Abstract
This review gives an overview of current trends in the investigation of confined molecules such as higher alcohols, ethylene glycol and polyethylene glycol as guest molecules in neat and functionalized mesoporous silica materials. All these molecules have both hydrophobic and hydrophilic parts. They are characteristic role-models for the investigation of confined surfactants. Their properties are studied by a combination of solid-state NMR and relaxometry with other physicochemical techniques and molecular dynamics techniques. It is shown that this combination delivers unique insights into the structure, arrangement, dynamical properties and the guest-host interactions inside the confinement.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Financial support by the Deutsche Forschungsgemeinschaft in the framework of the Forschergruppe FOR 1583 through grants Bu-911/18-1/2, Bu-911/24-1/2, and the National Science Foundation [grant no 1953428] is gratefully acknowledged.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry; Oxford University Press on Demand, 2001.10.1093/oso/9780198508823.001.0001Suche in Google Scholar
2. Hartmann, M., Kostrov, X. Chem. Soc. Rev. 2013, 42, 6277. https://doi.org/10.1039/c3cs60021a.Suche in Google Scholar PubMed
3. Nassif, N., Livage, J. Chem. Soc. Rev. 2011, 40, 849. https://doi.org/10.1039/c0cs00122h.Suche in Google Scholar PubMed
4. Vafaeezadeh, M., Hashemi, M. M. J. Mol. Liq. 2015, 207, 73. https://doi.org/10.1016/j.molliq.2015.03.003.Suche in Google Scholar
5. Han, W., Liu, C., Jin, Z. Adv. Synth. Catal. 2008, 350, 501. https://doi.org/10.1002/adsc.200700475.Suche in Google Scholar
6. Pires, M., Purificação, S., Santos, A., Marques, M. Synthesis 2017, 49, 2337. https://doi.org/10.1055/s-0036-1589498.Suche in Google Scholar
7. Khanmoradi, M., Nikoorazm, M., Ghorbani-Choghamarani, A. Catal. Lett. 2017, 147, 1114. https://doi.org/10.1007/s10562-016-1957-5.Suche in Google Scholar
8. Buntkowsky, G., Vogel, M. Molecules 2020, 25, 3311; https://doi.org/10.3390/molecules25143311.Suche in Google Scholar PubMed PubMed Central
9. Buntkowsky, G., Vogel, M., Winter, R. Z. Phys. Chem. 2018, 232, 937. https://doi.org/10.1515/zpch-2018-1110.Suche in Google Scholar
10. Werner, M., Rothermel, N., Breitzke, H., Gutmann, T., Buntkowsky, G. Isr. J. Chem. 2014, 54, 60. https://doi.org/10.1002/ijch.201300095.Suche in Google Scholar
11. Fumagalli, L., Esfandiar, A., Fabregas, R., Hu, S., Ares, P., Janardanan, A., Yang, Q., Radha, B., Taniguchi, T., Watanabe, K., Gomila, G., Novoselov, K. S., Geim, A. K. Science 2018, 360, 1339. https://doi.org/10.1126/science.aat4191.Suche in Google Scholar PubMed
12. Carvalho, G., Paul, E., Novais, J. M., Pinheiro, H. M. Water Sci. Technol. 2000, 42, 135. https://doi.org/10.2166/wst.2000.0507.Suche in Google Scholar
13. Hoffmann, M. Nonionic Liquid Surfactants as Green Solvents. U.S. Patent, US20080097121A1, 2008.Suche in Google Scholar
14. Koganti, V. R., Rankin, S. E. J. Phys. Chem. B 2005, 109, 3279. https://doi.org/10.1021/jp045037a.Suche in Google Scholar
15. Ramanathan, M., Shrestha, L. K., Mori, T., Ji, Q., Hill, J. P., Ariga, K. Phys. Chem. Chem. Phys. 2013, 15, 10580. https://doi.org/10.1039/c3cp50620g.Suche in Google Scholar
16. Clark, K. K., Keller, A. A. Water Air Soil Pollut. 2012, 223, 3647. https://doi.org/10.1007/s11270-012-1138-0.Suche in Google Scholar
17. Le Page, M., Beau, R., Duchene, J. Porous Silica Particles Containing a Crystallized Phase and Method. U.S. Patent US3493341A, 1970.Suche in Google Scholar
18. Chiola, V., Ritsko, J. E., Vanderpool, C. D. Process for Producing Low-Bulk Density Silica. U.S. Patent US3556725A, 1970.Suche in Google Scholar
19. Vinu, A., Hossain, K. Z., Ariga, K. J. Nanosci. Nanotechnol. 2005, 5, 347. https://doi.org/10.1166/jnn.2005.089.Suche in Google Scholar
20. Yokoi, T., Yoshitake, H., Tatsumi, T. J. Mater. Chem. 2004, 14, 951. https://doi.org/10.1039/b310576h.Suche in Google Scholar
21. Wang, X., Lin, K. S. K., Chan, J. C. C., Cheng, S. J. Phys. Chem. B 2005, 109, 1763. https://doi.org/10.1021/jp045798d.Suche in Google Scholar
22. Gedat, E., Schreiber, A., Albrecht, J., Shenderovich, I., Findenegg, G., Limbach, H.-H., Buntkowsky, G., Buntkowsky, G. J. Phys. Chem. B 2002, 106, 1977. https://doi.org/10.1021/jp012391p.Suche in Google Scholar
23. Medick, P., Blochowicz, T., Vogel, M., Roessler, E. J. Non-Cryst. Solids 2002, 307, 565. https://doi.org/10.1016/s0022-3093(02)01487-4.Suche in Google Scholar
24. Dosseh, G., Xia, Y., Alba-Simionesco, C. J. Phys. Chem. B 2003, 107, 6445. https://doi.org/10.1021/jp034003k.Suche in Google Scholar
25. Lusceac, S. A., Koplin, C., Medick, P., Vogel, M., Brodie-Linder, N., LeQuellec, C., Alba-Simionesco, C., Roessler, E. A. J. Phys. Chem. B 2004, 108, 16601. https://doi.org/10.1021/jp040376p.Suche in Google Scholar
26. Alba-Simionesco, C., Coasne, B., Dosseh, G., Dudziak, G., Gubbins, K. E., Radhakrishnan, R., Sliwinska-Bartkowiak, M. J. Condens. Matter Phys. 2006, 18, R15. https://doi.org/10.1088/0953-8984/18/6/r01.Suche in Google Scholar
27. Kiwilsza, A., Pajzderska, A., Gonzalez, M. A., Mielcarek, J., Wąsicki, J. J. Phys. Chem. C 2015, 119, 16578. https://doi.org/10.1021/acs.jpcc.5b02672.Suche in Google Scholar
28. Krzyżak, A. T., Habina, I. Microporous Mesoporous Mater. 2016, 231, 230.10.1016/j.micromeso.2016.05.032Suche in Google Scholar
29. Brilmayer, R., Kübelbeck, S., Khalil, A., Brodrecht, M., Kunz, U., Kleebe, H.-J., Buntkowsky, G., Baier, G., Andrieu-Brunsen, A. Adv. Mater. Interfaces 2020, 7, 1901914. https://doi.org/10.1002/admi.201901914.Suche in Google Scholar
30. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834. https://doi.org/10.1021/ja00053a020.Suche in Google Scholar
31. Zhao, D. Y., Huo, Q. S., Feng, J. L., Chmelka, B. F., Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024. https://doi.org/10.1021/ja974025i.Suche in Google Scholar
32. Zhao, D. Y., Feng, J. L., Huo, Q. S., Melosh, N., Fredrickson, G. H., Chmelka, B. F., Stucky, G. D. Science 1998, 279, 548. https://doi.org/10.1126/science.279.5350.548.Suche in Google Scholar PubMed
33. Nordberg, M. E. J. Am. Ceram. Soc. 1944, 27, 299. https://doi.org/10.1111/j.1151-2916.1944.tb14473.x.Suche in Google Scholar
34. Gelb, L. D., Gubbins, K. E., Radhakrishnan, R., Sliwinska-Bartkowiak, M. Rep. Prog. Phys. 1999, 62, 1573. https://doi.org/10.1088/0034-4885/62/12/201.Suche in Google Scholar
35. Ciesla, U., Schüth, F. Microporous Mesoporous Mater. 1999, 27, 131. https://doi.org/10.1016/s1387-1811(98)00249-2.Suche in Google Scholar
36. Brunauer, S., Emmett, P. H., Teller, E. J. Am. Chem. Soc. 1938, 60, 309. https://doi.org/10.1021/ja01269a023.Suche in Google Scholar
37. Barrett, E. P., Joyner, L. G., Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373. https://doi.org/10.1021/ja01145a126.Suche in Google Scholar
38. Treacy, M. M. J., Higgins, J. B., von Ballmoos, R. Collection of Simulated XRD Powder Patterns for Zeolites; Elsevier: London, 1996.Suche in Google Scholar
39. Marler, B., Oberhagemann, U., Vortmann, S., Gies, H. Microporous Mater. 1996, 6, 375. https://doi.org/10.1016/0927-6513(96)00016-8.Suche in Google Scholar
40. Yao, M. H., Baird, R. J., Kunz, F. W., Hoost, T. E. J. Catal. 1997, 166, 67. https://doi.org/10.1006/jcat.1997.1504.Suche in Google Scholar
41. Höhne, G., Hemminger, W. F., Flammersheim, H.-J. Differential Scanning Calorimetry; Springer: Berlin Heidelberg, 2003.10.1007/978-3-662-06710-9Suche in Google Scholar
42. Hemminger, W. F., Cammenga, H. K. Methoden der thermischen Analyse; Springer: Berlin, 1989.10.1007/978-3-642-70175-7Suche in Google Scholar
43. Freude, D., Kärger, J. Handbook of porous solids 2002, 1, 465.10.1002/9783527618286.ch14Suche in Google Scholar
44. Koller, H., Weiß, M. Solid state NMR of porous materials. In Solid state NMR; Springer, 2011, pp 189–227.10.1007/128_2011_123Suche in Google Scholar PubMed
45. Haouas, M., Martineau, C., Taulelle, F. Quadrupolar NMR of nanoporous materials. In eMagRes, 2011.10.1002/9780470034590.emrstm1216Suche in Google Scholar
46. Kärger, J. ChemPhysChem 2015, 16, 24. https://doi.org/10.1002/cphc.201402340.Suche in Google Scholar
47. Thankamony, A. S. L., Wittmann, J. J., Kaushik, M., Corzilius, B. Prog. NMR Spec. 2017, 120–195.10.1016/j.pnmrs.2017.06.002Suche in Google Scholar
48. Rankin, A. G. M., Trébosc, J., Pourpoint, F., Amoureux, J.-P., Lafon, O. Solid State NMR 2019, 101, 116. https://doi.org/10.1016/j.ssnmr.2019.05.009.Suche in Google Scholar
49. Faivre, C., Bellet, D., Dolino, G. Eur. Phys. J. B 1999, 7, 19. https://doi.org/10.1007/s100510050586.Suche in Google Scholar
50. Alcoutlabi, M., McKenna, G. B. J. Condens. Matter Phys. 2005, 17, R461. https://doi.org/10.1088/0953-8984/17/15/r01.Suche in Google Scholar
51. Schoen, M., Klapp, S. Rev. Comp. Chem. 2007, 24, 1.Suche in Google Scholar
52. Buntkowsky, G., Breitzke, H., Adamczyk, A., Roelofs, F., Emmler, T., Gedat, E., Grünberg, B., Xu, Y., Limbach, H. H., Shenderovich, I., Vyalikh, A., Findenegg, G. H. Phys. Chem. Chem. Phys. 2007, 9, 4843. https://doi.org/10.1039/b707322d.Suche in Google Scholar
53. Kärger, J., Pfeifer, H. Zeolites 1987, 7, 90. https://doi.org/10.1016/0144-2449(87)90067-4.Suche in Google Scholar
54. Kaerger, J., Freude, D. Stud. Surf. Sci. Catal. 1997, 105, 551.10.1016/S0167-2991(97)80600-3Suche in Google Scholar
55. Kaerger, J., Freude, D. Chem. Eng. Technol. 2002, 25, 769.10.1002/1521-4125(20020806)25:8<769::AID-CEAT769>3.0.CO;2-0Suche in Google Scholar
56. Freude, D., Kärger, J. Handbook of porous solids 2002, 1, 465.10.1002/9783527618286.ch14Suche in Google Scholar
57. Kärger, J., Freude, D., Haase, J. Processes 2018, 6, 147. https://doi.org/10.3390/pr6090147.Suche in Google Scholar
58. Kaerger, J., Valiullin, R. Chem. Soc. Rev. 2013, 42, 4172.10.1039/c3cs35326eSuche in Google Scholar PubMed
59. Findenegg, G. H., Jaehnert, S., Akcakayiran, D., Schreiber, A. Chem. Phys. Chem. 2008, 9, 2651. https://doi.org/10.1002/cphc.200800616.Suche in Google Scholar PubMed
60. Geppi, M., Borsacchi, S., Mollica, G., Veracini, C. A. Appl. Spectrosc. Rev. 2009, 44, 1.10.1080/05704920802352564Suche in Google Scholar
61. Vogel, M. Eur. Phys. J. 2010, 189, 47. https://doi.org/10.1140/epjst/e2010-01309-9.Suche in Google Scholar
62. Yang, Y., Beele, B., Bluemel, J. J. Am. Chem. Soc. 2008, 130, 3771–+. https://doi.org/10.1021/ja800541c.Suche in Google Scholar PubMed
63. Bluemel, J. Coord. Chem. Rev. 2008, 252, 2410.10.1016/j.ccr.2008.06.013Suche in Google Scholar
64. Gutmann, T., Grünberg, A., Rothermel, N., Werner, M., Srour, M., Abdulhussain, S., Tan, S., Xu, Y., Breitzke, H., Buntkowsky, G. Solid State NMR 2013, 55/56, 1–11.10.1016/j.ssnmr.2013.06.004Suche in Google Scholar PubMed
65. Motokura, K., Itagaki, S., Iwasawa, Y., Miyaji, A., Baba, T. Green Chem. 2009, 11, 1876. https://doi.org/10.1039/b916764c.Suche in Google Scholar
66. Wang, Q., Jordan, E., Shantz, D. F. J. Phys. Chem. C 2009, 113, 18142. https://doi.org/10.1021/jp9013527.Suche in Google Scholar
67. Gath, J., Hoaston, G. L., Vold, R. L., Berthoud, R., Coperet, C., Grellier, M., Sabo-Etienne, S., Lesage, A., Emsley, L. Phys. Chem. Chem. Phys. 2009, 11, 6962. https://doi.org/10.1039/b907665d.Suche in Google Scholar PubMed
68. Kandel, K., Althaus, S. M., Peeraphatdit, C., Kobayashi, T., Trewyn, B. G., Pruski, M., Slowing, I. I. J. Catal. 2012, 291, 63. https://doi.org/10.1016/j.jcat.2012.04.005.Suche in Google Scholar
69. Kandel, K., Althaus, S. M., Peeraphatdit, C., Kobayashi, T., Trewyn, B. G., Pruski, M., Slowing, I. I. ACS Catal 2013, 3, 265. https://doi.org/10.1021/cs300748g.Suche in Google Scholar
70. Jayanthi, S., Frydman, V., Vega, S. J. Phys. Chem. B 2012, 116, 10398. https://doi.org/10.1021/jp3061152.Suche in Google Scholar PubMed
71. Sundaresan, J., Werner, M., Yeping, X., Buntkowsky, G., Vega, S. J Phys Chem C J Phys Chem C 2013.Suche in Google Scholar
72. Jayanthi, S., Kababya, S., Schmidt, A., Vega, S. J. Phys. Chem. C 2016, 120, 2797. https://doi.org/10.1021/acs.jpcc.5b11429.Suche in Google Scholar
73. Saint-Arroman, R. P., Chabanas, M., Baudouin, A., Coperet, C., Basset, J. H., Lesage, A., Emsley, L. J. Am. Chem. Soc. 2001, 123, 3820. https://doi.org/10.1021/ja002259n.Suche in Google Scholar PubMed
74. Rataboul, F., Chabanas, M., de Mallmann, A., Coperet, C., Thivolle-Cazat, J., Basset, J. M. Chem. Eur J. 2003, 9, 1426. https://doi.org/10.1002/chem.200390162.Suche in Google Scholar PubMed
75. Blanc, F., Basset, J. M., Coperet, C., Sinha, A., Tonzetich, Z. J., Schrock, R. R., Solans-Monfort, X., Clot, E., Eisenstein, O., Lesage, A., Emsley, L. J. Am. Chem. Soc. 2008, 130, 5886. https://doi.org/10.1021/ja077749v.Suche in Google Scholar PubMed
76. Gajan, D., Levine, D., Zocher, E., Coperet, C., Lesage, A., Emsley, L. Chem. Sci. 2011, 2, 928. https://doi.org/10.1039/c0sc00579g.Suche in Google Scholar
77. Lelli, M., Gajan, D., Lesage, A., Caporini, M. A., Vitzthum, V., Mieville, P., Heroguel, F., Rascon, F., Roussey, A., Thieuleux, C., Boualleg, M., Veyre, L., Bodenhausen, G., Coperet, C., Emsley, L. J. Am. Chem. Soc. 2011, 133, 2104–2107.10.1021/ja110791dSuche in Google Scholar PubMed
78. Kerber, R. N., Kermagoret, A., Callens, E., Florian, P., Massiot, D., Lesage, A., Coperet, C., Delbecq, F., Rozanska, X., Sautet, P. J. Am. Chem. Soc. 2012, 134, 6767. https://doi.org/10.1021/ja3008566.Suche in Google Scholar PubMed
79. Valla, M., Rossini, A. J., Caillot, M., Chizallet, C., Raybaud, P., Digne, M., Chaumonnot, A., Lesage, A., Emsley, L., van Bokhoven, J. A., Coperet, C. J. Am. Chem. Soc. 2015, 137, 10710. https://doi.org/10.1021/jacs.5b06134.Suche in Google Scholar PubMed PubMed Central
80. Conley, M., Coperet, C., Andersen, R. Abstr. Pap. Am. Chem. Soc. 2016, 251.Suche in Google Scholar
81. Conley, M. P., Lapadula, G., Sanders, K., Gajan, D., Lesage, A., Del Rosa, I., Maron, L., Lukens, W. W., Coperet, C., Andersen, R. A. J. Am. Chem. Soc. 2016, 138, 3831. https://doi.org/10.1021/jacs.6b00071.Suche in Google Scholar PubMed
82. Delley, M. F., Lapadula, G., Nunez-Zarur, F., Comas-Vives, A., Kalendra, V., Jeschke, G., Baabe, D., Walter, M. D., Rossini, A. J., Lesage, A., Emsley, L., Maury, O., Coperet, C. J. Am. Chem. Soc. 2017, 139, 8855. https://doi.org/10.1021/jacs.7b02179.Suche in Google Scholar PubMed
83. Estes, D. P., Gordon, C. P., Fedorov, A., Liao, W. C., Ehrhorn, H., Bittner, C., Zier, M. L., Bockfeld, D., Chan, K. W., Eisenstein, O., Raynaud, C., Tamm, M., Coperet, C. J. Am. Chem. Soc. 2017, 139, 17597. https://doi.org/10.1021/jacs.7b09934.Suche in Google Scholar PubMed
84. Trebosc, J., Wiench, J. W., Huh, S., Lin, V. S. Y., Pruski, M. J. Am. Chem. Soc. 2005, 127, 7587. https://doi.org/10.1021/ja0509127.Suche in Google Scholar PubMed
85. Mao, K., Pruski, M. J. Magn. Reson. 2009, 201, 165. https://doi.org/10.1016/j.jmr.2009.09.004.Suche in Google Scholar PubMed
86. Mao, K., Wiench, J. W., Lin, V., Pruski, M. J. Magn. Reson. 2009, 196, 92. https://doi.org/10.1016/j.jmr.2008.10.010.Suche in Google Scholar PubMed
87. Hsin, T. M., Chen, S., Guo, E., Tsai, C. H., Pruski, M., Lin, V. Top. Catal. 2010, 53, 746. https://doi.org/10.1007/s11244-010-9462-3.Suche in Google Scholar
88. Mao, K., Kobayashi, T., Wiench, J. W., Chen, H. T., Tsai, C. H., Lin, V. S. Y., Pruski, M. J. Am. Chem. Soc. 2010, 132, 12452. https://doi.org/10.1021/ja105007b.Suche in Google Scholar PubMed
89. Kobayashi, T., Mao, K., Wang, S. G., Lin, V., Pruski, M. Solid State NMR 2011, 39, 65. https://doi.org/10.1016/j.ssnmr.2011.02.001.Suche in Google Scholar PubMed
90. Hara, K., Akahane, S., Wiench, J. W., Burgin, B. R., Ishito, N., Lin, V. S. Y., Fukuoka, A., Pruski, M. J. Phys. Chem. C 2012, 116, 7083. https://doi.org/10.1021/jp300580f.Suche in Google Scholar
91. Kobayashi, T., Singappuli-Arachchige, D., Wang, Z. R., Slowing, I. I., Pruski, M. Phys. Chem. Chem. Phys. 2017, 19, 1781. https://doi.org/10.1039/c6cp07642d.Suche in Google Scholar PubMed
92. Perras, F., Kobayashi, T., Pruski, M. Abstr. Pap. Am. Chem. Soc. 2017, 253.Suche in Google Scholar
93. Kobayashi, T., Singappuli-Arachchige, D., Slowing, I. I., Pruski, M. Phys. Chem. Chem. Phys. 2018, 20, 22203. https://doi.org/10.1039/c8cp04425b.Suche in Google Scholar PubMed
94. Kobayashi, T., Pruski, M. ACS Catal 2019, 9, 7238. https://doi.org/10.1021/acscatal.9b02017.Suche in Google Scholar
95. Adamczyk, A., Xu, Y., Walaszek, B., Roelofs, F., Pery, T., Pelzer, K., Philippot, K., Chaudret, B., Limbach, H. H., Breitzke, H., Buntkowsky, G. Top. Catal. 2008, 48, 75. https://doi.org/10.1007/s11244-008-9054-7.Suche in Google Scholar
96. Gutmann, T., Ratajczyk, T., Xu, Y. P., Breitzke, H., Grunberg, A., Dillenberger, S., Bommerich, U., Trantzschel, T., Bernarding, J., Buntkowsky, G. Solid State NMR 2010, 38, 90. https://doi.org/10.1016/j.ssnmr.2011.03.001.Suche in Google Scholar PubMed
97. Grunberg, A., Gutmann, T., Rothermel, N., Xu, Y. P., Breitzke, H., Buntkowsky, G. Z. Phys. Chem. 2013, 227, 901. https://doi.org/10.1524/zpch.2013.0398.Suche in Google Scholar
98. Gutmann, T., Grunberg, A., Rothermel, N., Werner, M., Srour, M., Abdulhussain, S., Tan, S. L., Xu, Y. P., Breitzke, H., Buntkowsky, G. Solid State NMR 2013, 55–56, 1. https://doi.org/10.1016/j.ssnmr.2013.06.004.Suche in Google Scholar PubMed
99. Abdulhussain, S., Breitzke, H., Ratajczyk, T., Grunberg, A., Srour, M., Arnaut, D., Weidler, H., Kunz, U., Kleebe, H. J., Bommerich, U., Bernarding, J., Gutmann, T., Buntkowsky, G. Chem. Eur J. 2014, 20, 1159. https://doi.org/10.1002/chem.201303020.Suche in Google Scholar PubMed
100. Gutmann, T., Alkhagani, S., Rothermel, N., Limbach, H. H., Breitzke, H., Buntkowsky, G. Z. Phys. Chem. 2017, 231, 653. https://doi.org/10.1515/zpch-2016-0837.Suche in Google Scholar
101. Liu, J. Q., Groszewicz, P. B., Wen, Q. B., Thankamony, A. S. L., Zhang, B., Kunz, U., Sauer, G., Xu, Y. P., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2017, 121, 17409. https://doi.org/10.1021/acs.jpcc.7b06807.Suche in Google Scholar
102. de Oliveira, M., Seeburg, D., Weiß, J., Wohlrab, S., Buntkowsky, G., Bentrup, U., Gutmann, T. Catal. Sci. Technol. 2019, 9, 6180. https://doi.org/10.1039/c9cy01410a.Suche in Google Scholar
103. de Oliveira, M., Herr, K., Brodrecht, M., Haro-Mares, N. B., Wissel, T., Klimavicius, V., Breitzke, H., Gutmann, T., Buntkowsky, G. Phys. Chem. Chem. Phys. 2021, 23, 12559. https://doi.org/10.1039/d1cp00985k.Suche in Google Scholar PubMed
104. Li, Z., Rösler, L., Wissel, T., Breitzke, H., Gutmann, T., Buntkowsky, G. J. CO2 Util. 2021, 52, 101682. https://doi.org/10.1016/j.jcou.2021.101682.Suche in Google Scholar
105. Srour, M., Hadjiali, S., Brunnengräber, K., Weidler, H., Xu, Y., Breitzke, H., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2021, 125, 7178. https://doi.org/10.1021/acs.jpcc.1c00112.Suche in Google Scholar
106. Folliet, N., Gervais, C., Costa, D., Laurent, G., Babonneau, F., Stievano, L., Lambert, J.-F., Tielens, F. J. Phys. Chem. C 2013, 117, 4104. https://doi.org/10.1021/jp312195a.Suche in Google Scholar
107. Ukmar, T., Cendak, T., Mazaj, M., Kaucic, V., Mali, G. J. Phys. Chem. C 2012, 116, 2662. https://doi.org/10.1021/jp2087016.Suche in Google Scholar
108. Azaïs, T., Laurent, G., Panesar, K., Nossov, A., Guenneau, F., Sanfeliu Cano, C., Tourné-Péteilh, C., Devoisselle, J.-M., Babonneau, F. J. Phys. Chem. C 2017, 121, 26833. https://doi.org/10.1021/acs.jpcc.7b08919.Suche in Google Scholar
109. Tielens, F., Folliet, N., Bondaz, L., Etemovic, S., Babonneau, F., Gervais, C., Azaïs, T. J. Phys. Chem. C 2017, 121, 17339. https://doi.org/10.1021/acs.jpcc.7b05045.Suche in Google Scholar
110. Klimavicius, V., Dagys, L., Chizhik, V., Balevicius, V. Appl. Magn. Reson. 2017, 48, 673. https://doi.org/10.1007/s00723-017-0891-z.Suche in Google Scholar
111. Wu, C., Guo, F., Zhuang, L., Ai, X., Zhong, F., Yang, H., Qian, J. ACS Energy Lett 2020, 5, 1644. https://doi.org/10.1021/acsenergylett.0c00804.Suche in Google Scholar
112. Langer, J., Epp, V., Heitjans, P., Mautner, F. A., Wilkening, M. Phys. Rev. B 2013, 88, 094304; https://doi.org/10.1103/physrevb.88.094304.Suche in Google Scholar
113. Heitjans, P. Z. Phys. Chem. 2015, 229, 1263. https://doi.org/10.1515/zpch-2015-9033.Suche in Google Scholar
114. Wang, Q., Sarkar, A., Wang, Di., Velasco, L., Azmi, R., Bhattacharya, S. S., Bergfeldt, T., Düvel, A., Heitjans, P., Brezesinski, T., Hahn, H., Breitung, B. Energy Environ. Sci. 2019, 12, 2433. https://doi.org/10.1039/c9ee00368a.Suche in Google Scholar
115. Heitjans, P., Kärger, J. Diffusion in Condensed Matter: Methods, Materials, Models, 3rd ed.; Springer: Berlin, 2018.Suche in Google Scholar
116. Ishii, Y., Tycko, R. J. Magn. Reson. 2000, 142, 199. https://doi.org/10.1006/jmre.1999.1976.Suche in Google Scholar PubMed
117. Maly, T., Debelouchina, G. T., Bajaj, V. S., Hu, K., Joo, C., Mak-Jurkauskas, M. L., Sirigiri, J. R., van der Wel, P. C. A., Herzfeld, J., Temkin, R. J., Griffin, R. G. J. Chem. Phys. 2008, 128, 52211. https://doi.org/10.1063/1.2833582.Suche in Google Scholar PubMed PubMed Central
118. Hovav, Y., Feintuch, A., Vega, S. Phys. Chem. Chem. Phys. 2013, 15, 188. https://doi.org/10.1039/c2cp42897k.Suche in Google Scholar PubMed
119. Mentink-Vigier, F., Akbey, U., Hovav, Y., Vega, S., Oschkinat, H., Feintuch, A. J. Magn. Reson. 2012, 224, 13. https://doi.org/10.1016/j.jmr.2012.08.013.Suche in Google Scholar PubMed
120. Hovav, Y., Feintuch, A., Vega, S. J. Magn. Reson. 2012, 214, 29. https://doi.org/10.1016/j.jmr.2011.09.047.Suche in Google Scholar PubMed
121. Lesage, A., Lelli, M., Gajan, D., Caporini, M. A., Vitzthum, V., Mieville, P., Alauzun, J., Roussey, A., Thieuleux, C., Mehdi, A., Bodenhausen, G., Coperet, C., Emsley, L. J. Am. Chem. Soc. 2010, 132, 15459. https://doi.org/10.1021/ja104771z.Suche in Google Scholar PubMed
122. Conley, M. P., Drost, R. M., Baffert, M., Gajan, D., Elsevier, C., Franks, W. T., Oschkinat, H., Veyre, L., Zagdoun, A., Rossini, A., Lelli, M., Lesage, A., Casano, G., Ouari, O., Tordo, P., Emsley, L., Coperet, C., Thieuleux, C. Chem. Eur J. 2013, 19, 12234. https://doi.org/10.1002/chem.201302484.Suche in Google Scholar PubMed
123. Conley, M. P., Rossini, A. J., Comas-Vives, A., Valla, M., Casano, G., Ouari, O., Tordo, P., Lesage, A., Emsley, L., Coperet, C. Phys. Chem. Chem. Phys. 2014, 16, 17822. https://doi.org/10.1039/c4cp01973c.Suche in Google Scholar PubMed
124. Ong, T. C., Liao, W. C., Mougel, V., Gajan, D., Lesage, A., Emsley, L., Coperet, C. Angew. Chem. Int. Ed. 2016, 55, 4743. https://doi.org/10.1002/anie.201510821.Suche in Google Scholar PubMed
125. Liao, W. C., Ong, T. C., Gajan, D., Bernada, F., Sauvee, C., Yulikov, M., Pucino, M., Schowner, R., Schwarzwalder, M., Buchmeiser, M. R., Jeschke, G., Tordo, P., Ouari, O., Lesage, A., Emsley, L., Coperet, C. Chem. Sci. 2017, 8, 416. https://doi.org/10.1039/c6sc03139k.Suche in Google Scholar PubMed PubMed Central
126. Pump, E., Bendjeriou-Sedjerari, A., Viger-Gravel, J., Gajan, D., Scotto, B., Samantaray, M. K., Abou-Hamad, E., Gurinov, A., Almaksoud, W., Cao, Z., Lesage, A., Cavallo, L., Emsley, L., Basset, J. M. Chem. Sci. 2018, 9, 4866. https://doi.org/10.1039/c8sc00532j.Suche in Google Scholar PubMed PubMed Central
127. Azais, T., von Euw, S., Ajili, W., Auzoux-Bordenave, S., Bertani, P., Gajan, D., Emsley, L., Nassif, N., Lesage, A. Solid State NMR 2019, 102, 2. https://doi.org/10.1016/j.ssnmr.2019.06.001.Suche in Google Scholar PubMed
128. Eisenschmidt, T. C., Kirss, R. U., Deutsch, P. P., Hommeltoft, S. I., Eisenberg, R., Bargon, J., Lawler, R. G., Balch, A. L. J. Am. Chem. Soc. 1987, 109, 8089. https://doi.org/10.1021/ja00260a026.Suche in Google Scholar
129. Bowers, C. R., Weitekamp, D. P. Phys. Rev. Lett. 1986, 57, 2645. https://doi.org/10.1103/physrevlett.57.2645.Suche in Google Scholar
130. Bowers, C. R., Jones, D. H., Kurur, N. D., Labinger, J. A., Pravica, M. G., Weitekamp, D. P. Adv. Magn. Res. 1990, 15, 269. https://doi.org/10.1016/b978-0-12-025514-6.50018-6.Suche in Google Scholar
131. Hunger, M. Catal. Today 2004, 97, 3. https://doi.org/10.1016/j.cattod.2004.03.061.Suche in Google Scholar
132. Henning, H., Dyballa, M., Scheibe, M., Klemm, E., Hunger, M. Chem. Phys. Lett. 2013, 555, 258. https://doi.org/10.1016/j.cplett.2012.10.068.Suche in Google Scholar
133. Arzumanov, S. S., Stepanov, A. G. J. Phys. Chem. C 2013, 117, 2888. https://doi.org/10.1021/jp311345r.Suche in Google Scholar
134. Buntkowsky, G., Gutmann, T., Petrova, M. V., Ivanov, K. L., Bommerich, U., Plaumann, M., Bernarding, J. Solid State NMR 2014, 63-64, 20. https://doi.org/10.1016/j.ssnmr.2014.07.002.Suche in Google Scholar PubMed
135. Heinze, M. T., Zill, J. C., Matysik, J., Einicke, W. D., Gläser, R., Stark, A. Phys. Chem. Chem. Phys. 2014, 16, 24359. https://doi.org/10.1039/c4cp02749c.Suche in Google Scholar PubMed
136. Fraissard, J., Jameson, C., Saam, B., Brunner, E., Hersman, W., Goodson, B., Meersmann, T., Fujiwara, H., Wang, L.-Q., Sozzani, P. Hyperpolarized Xenon-129 Magnetic Resonance: Concepts, Production, Techniques and Applications; Royal Society of Chemistry: London Cambridge, 2015.Suche in Google Scholar
137. Shantz, D. F., Fild, C., Koller, H., Lobo, R. F. J. Phys. Chem. B 1999, 103, 10858. https://doi.org/10.1021/jp992549u.Suche in Google Scholar
138. Shantz, D. F., Lobo, R. F. Top. Catal. 1999, 9, 1. https://doi.org/10.1023/a:1019146102527.10.1023/A:1019146102527Suche in Google Scholar
139. Wang, B., Côté, A. P., Furukawa, H., O’Keeffe, M., Yaghi, O. M. Nature 2008, 453, 207. https://doi.org/10.1038/nature06900.Suche in Google Scholar PubMed
140. Riedel, E., Janiak, C. Anorganische Chemie; De Gruyter: Oldenburg, 2007.10.1515/9783110189032Suche in Google Scholar
141. Zhang, C., Lively, R. P., Zhang, K., Johnson, J. R., Karvan, O., Koros, W. J. J. Phys. Chem. Lett. 2012, 3, 2130. https://doi.org/10.1021/jz300855a.Suche in Google Scholar PubMed
142. CEJKA, J., van Bekkum, H., Corma, A., Schüth, F. Introduction to Zeolite Science and Practice, in Studies in Surface Science and Catalysis, Vol. 168; Elsevier BV: Amsterdam, Neth, 2007.Suche in Google Scholar
143. Demuth, D., Sattig, M., Steinrücken, E., Weigler, M., Vogel, M. Z. Phys. Chem. 2018, 232, 1059. https://doi.org/10.1515/zpch-2017-1027.Suche in Google Scholar
144. Kärger, J., Vasenkov, S., Auerbach, S. M. Diffusion in zeolites. In Handbook of Zeolite Science and Technology; CRC Press, 2003, pp 458–560.10.1201/9780203911167.ch10Suche in Google Scholar
145. Weigler, M., Brodrecht, M., Breitzke, H., Dietrich, F., Sattig, M., Buntkowsky, G., Vogel, M. Z. Phys. Chem. 2018, 232, 1041. https://doi.org/10.1515/zpch-2017-1034.Suche in Google Scholar
146. Grünberg, B., Emmler, T., Gedat, E., Shenderovich, I., Findenegg, G. H., Limbach, H. H., Buntkowsky, G. Chem. Eur J. 2004, 10, 5689. https://doi.org/10.1002/chem.200400351.Suche in Google Scholar
147. Brodrecht, M., Breitzke, H., Gutmann, T., Buntkowsky, G. Chem. Eur J. 2018, 24, 17814. https://doi.org/10.1002/chem.201804065.Suche in Google Scholar
148. Brodrecht, M., Kumari, B., Breitzke, H., Gutmann, T., Buntkowsky, G. Z. Phys. Chem. 2018, 232, 1127. https://doi.org/10.1515/zpch-2017-1059.Suche in Google Scholar
149. Brodrecht, M., Kunnari, B., Thankamony, A. S. S. L., Breitzke, H., Gutmann, T., Buntkowsky, G. Chem. Eur J. 2019, 25, 5214. https://doi.org/10.1002/chem.201805480.Suche in Google Scholar
150. Schottner, S., Brodrecht, M., Uhlein, E., Dietz, C., Breitzke, H., Tietze, A. A., Buntkowsky, G., Gallei, M. Macromolecules 2019, 52, 2631. https://doi.org/10.1021/acs.macromol.8b02758.Suche in Google Scholar
151. Grün, M., Unger, K. K., Matsumoto, A., Tsutsumi, K. Microporous Mesoporous Mater. 1999, 27, 207. https://doi.org/10.1016/s1387-1811(98)00255-8.Suche in Google Scholar
152. Buntkowsky, G., Vogel, M., Winter, R. Z. Phys. Chem. 2018, 232, 937. https://doi.org/10.1515/zpch-2018-1110.Suche in Google Scholar
153. Richert, R. Annu. Rev. Phys. Chem. 2011, 62, 65. https://doi.org/10.1146/annurev-physchem-032210-103343.Suche in Google Scholar PubMed
154. Brodrecht, M., Klotz, E., Lederle, C., Breitzke, H., Stühn, B., Vogel, M., Buntkowsky, G. Z. Phys. Chem. 2018, 232, 1003–1016. https://doi.org/10.1515/zpch-2017-1030.Suche in Google Scholar
155. Guo, X.-Y., Watermann, T., Sebastiani, D. J. Phys. Chem. B 2014, 118, 10207. https://doi.org/10.1021/jp505203t.Suche in Google Scholar PubMed
156. Hermens, J. L., de Bruijn, J. H., Brooke, D. N. Environ. Toxicol. Chem. 2013, 32, 732. https://doi.org/10.1002/etc.2141.Suche in Google Scholar PubMed
157. Leo, A., Hansch, C., Elkins, D. Chem. Rev. 1971, 71, 525. https://doi.org/10.1021/cr60274a001.Suche in Google Scholar
158. Kumari, B., Brodrecht, M., Gutmann, T., Breitzke, H., Buntkowsky, G. Appl. Magn. Reson. 2019, 50, 1399. https://doi.org/10.1007/s00723-019-01156-2.Suche in Google Scholar
159. Kumari, B., Brodrecht, M., Breitzke, H., Werner, M., Grunberg, B., Limbach, H. H., Forg, S., Sanjon, E. P., Drossel, B., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2018, 122, 19540. https://doi.org/10.1021/acs.jpcc.8b04745.Suche in Google Scholar
160. Vyalikh, A., Emmler, T., Shenderovich, I., Zeng, Y., Findenegg, G. H., Buntkowsky, G. Phys. Chem. Chem. Phys. 2007, 9, 2249. https://doi.org/10.1039/b617744a.Suche in Google Scholar PubMed
161. Vyalikh, A., Emmler, T., Gedat, E., Shenderovich, I., Findenegg, G. H., Limbach, H. H., Buntkowsky, G. Solid State NMR 2005, 28, 117. https://doi.org/10.1016/j.ssnmr.2005.07.001.Suche in Google Scholar PubMed
162. Harrach, M. F., Drossel, B., Winschel, W., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2015, 119, 28961. https://doi.org/10.1021/acs.jpcc.5b09537.Suche in Google Scholar
163. van Rossum, B. J., Förster, H., de Groot, H. J. M. J. Magn. Reson. 1997, 124, 516. https://doi.org/10.1006/jmre.1996.1089.Suche in Google Scholar
164. Hoffmann, M. M., Bothe, S., Brodrecht, M., Klimavicius, V., Haro-Mares, N. B., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2020, 124, 5145. https://doi.org/10.1021/acs.jpcc.9b10504.Suche in Google Scholar
165. Hoffmann, M. M., Bothe, S., Gutmann, T., Buntkowsky, G. J. Phys. Chem. B 2018, 122, 4913. https://doi.org/10.1021/acs.jpcb.8b03456.Suche in Google Scholar
166. Hoffmann, M. M., Too, M. D., Vogel, M., Gutmann, T., Buntkowsky, G. J. Phys. Chem. B 2020, 124, 9115. https://doi.org/10.1021/acs.jpcb.0c06124.Suche in Google Scholar
167. Hoffmann, M. M., Horowitz, R. H., Gutmann, T., Buntkowsky, G. J. Chem. Eng. Data 2021, 66, 2480. https://doi.org/10.1021/acs.jced.1c00101.Suche in Google Scholar
168. Daube, D., Aladin, V., Heiliger, J., Wittmann, J. J., Barthelmes, D., Bengs, C., Schwalbe, H., Corzilius, B. J. Am. Chem. Soc. 2016, 138, 16572. https://doi.org/10.1021/jacs.6b08683.Suche in Google Scholar
169. Hoffmann, M. M., Bothe, S., Gutmann, T., Hartmann, F.-F., Reggelin, M., Buntkowsky, G. J. Phys. Chem. C 2017, 121, 2418. https://doi.org/10.1021/acs.jpcc.6b13087.Suche in Google Scholar
170. Aladin, V., Corzilius, B. Solid State NMR 2019, 99, 27. https://doi.org/10.1016/j.ssnmr.2019.02.004.Suche in Google Scholar
171. Park, H., Uluca-Yazgi, B., Heumann, S., Schlögl, R., Granwehr, J., Heise, H., Schleker, P. P. M. J. Magn. Reson. 2020, 312, 106688. https://doi.org/10.1016/j.jmr.2020.106688.Suche in Google Scholar
172. Gibby, M. G., Pines, A., Waugh, J. S. Chem. Phys. Lett. 1972, 16, 296. https://doi.org/10.1016/0009-2614(72)80276-8.Suche in Google Scholar
173. White, J. L., Haw, J. F. J. Am. Chem. Soc. 1990, 112, 5896. https://doi.org/10.1021/ja00171a049.Suche in Google Scholar
174. Macdonald, P. M., Soong, R. J. Magn. Reson. 2007, 188, 1. https://doi.org/10.1016/j.jmr.2007.06.002.Suche in Google Scholar
175. Higgins, J. S., Hodgson, A. H., Law, R. V. J. Mol. Struct. 2002, 602–603, 505. https://doi.org/10.1016/s0022-2860(01)00731-1.Suche in Google Scholar
176. Hoffmann, M. M., Bothe, S., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2017, 121, 22948. https://doi.org/10.1021/acs.jpcc.7b07965.Suche in Google Scholar
177. Bothe, S., Hoffmann, M. M., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2017, 121, 27089. https://doi.org/10.1021/acs.jpcc.7b07967.Suche in Google Scholar
178. Bothe, S., Nowag, J., Klimavičius, V., Hoffmann, M., Troitskaya, T. I., Amosov, E. V., Tormyshev, V. M., Kirilyuk, I., Taratayko, A., Kuzhelev, A., Parkhomenko, D., Bagryanskaya, E., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2018, 122, 11422. https://doi.org/10.1021/acs.jpcc.8b02570.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides
Artikel in diesem Heft
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides