Home Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
Article
Licensed
Unlicensed Requires Authentication

Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity

  • Ina Remy-Speckmann , Thomas Bredow and Martin Lerch EMAIL logo
Published/Copyright: October 14, 2021

Abstract

Two new copper bismuth sulfide halides, CuBi2S3Cl and CuBi2S3Br, were synthesized by a two-step process of ball milling followed by annealing. Both compounds are obtained as dark grey powders and crystallize in the monoclinic space group C2/m with lattice parameters a = 12.9458(11) Å, b = 3.9845(3) Å, c = 9.1024(8) Å and β = 91.150(3)° for the sulfide chloride and a = 13.3498(8) Å, b = 4.1092(2) Å, c = 9.4173(6) Å and β = 90.322(4)° for the sulfide bromide. Also known for related compounds, the copper atoms are strongly disordered. Quantum-chemical calculations suggest that modelling the structure with fixed copper positions does not satisfactorily describe all structural features, which insinuates copper ion mobility at elevated temperatures.


Corresponding author: Martin Lerch, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany, E-mail:
Dedicated to Paul Heitjans on the occasion of his 75th birthday.

Acknowledgments

We thank Dr. Christoph Fahrenson from the Zentraleinrichtung Elektronenmikroskopie (ZELMI) for EDX measurements.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Ruck, M. Z. Anorg. Allg. Chem. 2002, 628, 1537–1540; https://doi.org/10.1002/1521-3749(200207)628:7<1537::aid-zaac1537>3.0.co;2-m.10.1002/1521-3749(200207)628:7<1537::AID-ZAAC1537>3.0.CO;2-MSearch in Google Scholar

2. Poudeu, P. F., Ruck, M. J. Solid State Chem. 2006, 179, 3636–3644; https://doi.org/10.1016/j.jssc.2006.07.034.Search in Google Scholar

3. Poudeu Poudeu, P. F., Söhnel, T., Ruck, M. Z. Anorg. Allg. Chem. 2004, 630, 1276–1285; https://doi.org/10.1002/zaac.200400131.Search in Google Scholar

4. Ruck, M. Z. Anorg. Allg. Chem. 2002, 628, 453–457; https://doi.org/10.1002/1521-3749(200202)628:2<453::aid-zaac453>3.0.co;2-6.10.1002/1521-3749(200202)628:2<453::AID-ZAAC453>3.0.CO;2-6Search in Google Scholar

5. Ruck, M., Poudeu Poudeu, P. F., Söhnel, T. Z. Anorg. Allg. Chem. 2004, 630, 63–67; https://doi.org/10.1002/zaac.200300248.Search in Google Scholar

6. Heerwig, A., Isaeva, A., Ruck, M. Z. Anorg. Allg. Chem. 2011, 637, 1131–1136; https://doi.org/10.1002/zaac.201100151.Search in Google Scholar

7. Heerwig, A., Ruck, M. Z. Anorg. Allg. Chem. 2011, 637, 1814–1817; https://doi.org/10.1002/zaac.201100180.Search in Google Scholar

8. Heerwig, A., Merkle, R., Maier, J., Ruck, M. J. Solid State Chem. 2011, 184, 191–198; https://doi.org/10.1016/j.jssc.2010.10.038.Search in Google Scholar

9. Heerwig, A., Müller, U., Nitsche, F., Ruck, M. Z. Anorg. Allg. Chem. 2012, 638, 1462–1467; https://doi.org/10.1002/zaac.201200126.Search in Google Scholar

10. Heerwig, A., Nitsche, F., Ruck, M. Z. Anorg. Allg. Chem. 2011, 637, 62–66; https://doi.org/10.1002/zaac.201000320.Search in Google Scholar

11. Heerwig, A., Ruck, M. Z. Anorg. Allg. Chem. 2009, 635, 2162–2169; https://doi.org/10.1002/zaac.200900361.Search in Google Scholar

12. Heerwig, A., Ruck, M. Z. Anorg. Allg. Chem. 2010, 636, 1860–1864; https://doi.org/10.1002/zaac.201000040.Search in Google Scholar

13. Heerwig, A., Thybaut, C. L. J., Ruck, M. Z. Anorg. Allg. Chem. 2010, 636, 2433–2438; https://doi.org/10.1002/zaac.201000177.Search in Google Scholar

14. Balić-Zunić, T., Mariolacos, K., Friese, K., Makovicky, E. Acta Crystallogr. Sect. B Struct. Sci. 2005, 61, 239–245.10.1107/S0108768105008530Search in Google Scholar PubMed

15. Lewis, J.Jr, Kupcík, V. Acta Crystallogr. Sect. B Struct. Sci. 1974, 30, 848–852; https://doi.org/10.1107/s0567740874003931.Search in Google Scholar

16. Mariolacos, K., Kupcík, V. Acta Crystallogr. Sect. B Struct. Sci. 1975, 31, 1762–1763; https://doi.org/10.1107/s0567740875006085.Search in Google Scholar

17. Liang, L.-C., Bilc, D. I., Manoli, M., Chang, W.-Y., Lin, W.-F., Kyratsi, T., Hsu, K.-F. J. Solid State Chem. 2016, 234, 1–8; https://doi.org/10.1016/j.jssc.2015.09.030.Search in Google Scholar

18. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

19. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

20. Rietveld, H. M. J. Appl. Crystallogr. 1969, 2, 65–71; https://doi.org/10.1107/s0021889869006558.Search in Google Scholar

21. Remy-Speckmann, I., Bredow, T., Lerch, M. Z. Naturforsch., B: Chem. Sci. 2020, 75, 921–925; https://doi.org/10.1515/znb-2020-0111.Search in Google Scholar

22. Stokes, H. T., Hatch, D. M. J. Appl. Crystallogr. 2005, 38, 237–238; https://doi.org/10.1107/s0021889804031528.Search in Google Scholar

23. Berar, J.-F-, Baldinozzi, G. J. Appl. Crystallogr. 1993, 26, 128–129; https://doi.org/10.1107/s0021889892009725.Search in Google Scholar

24. Pitschke, W., Hermann, H., Mattern, N. Powder Diffr. 1993, 8, 74–83; https://doi.org/10.1017/s0885715600017875.Search in Google Scholar

25. Putz, K. B. H. Diamond – Crystal and Molecular Structure Visualization. http://www.crystalimpact.com/diamond.Search in Google Scholar

26. Dovesi, R., Erba, A., Orlando, R., Zicovich‐Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S., Kirtman, B. WIREs Comput. Mol. Sci. 2018, 8, e1360; https://doi.org/10.1002/wcms.1360.Search in Google Scholar

27. Bredow, T., Gerson, A. R. Phys. Rev. B 2000, 61, 5194–5201; https://doi.org/10.1103/physrevb.61.5194.Search in Google Scholar

28. Islam, M. M., Maslyuk, V. V., Bredow, T., Minot, C. J. Phys. Chem. B 2005, 109, 13597–13604; https://doi.org/10.1021/jp044715q.Search in Google Scholar PubMed

29. Vilela Oliveira, D., Laun, J., Peintinger, M. F., Bredow, T. J. Comput. Chem. 2019, 40, 2364–2376; https://doi.org/10.1002/jcc.26013.Search in Google Scholar PubMed

30. Laun, J., Bredow, T. J. Comput. Chem. 2021, 42, 1064–1072; https://doi.org/10.1002/jcc.26521.Search in Google Scholar PubMed

31. Grimme, S., Antony, J., Ehrlich, S., Krieg, H. J. Chem. Phys. 2010, 132, 154104; https://doi.org/10.1063/1.3382344.Search in Google Scholar PubMed

32. Grimme, S., Ehrlich, S., Goerigk, L. J. Comput. Chem. 2011, 32, 1456–1465; https://doi.org/10.1002/jcc.21759.Search in Google Scholar PubMed

Received: 2021-08-31
Accepted: 2021-09-30
Published Online: 2021-10-14
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Preface
  3. Special issue on the occasion of the 75th birthday of Paul Heitjans
  4. Contribution to Special Issue dedicated to Paul Heitjans
  5. Unusual cation coordination in nanostructured mullites
  6. A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
  7. Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
  8. Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
  9. Status and progress of ion-implanted βNMR at TRIUMF
  10. How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
  11. Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
  12. Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
  13. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
  14. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
  15. Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
  16. How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
  17. Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
  18. Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
  19. Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
  20. On the CaF2-BaF2 interface
  21. The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
  22. Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
  23. Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
  24. Ionic transport in K2Ti6O13
  25. F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
  26. An overview of thermotransport in fluorite-related ionic oxides
Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3120/html
Scroll to top button