Abstract
Two new copper bismuth sulfide halides, CuBi2S3Cl and CuBi2S3Br, were synthesized by a two-step process of ball milling followed by annealing. Both compounds are obtained as dark grey powders and crystallize in the monoclinic space group C2/m with lattice parameters a = 12.9458(11) Å, b = 3.9845(3) Å, c = 9.1024(8) Å and β = 91.150(3)° for the sulfide chloride and a = 13.3498(8) Å, b = 4.1092(2) Å, c = 9.4173(6) Å and β = 90.322(4)° for the sulfide bromide. Also known for related compounds, the copper atoms are strongly disordered. Quantum-chemical calculations suggest that modelling the structure with fixed copper positions does not satisfactorily describe all structural features, which insinuates copper ion mobility at elevated temperatures.
Acknowledgments
We thank Dr. Christoph Fahrenson from the Zentraleinrichtung Elektronenmikroskopie (ZELMI) for EDX measurements.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Ruck, M. Z. Anorg. Allg. Chem. 2002, 628, 1537–1540; https://doi.org/10.1002/1521-3749(200207)628:7<1537::aid-zaac1537>3.0.co;2-m.10.1002/1521-3749(200207)628:7<1537::AID-ZAAC1537>3.0.CO;2-MSearch in Google Scholar
2. Poudeu, P. F., Ruck, M. J. Solid State Chem. 2006, 179, 3636–3644; https://doi.org/10.1016/j.jssc.2006.07.034.Search in Google Scholar
3. Poudeu Poudeu, P. F., Söhnel, T., Ruck, M. Z. Anorg. Allg. Chem. 2004, 630, 1276–1285; https://doi.org/10.1002/zaac.200400131.Search in Google Scholar
4. Ruck, M. Z. Anorg. Allg. Chem. 2002, 628, 453–457; https://doi.org/10.1002/1521-3749(200202)628:2<453::aid-zaac453>3.0.co;2-6.10.1002/1521-3749(200202)628:2<453::AID-ZAAC453>3.0.CO;2-6Search in Google Scholar
5. Ruck, M., Poudeu Poudeu, P. F., Söhnel, T. Z. Anorg. Allg. Chem. 2004, 630, 63–67; https://doi.org/10.1002/zaac.200300248.Search in Google Scholar
6. Heerwig, A., Isaeva, A., Ruck, M. Z. Anorg. Allg. Chem. 2011, 637, 1131–1136; https://doi.org/10.1002/zaac.201100151.Search in Google Scholar
7. Heerwig, A., Ruck, M. Z. Anorg. Allg. Chem. 2011, 637, 1814–1817; https://doi.org/10.1002/zaac.201100180.Search in Google Scholar
8. Heerwig, A., Merkle, R., Maier, J., Ruck, M. J. Solid State Chem. 2011, 184, 191–198; https://doi.org/10.1016/j.jssc.2010.10.038.Search in Google Scholar
9. Heerwig, A., Müller, U., Nitsche, F., Ruck, M. Z. Anorg. Allg. Chem. 2012, 638, 1462–1467; https://doi.org/10.1002/zaac.201200126.Search in Google Scholar
10. Heerwig, A., Nitsche, F., Ruck, M. Z. Anorg. Allg. Chem. 2011, 637, 62–66; https://doi.org/10.1002/zaac.201000320.Search in Google Scholar
11. Heerwig, A., Ruck, M. Z. Anorg. Allg. Chem. 2009, 635, 2162–2169; https://doi.org/10.1002/zaac.200900361.Search in Google Scholar
12. Heerwig, A., Ruck, M. Z. Anorg. Allg. Chem. 2010, 636, 1860–1864; https://doi.org/10.1002/zaac.201000040.Search in Google Scholar
13. Heerwig, A., Thybaut, C. L. J., Ruck, M. Z. Anorg. Allg. Chem. 2010, 636, 2433–2438; https://doi.org/10.1002/zaac.201000177.Search in Google Scholar
14. Balić-Zunić, T., Mariolacos, K., Friese, K., Makovicky, E. Acta Crystallogr. Sect. B Struct. Sci. 2005, 61, 239–245.10.1107/S0108768105008530Search in Google Scholar PubMed
15. Lewis, J.Jr, Kupcík, V. Acta Crystallogr. Sect. B Struct. Sci. 1974, 30, 848–852; https://doi.org/10.1107/s0567740874003931.Search in Google Scholar
16. Mariolacos, K., Kupcík, V. Acta Crystallogr. Sect. B Struct. Sci. 1975, 31, 1762–1763; https://doi.org/10.1107/s0567740875006085.Search in Google Scholar
17. Liang, L.-C., Bilc, D. I., Manoli, M., Chang, W.-Y., Lin, W.-F., Kyratsi, T., Hsu, K.-F. J. Solid State Chem. 2016, 234, 1–8; https://doi.org/10.1016/j.jssc.2015.09.030.Search in Google Scholar
18. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar
19. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar
20. Rietveld, H. M. J. Appl. Crystallogr. 1969, 2, 65–71; https://doi.org/10.1107/s0021889869006558.Search in Google Scholar
21. Remy-Speckmann, I., Bredow, T., Lerch, M. Z. Naturforsch., B: Chem. Sci. 2020, 75, 921–925; https://doi.org/10.1515/znb-2020-0111.Search in Google Scholar
22. Stokes, H. T., Hatch, D. M. J. Appl. Crystallogr. 2005, 38, 237–238; https://doi.org/10.1107/s0021889804031528.Search in Google Scholar
23. Berar, J.-F-, Baldinozzi, G. J. Appl. Crystallogr. 1993, 26, 128–129; https://doi.org/10.1107/s0021889892009725.Search in Google Scholar
24. Pitschke, W., Hermann, H., Mattern, N. Powder Diffr. 1993, 8, 74–83; https://doi.org/10.1017/s0885715600017875.Search in Google Scholar
25. Putz, K. B. H. Diamond – Crystal and Molecular Structure Visualization. http://www.crystalimpact.com/diamond.Search in Google Scholar
26. Dovesi, R., Erba, A., Orlando, R., Zicovich‐Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S., Kirtman, B. WIREs Comput. Mol. Sci. 2018, 8, e1360; https://doi.org/10.1002/wcms.1360.Search in Google Scholar
27. Bredow, T., Gerson, A. R. Phys. Rev. B 2000, 61, 5194–5201; https://doi.org/10.1103/physrevb.61.5194.Search in Google Scholar
28. Islam, M. M., Maslyuk, V. V., Bredow, T., Minot, C. J. Phys. Chem. B 2005, 109, 13597–13604; https://doi.org/10.1021/jp044715q.Search in Google Scholar PubMed
29. Vilela Oliveira, D., Laun, J., Peintinger, M. F., Bredow, T. J. Comput. Chem. 2019, 40, 2364–2376; https://doi.org/10.1002/jcc.26013.Search in Google Scholar PubMed
30. Laun, J., Bredow, T. J. Comput. Chem. 2021, 42, 1064–1072; https://doi.org/10.1002/jcc.26521.Search in Google Scholar PubMed
31. Grimme, S., Antony, J., Ehrlich, S., Krieg, H. J. Chem. Phys. 2010, 132, 154104; https://doi.org/10.1063/1.3382344.Search in Google Scholar PubMed
32. Grimme, S., Ehrlich, S., Goerigk, L. J. Comput. Chem. 2011, 32, 1456–1465; https://doi.org/10.1002/jcc.21759.Search in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides
Articles in the same Issue
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides