Startseite Naturwissenschaften Unusual cation coordination in nanostructured mullites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Unusual cation coordination in nanostructured mullites

  • Vladimir Šepelák EMAIL logo , Klebson Lucenildo Da Silva , Rafael Santiago Trautwein , Klaus Dieter Becker und Horst Hahn
Veröffentlicht/Copyright: 3. September 2021

Abstract

Nanocrystalline mullite-type bismuth-bearing complex oxides Bi2(M0.5Al0.5)4O9 (M=Fe3+, Ga3+) are prepared by high-energy ball milling of the corresponding microcrystalline counterparts. An unusual five-fold coordination of metal cations is revealed in nanostructured Bi2(M0.5Al0.5)4O9 by means of 27Al magic angle spinning nuclear magnetic resonance and 57Fe Mössbauer spectroscopies. The concentration of five-fold coordinated cations increases with decreasing crystallite size of a material at the expense of octahedrally coordinated ones. In addition to the nuclear spectroscopic methods, Rietveld analyses of the X-ray diffraction data of the as-prepared nanooxides show that the constituent tetrahedra, octahedra, and the newly formed structural units with five-fold cation coordination are strongly distorted. With decreasing crystallite size of mullites, the average volume of their octahedra increases whereas this parameter decreases for tetrahedra. The macroscopic behaviour of the non-equilibrium nanomullites is characterised by SQUID magnetometry. The Fe-containing mullites exhibit a superposition of a dominant antiferromagnetism and a weak ferromagnetism. The increase in both the remanent magnetization and the coercive field with decreasing crystallite size is attributed to the effect of spin canting. The latter is confined to the interfacial and surface regions of the nanomaterials, and arises due to both the mechanically induced deformation of constituent structural units and the formation of cation sites with the unusual five-fold coordination.


Corresponding author: Vladimir Šepelák, Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany, E-mail:

Funding source: DFG

Award Identifier / Grant number: SE 1407/4-2

Acknowledgements

The present work is supported by the DFG (project SE 1407/4-2) and the CAPES. One of the authors (K.L.S.) thanks the Karlsruhe Institute of Technology (KIT) and the APVV (project 19-0526) for supporting his research work at KIT and the Slovak Academy of Sciences, respectively. This work benefited from networking activities carried out within the EU funded COST Action CA18112 “Mechanochemistry for Sustainable Industry” and represents a contribution to it.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by the DFG (project SE 1407/4-2).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Michalchuk, A. A. L., Boldyreva, E. V., Belenguer, A. M., Emmerling, F., Boldyrev, V. V. Tribochemistry, mechanical alloying, mechanochemistry: what is in a name? Front. Chem. 2021, 9, 685789; https://doi.org/10.3389/fchem.2021.685789.Suche in Google Scholar PubMed PubMed Central

2. James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friščić, T., Grepioni, F., Harris, K. D. M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A. G., Parkin, I. P., Shearouse, W. C., Steed, J. W., Waddell, D. C. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 2012, 41, 413; https://doi.org/10.1039/c1cs15171a.Suche in Google Scholar PubMed

3. Šepelák, V., Düvel, A., Wilkening, M., Becker, K.-D., Heitjans, P. Mechanochemical reactions and syntheses of oxides. Chem. Soc. Rev. 2013, 42, 7507; https://doi.org/10.1039/c2cs35462d.Suche in Google Scholar PubMed

4. Šepelák, V., Bégin-Colin, S., Le Caër, G. Transformations in oxides induced by high-energy ball-milling. Dalton Trans. 2012, 41, 11927; https://doi.org/10.1039/c2dt30349c.Suche in Google Scholar PubMed

5. Šepelák, V., Myndyk, M., Fabián, M., Da Silva, K. L., Feldhoff, A., Menzel, D., Ghafari, M., Hahn, H., Heitjans, P., Becker, K. D. Mechanosynthesis of nanocrystalline fayalite, Fe2SiO4. Chem. Commun. 2012, 48, 11121; https://doi.org/10.1039/c2cc36370d.Suche in Google Scholar PubMed

6. Santiago, R. T., Fabián, M., Šepelák, V., Cótica, L. F., Santos, I. A., Machado, C. C. F., Hahn, H., Becker, K. D., Da Silva, K. L. Local structure analysis of Bi2(Ga1 − xFex)4O9 mullite-type solid solutions synthesized via combination of ball milling and thermal treatment. Solid State Sci. 2018, 82, 106; https://doi.org/10.1016/j.solidstatesciences.2018.06.009.Suche in Google Scholar

7. Wilkening, M., Düvel, A., Preishuber-Pflügl, F., Da Silva, K. L., Breuer, S., Šepelák, V., Heitjans, P. Structure and ion dynamics of ́ mechanosynthesized oxides and fluorides. Z. für Kristallogr. – Cryst. Mater. 2017, 232, 107; https://doi.org/10.1515/zkri-2016-1963.Suche in Google Scholar

8. Kirsch, A., Murshed, M. M., Litterst, F. J., Gesing, T. M. Structural, spectroscopic, and thermoanalytic studies on Bi2Fe4O9: tunable properties driven by nano- and poly-crystalline states. J. Phys. Chem. C 2019, 123, 3161; https://doi.org/10.1021/acs.jpcc.8b09698.Suche in Google Scholar

9. Da Silva, K. L., Machado, C. F. C., Fabián, M., Harničárová, M., Valíček, J., Hahn, H., Šepelák, V. A local distortion of polyhedra in the novel chromium doped mullite-type bismuth ferrite Bi2(CrxFe1 − x)4O9. Mater. Lett. 2015, 161, 488; https://doi.org/10.1016/j.matlet.2015.09.021.Suche in Google Scholar

10. Da Silva, K. L., Šepelák, V., Düvel, A., Paesano, A.Jr., Hahn, H., Litterst, F. J., Heitjans, P., Becker, K. D. Mechanochemical–thermal preparation and structural studies of mullite-type Bi2(GaxAl1 − x)4O9 solid solutions. J. Solid State Chem. 2011, 184, 1346; https://doi.org/10.1016/j.jssc.2011.04.007.Suche in Google Scholar

11. Da Silva, K. L., Šepelák, V., Paesano, A.Jr., Litterst, F. J., Becker, K.-D. Structural studies of Bi2(FexAl1 − x)4O9 solid solutions (0.1 ≤ x ≤ 1.0) prepared by a combined mechanochemical/thermal synthesis. Z. Anorg. Allg. Chem. 2010, 636, 1018; https://doi.org/10.1002/zaac.201000032.Suche in Google Scholar

12. Rodríguez-Carvajal, J. FullProf Suite; Institute Laue-Langevin: Grenoble, France, 2019.Suche in Google Scholar

13. Lagarec, K., Rancourt, D. G. Recoil-Mössbauer Spectral Analysis Software for Windows, Version 1.02; Department of Physics, University of Ottawa: Ottawa, Canada, 1998.Suche in Google Scholar

14. Inorganic Crystal Structure Database (ICSD). FIZ Karlsruhe; Leibniz Institute for Information Infrastructure: Karlsruhe, 2020.Suche in Google Scholar

15. Edén, M. Chapter four – 27Al NMR studies of aluminosilicate glasses. Annu. Rep. NMR Spectrosc. 2015, 86, 237; https://doi.org/10.1016/bs.arnmr.2015.04.004.Suche in Google Scholar

16. Düvel, A., Romanova, E., Sharifi, M., Freude, D., Wark, M., Heitjans, P., Wilkening, M. Mechanically induced phase transformation of γ-Al2O3 into α-Al2O3. Access to structurally disordered γ-Al2O3 with a controllable amount of pentacoordinated Al sites. J. Phys. Chem. C 2011, 115, 22770; https://doi.org/10.1021/jp206077r.Suche in Google Scholar

17. Breuer, S., Pregartner, V., Lunghammer, S., Wilkening, H. M. R. Dispersed solid conductors: fast interfacial Li-ion dynamics in nanostructured LiF and LiF γ-Al2O3 composites. J. Phys. Chem. C 2019, 123, 5222; https://doi.org/10.1021/acs.jpcc.8b10978.Suche in Google Scholar

18. Charpentier, T., Okhotnikov, K., Novikov, A. N., Hannet, L., Fischer, H. E., Neuville, D. R., Florian, P. Structure of strontium aluminosilicate glasses from molecular dynamics simulation, neutron diffraction, and nuclear magnetic resonance studies. J. Phys. Chem. B 2018, 122, 9567; https://doi.org/10.1021/acs.jpcb.8b05721.Suche in Google Scholar PubMed

19. Kozlenko, D. P., Dang, N. T., Madhogaria, R. P., Thao, L. T. P., Kichanov, S. E., Tran, N., Khan, D. T., Truong-Tho, N., Phan, T. L., Lee, B. W., Savenko, B. N., Rutkaukas, A. V., Khiem, L. H., Nguyen, H. B., Tran, T. A., Kmječ, T., Kohout, J., Chlan, V., Phan, M. H. Competing magnetic states in multiferroic BaYFeO4: a high magnetic field study. Phys. Rev. Mater. 2021, 5, 44407; https://doi.org/10.1103/physrevmaterials.5.044407.Suche in Google Scholar

20. Brand, R. A., Pelloth, J., Hippert, F., Calvayrac, Y. Correlations in the electronic properties of AlCuFe quasicrystals and high-order approximants: 57Fe Mössbauer, and 27Al and 65Cu nuclear magnetic resonance studies. J. Phys. Condens. Matter 1999, 11, 7523; https://doi.org/10.1088/0953-8984/11/39/309.Suche in Google Scholar

21. Pooladi, M., Sharifi, I., Behzadipour, M. A review of the structure, magnetic and electrical properties of bismuth ferrite (Bi2Fe4O9). Ceram. Int. 2020, 46, 18453; https://doi.org/10.1016/j.ceramint.2020.04.241.Suche in Google Scholar

22. Nogués, J., Sort, J., Langlais, V., Skumryev, V., Suriñach, S., Muñoz, J. S., Baró, M. D. Exchange bias in nanostructures. Phys. Rep. 2005, 422, 65; https://doi.org/10.1016/j.physrep.2005.08.004.Suche in Google Scholar

23. Sahoo, A., Das, M., Mandal, P., Bhattacharya, D. Hydrothermal synthesis of Bi2Fe4O9 nanochains and study of their multiferroic coupling. Mater. Lett. 2021, 296, 129905; https://doi.org/10.1016/j.matlet.2021.129905.Suche in Google Scholar

24. Da Silva, K. L., Menzel, D., Feldhoff, A., Kübel, C., Bruns, M., Paesano, A.Jr., Düvel, A., Wilkening, M., Ghafari, M., Hahn, H., Litterst, F. J., Heitjans, P., Becker, K. D., Šepelák, V. Mechanosynthesized BiFeO3 nanoparticles with highly reactive surface and enhanced magnetization. J. Phys. Chem. C 2011, 115, 7209; https://doi.org/10.1021/jp110128t.Suche in Google Scholar

Received: 2021-07-26
Accepted: 2021-08-18
Published Online: 2021-09-03
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Special issue on the occasion of the 75th birthday of Paul Heitjans
  4. Contribution to Special Issue dedicated to Paul Heitjans
  5. Unusual cation coordination in nanostructured mullites
  6. A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
  7. Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
  8. Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
  9. Status and progress of ion-implanted βNMR at TRIUMF
  10. How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
  11. Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
  12. Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
  13. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
  14. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
  15. Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
  16. How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
  17. Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
  18. Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
  19. Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
  20. On the CaF2-BaF2 interface
  21. The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
  22. Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
  23. Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
  24. Ionic transport in K2Ti6O13
  25. F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
  26. An overview of thermotransport in fluorite-related ionic oxides
Heruntergeladen am 17.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3101/html
Button zum nach oben scrollen