanzu, I., Wilkening, H. M. R. Chem. Mater. 2018, 30, 7575–7586; https://doi.org/10.1021/acs.chemmater.8b02753.Search in Google Scholar

52. Harm, S., Hatz, A. K., Moudrakovski, I., Eger, R., Kuhn, A., Hoch, C., Lotsch, B. V. Chem. Mater. 2019, 31, 1280–1288; https://doi.org/10.1021/acs.chemmater.8b04051.Search in Google Scholar

53. Krauskopf, T., Culver, S. P., Zeier, W. G. Chem. Mater. 2018, 30, 1791–1798; https://doi.org/10.1021/acs.chemmater.8b00266.Search in Google Scholar

54. Vashman, A. A., Pronin, I. S., Sigaryov, S. E. Solid State Ionics 1992, 58, 201–215; https://doi.org/10.1016/0167-2738(92)90120-e.Search in Google Scholar

55. Heenen, H. H., Scheurer, S., Reuter, K. Nano Lett 2017, 17, 3884–3888; https://doi.org/10.1021/acs.nanolett.7b01400.Search in Google Scholar PubMed

56. Spannenberger, S., Miss, V., Klotz, E., Kettner, J., Cronau, M., Ramanayagam, A., di Capua, F., Elsayed, M., Krause-Rehberg, R., Vogel, M., Roling, B. Solid State Ionics 2019, 341, 115040; https://doi.org/10.1016/j.ssi.2019.115040.Search in Google Scholar

57. Bhandari, A., Bhattacharya, J. J. Phys. Chem. C 2016, 120, 29002–29010; https://doi.org/10.1021/acs.jpcc.6b10967.Search in Google Scholar

58. Köcher, S. S., Schleker, P. P. M., Graf, M. F., Eichel, R.-A., Reuter, K., Granwehr, J., Scheurer, C. J. Magn. Reson. 2018, 297, 33–41; https://doi.org/10.1016/j.jmr.2018.10.003.Search in Google Scholar PubMed

Received: 2021-10-08
Accepted: 2021-10-12
Published Online: 2021-11-04
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Preface
  3. Special issue on the occasion of the 75th birthday of Paul Heitjans
  4. Contribution to Special Issue dedicated to Paul Heitjans
  5. Unusual cation coordination in nanostructured mullites
  6. A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
  7. Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
  8. Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
  9. Status and progress of ion-implanted βNMR at TRIUMF
  10. How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
  11. Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
  12. Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
  13. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
  14. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
  15. Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
  16. How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
  17. Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
  18. Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
  19. Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
  20. On the CaF2-BaF2 interface
  21. The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
  22. Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
  23. Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
  24. Ionic transport in K2Ti6O13
  25. F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
  26. An overview of thermotransport in fluorite-related ionic oxides
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3136/html
Scroll to top button