Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
Abstract
The use of independent component analysis (ICA) for the analysis of two-dimensional (2D) spin-alignment echo–T 1 7Li NMR correlation data with transient echo detection as a third dimension is demonstrated for the superionic conductor Li10GeP2S12 (LGPS). ICA was combined with Laplace inversion, or discrete inverse Laplace transform (ILT), to obtain spectrally resolved 2D correlation maps. Robust results were obtained with the spectra as well as the vectorized correlation maps as independent components. It was also shown that the order of ICA and ILT steps can be swapped. While performing the ILT step before ICA provided better contrast, a substantial data compression can be achieved if ICA is executed first. Thereby the overall computation time could be reduced by one to two orders of magnitude, since the number of computationally expensive ILT steps is limited to the number of retained independent components. For LGPS, it was demonstrated that physically meaningful independent components and mixing matrices are obtained, which could be correlated with previously investigated material properties yet provided a clearer, better separation of features in the data. LGPS from two different batches was investigated, which showed substantial differences in their spectral and relaxation behavior. While in both cases this could be attributed to ionic mobility, the presented analysis may also clear the way for a more in-depth theoretical analysis based on numerical simulations. The presented method appears to be particularly suitable for samples with at least partially resolved static quadrupolar spectra, such as alkali metal ions in superionic conductors. The good stability of the ICA analysis makes this a prospect algorithm for preprocessing of data for a subsequent automatized analysis using machine learning concepts.
Funding source: Bundesministerium für Bildung und Forschung
Award Identifier / Grant number: 03XP0176
Acknowledgments
Helpful discussions during different stages of the project with Philipp Schleker, Christoph Scheurer, Simone Köcher and Paul Heitjans, who also provided us with magnet time to conduct experiments at 14.1 T in his lab at the Leibnitz University Hannover, are gratefully acknowledged. We are thankful for LGPS synthesis support by Peter-Paul Harks and Peter Notten.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research has been financially supported by the German Federal Ministry of Education and Research (BMBF), project FestBatt-Charakterisierung (grant number 03XP0176), and by the Ministry of Innovation, Science and Research (MIWF) of the State North Rhine-Westphalia through project “Ionic conductors for efficient energy storage”. Computing resources had been granted by RWTH Aachen University under project rwth0204.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Kalidindi, S., Kalinin, S. V., Eds. Handbook on Big Data and Machine Learning in the Physical Sciences. Volume 1: Big Data Methods in Experimental Materials Discovery; World Scientific: Singapore, 2020.10.1142/11389-vol1Suche in Google Scholar
2. Zaki, M. J., Meira, W. Data Mining and Analysis: Fundamental Concepts and Algorithms; Cambridge University Press: New York, 2014.10.1017/CBO9780511810114Suche in Google Scholar
3. Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., Zdeborová, L. Rev. Mod. Phys. 2019, 91, 045002; https://doi.org/10.1103/revmodphys.91.045002.Suche in Google Scholar
4. Succi, S., Coveney, P. V. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20180145; https://doi.org/10.1098/rsta.2018.0145.Suche in Google Scholar
5. Frydman, L., Scherf, T., Lupulescu, A. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 15858–15862; https://doi.org/10.1073/pnas.252644399.Suche in Google Scholar
6. Granwehr, J., Panek, R., Leggett, J., Koeckenberger, W. J. Chem. Phys. 2010, 132, 244507; https://doi.org/10.1063/1.3446804.Suche in Google Scholar
7. Ahola, S., Zhivonitko, V. V., Mankinen, O., Zhang, G., Kantola, A. M., Chen, H.-Y., Hilty, C., Koptyug, I. V., Telkki, V.-V. Nat. Commun. 2019, 6, 8363.10.1038/ncomms9363Suche in Google Scholar
8. Ernst, R. R., Bodenhausen, G., Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions; Clarendon Press: Oxford, 1987.Suche in Google Scholar
9. Stallmach, F., Galvosas, P. Annu. Rep. NMR Spectrosc. 2007, 61, 51–131; https://doi.org/10.1016/s0066-4103(07)61102-8.Suche in Google Scholar
10. Monakhova, Y. B., Tsikin, A. M., Mushtakova, S. P. J. Anal. Chem. 2016, 71, 554–560; https://doi.org/10.1134/s1061934816060113.Suche in Google Scholar
11. Spiess, H. W. J. Chem. Phys. 2008, 72, 6755–6762.10.1063/1.439165Suche in Google Scholar
12. Wilkening, M., Küchler, W., Heitjans, P. Phys. Rev. Lett. 2006, 97, 065901; https://doi.org/10.1103/physrevlett.97.065901.Suche in Google Scholar PubMed
13. Böhmer, R., Jeffrey, K. R., Vogel, M. Prog. Nucl. Magn. Reson. Spectrosc. 2007, 50, 87–174; https://doi.org/10.1016/j.pnmrs.2006.12.001.Suche in Google Scholar
14. Wilkening, M., Amade, R., Iwaniak, W., Heitjans, P. Phys. Chem. Chem. Phys. 2007, 9, 1239–1246; https://doi.org/10.1039/b616269j.Suche in Google Scholar PubMed
15. Venkataramanan, L., Song, Y.-Q., Hürlimann, M. D. IEEE Trans. Signal Process. 2002, 50, 1017–1026; https://doi.org/10.1109/78.995059.Suche in Google Scholar
16. Borgia, G. C., Brown, R. J. S., Fantazzini, P. J. Magn. Reson. 1998, 132, 65–77; https://doi.org/10.1006/jmre.1998.1387.Suche in Google Scholar PubMed
17. Rodts, S., Bytchenkoff, D. J. Magn. Reson. 2010, 205, 315–318; https://doi.org/10.1016/j.jmr.2010.04.021.Suche in Google Scholar PubMed
18. Fantazzini, P., Galassi, F., Bortolotti, V., Brown, R. J. S., Vittur, F. New J. Phys. 2011, 13, 065007; https://doi.org/10.1088/1367-2630/13/6/065007.Suche in Google Scholar
19. Granwehr, J., Roberts, P. J. J. Chem. Theor. Comput. 2012, 8, 3473–3482; https://doi.org/10.1021/ct3001393.Suche in Google Scholar PubMed
20. Graf, M. F., Tempel, H., Köcher, S. S., Schierholz, R., Scheurer, C., Kungl, H., Eichel, R.-A., Granwehr, J. RSC Adv. 2017, 7, 25276–25284; https://doi.org/10.1039/c7ra01622k.Suche in Google Scholar
21. Merz, S., Jakes, P., Taranenko, S., Eichel, R.-A., Granwehr, J. Phys. Chem. Chem. Phys. 2019, 21, 17018–17028; https://doi.org/10.1039/c9cp02651g.Suche in Google Scholar PubMed
22. Bachman, J. C., Muy, S., Grimaud, A., Chang, H.-H., Pour, N., Lux, S. F., Paschos, O., Maglia, F., Lupart, S., Lamp, P., Giordano, L., Shao-Horn, Y. Chem. Rev. 2016, 116, 140–162; https://doi.org/10.1021/acs.chemrev.5b00563.Suche in Google Scholar PubMed
23. Lau, J., DeBlock, R. H., Butts, D. M., Ashby, D. S., Choi, C. S., Dunn, B. S. Adv. Energy Mater. 2018, 8, 1800933; https://doi.org/10.1002/aenm.201800933.Suche in Google Scholar
24. Tatsumisago, M., Nagao, M., Hayashi, A. J. Asian Ceram. Soc. 2013, 1, 17–25; https://doi.org/10.1016/j.jascer.2013.03.005.Suche in Google Scholar
25. Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., Mitsui, A. Nat. Mater. 2011, 10, 682–686; https://doi.org/10.1038/nmat3066.Suche in Google Scholar PubMed
26. Weber, D. A., Senyshyn, A., Weldert, K. S., Wenzel, S., Zhang, W., Kaiser, R., Berendts, S., Janek, J., Zeier, W. G. Chem. Mater. 2016, 28, 5905–5915; https://doi.org/10.1021/acs.chemmater.6b02424.Suche in Google Scholar
27. Kuhn, A., Kohler, J., Lotsch, B. V. Phys. Chem. Chem. Phys. 2013, 15, 11620–11622; https://doi.org/10.1039/c3cp51985f.Suche in Google Scholar PubMed
28. Kuhn, A., Duppel, V., Lotsch, B. V. Energy Environ. Sci. 2013, 6, 3548–3552; https://doi.org/10.1039/c3ee41728j.Suche in Google Scholar
29. Bertermann, R., Müller-Warmuth, W. Z. Naturforsch. 1998, 53, 863–873; https://doi.org/10.1515/zna-1998-10-1110.Suche in Google Scholar
30. Hogrefe, K., Minafra, N., Zeier, W. G., Wilkening, H. M. R. J. Phys. Chem. C 2021, 125, 2306–2317; https://doi.org/10.1021/acs.jpcc.0c10224.Suche in Google Scholar PubMed PubMed Central
31. Liang, X., Wang, L., Jiang, Y., Wang, J., Luo, H., Liu, C., Feng, J. Chem. Mater. 2015, 27, 5503–5510; https://doi.org/10.1021/acs.chemmater.5b01384.Suche in Google Scholar
32. Paulus, M. C., Graf, M. F., Harks, P. P. R. M. L., Paulus, A., Schleker, P. P. M., Notten, P. H. L., Eichel, R.-A., Granwehr, J. J. Magn. Reson. 2018, 294, 133–142; https://doi.org/10.1016/j.jmr.2018.07.008.Suche in Google Scholar
33. Paulus, M. C., Paulus, A., Schleker, P. P. M., Jakes, P., Eichel, R.-A., Heitjans, P., Granwehr, J. J. Magn. Reson. 2019, 303, 57–66; https://doi.org/10.1016/j.jmr.2019.04.006.Suche in Google Scholar
34. Wilkening, M., Gebauer, D., Heitjans, P. J. Phys. Condens. Matter 2008, 20, 022201; https://doi.org/10.1088/0953-8984/20/02/022201.Suche in Google Scholar
35. Storek, M., Jeffrey, K. R., Böhmer, R. Solid State Nucl. Magn. Reson. 2014, 59–60, 8–19; https://doi.org/10.1016/j.ssnmr.2014.01.002.Suche in Google Scholar
36. Hyvärinen, A. IEEE Trans. Neural Network. 1999, 10, 626–634; https://doi.org/10.1109/72.761722.Suche in Google Scholar
37. Hyvärinen, A., Oja, E. Neural Network. 2000, 13, 411–430; https://doi.org/10.1016/s0893-6080(00)00026-5.Suche in Google Scholar
38. Comon, P. Signal Process. 1994, 36, 287–314; https://doi.org/10.1016/0165-1684(94)90029-9.Suche in Google Scholar
39. Särelä, J., Vigário, R. J. Mach. Learn. Res. 2003, 4, 1447–1469.Suche in Google Scholar
40. Brown, R. J. S. J. Magn. Reson. 1989, 82, 539–561; https://doi.org/10.1016/0022-2364(89)90217-5.Suche in Google Scholar
41. Ostroff, E. D., Waugh, J. S. Phys. Rev. Lett. 1966, 16, 1097–1098; https://doi.org/10.1103/physrevlett.16.1097.Suche in Google Scholar
42. Callaghan, P. T. Translational Dynamics and Magnetic Resonance: Principles of Pulsed Gradient Spin Echo NMR; Oxford University Press: Oxford, UK, 2011.10.1093/acprof:oso/9780199556984.001.0001Suche in Google Scholar
43. Hansen, P. C. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion; SIAM: Philadelphia, 1997.10.1137/1.9780898719697Suche in Google Scholar
44. Kazimierczuk, K., Orekhov, V. Y. Angew. Chem. Int. Ed. 2011, 50, 5556–5559; https://doi.org/10.1002/anie.201100370.Suche in Google Scholar
45. Eaton, J. W., Bateman, D., Hauberg, S., Wehbring, R. GNU Octave Version 4.0.0 Manual: A High-Level Interactive Language for Numerical Computations; Free Software Foundation: Boston, MA, 2015.Suche in Google Scholar
46. Qi, F., Rier, C., Böhmer, R., Franke, W., Heitjans, P. Phys. Rev. B 2005, 72, 104301; https://doi.org/10.1103/physrevb.72.104301.Suche in Google Scholar
47. Granwehr, J. Appl. Magn. Reson. 2007, 32, 113–156; https://doi.org/10.1007/s00723-007-0006-3.Suche in Google Scholar
48. Petit, D., Korb, J.-P., Delville, A., Grandjean, J., Laszlo, P. J. Magn. Reson. 1992, 96, 252–279; https://doi.org/10.1016/0022-2364(92)90080-q.Suche in Google Scholar
49. Wilkening, M., Heitjans, P. ChemPhysChem 2012, 13, 53–65; https://doi.org/10.1002/cphc.201100580.Suche in Google Scholar PubMed
50. Stöffler, H., Zinkevich, T., Yavuz, M., Senyshyn, A., Kulisch, J., Hartmann, P., Adermann, T., Randau, S., Richter, F. H., Janek, J., Indris, S., Ehrenberg, H. J. Phys. Chem. C 2018, 122, 15954–15965; https://doi.org/10.1021/acs.jpcc.8b05431.Suche in Google Scholar
51. Prutsch, D., Gadermaier, B., Brandsttter, H., Pregartner, V., Stanje, B., Wohlmuth, D., Epp, V., Rettenwander, D., Hanzu, I., Wilkening, H. M. R. Chem. Mater. 2018, 30, 7575–7586; https://doi.org/10.1021/acs.chemmater.8b02753.Suche in Google Scholar
52. Harm, S., Hatz, A. K., Moudrakovski, I., Eger, R., Kuhn, A., Hoch, C., Lotsch, B. V. Chem. Mater. 2019, 31, 1280–1288; https://doi.org/10.1021/acs.chemmater.8b04051.Suche in Google Scholar
53. Krauskopf, T., Culver, S. P., Zeier, W. G. Chem. Mater. 2018, 30, 1791–1798; https://doi.org/10.1021/acs.chemmater.8b00266.Suche in Google Scholar
54. Vashman, A. A., Pronin, I. S., Sigaryov, S. E. Solid State Ionics 1992, 58, 201–215; https://doi.org/10.1016/0167-2738(92)90120-e.Suche in Google Scholar
55. Heenen, H. H., Scheurer, S., Reuter, K. Nano Lett 2017, 17, 3884–3888; https://doi.org/10.1021/acs.nanolett.7b01400.Suche in Google Scholar PubMed
56. Spannenberger, S., Miss, V., Klotz, E., Kettner, J., Cronau, M., Ramanayagam, A., di Capua, F., Elsayed, M., Krause-Rehberg, R., Vogel, M., Roling, B. Solid State Ionics 2019, 341, 115040; https://doi.org/10.1016/j.ssi.2019.115040.Suche in Google Scholar
57. Bhandari, A., Bhattacharya, J. J. Phys. Chem. C 2016, 120, 29002–29010; https://doi.org/10.1021/acs.jpcc.6b10967.Suche in Google Scholar
58. Köcher, S. S., Schleker, P. P. M., Graf, M. F., Eichel, R.-A., Reuter, K., Granwehr, J., Scheurer, C. J. Magn. Reson. 2018, 297, 33–41; https://doi.org/10.1016/j.jmr.2018.10.003.Suche in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides
Artikel in diesem Heft
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides