Startseite Naturwissenschaften Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica

  • Gerd Buntkowsky EMAIL logo , Sonja Döller , Nadia Haro-Mares , Torsten Gutmann und Markus Hoffmann
Veröffentlicht/Copyright: 27. Oktober 2021

Abstract

This review gives an overview of current trends in the investigation of confined molecules such as higher alcohols, ethylene glycol and polyethylene glycol as guest molecules in neat and functionalized mesoporous silica materials. All these molecules have both hydrophobic and hydrophilic parts. They are characteristic role-models for the investigation of confined surfactants. Their properties are studied by a combination of solid-state NMR and relaxometry with other physicochemical techniques and molecular dynamics techniques. It is shown that this combination delivers unique insights into the structure, arrangement, dynamical properties and the guest-host interactions inside the confinement.


Corresponding author: Gerd Buntkowsky, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany, E-mail:
Dedicated to Paul Heitjans on the occasion of his 75th birthday.
  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Financial support by the Deutsche Forschungsgemeinschaft in the framework of the Forschergruppe FOR 1583 through grants Bu-911/18-1/2, Bu-911/24-1/2, and the National Science Foundation [grant no 1953428] is gratefully acknowledged.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry; Oxford University Press on Demand, 2001.10.1093/oso/9780198508823.001.0001Suche in Google Scholar

2. Hartmann, M., Kostrov, X. Chem. Soc. Rev. 2013, 42, 6277. https://doi.org/10.1039/c3cs60021a.Suche in Google Scholar PubMed

3. Nassif, N., Livage, J. Chem. Soc. Rev. 2011, 40, 849. https://doi.org/10.1039/c0cs00122h.Suche in Google Scholar PubMed

4. Vafaeezadeh, M., Hashemi, M. M. J. Mol. Liq. 2015, 207, 73. https://doi.org/10.1016/j.molliq.2015.03.003.Suche in Google Scholar

5. Han, W., Liu, C., Jin, Z. Adv. Synth. Catal. 2008, 350, 501. https://doi.org/10.1002/adsc.200700475.Suche in Google Scholar

6. Pires, M., Purificação, S., Santos, A., Marques, M. Synthesis 2017, 49, 2337. https://doi.org/10.1055/s-0036-1589498.Suche in Google Scholar

7. Khanmoradi, M., Nikoorazm, M., Ghorbani-Choghamarani, A. Catal. Lett. 2017, 147, 1114. https://doi.org/10.1007/s10562-016-1957-5.Suche in Google Scholar

8. Buntkowsky, G., Vogel, M. Molecules 2020, 25, 3311; https://doi.org/10.3390/molecules25143311.Suche in Google Scholar PubMed PubMed Central

9. Buntkowsky, G., Vogel, M., Winter, R. Z. Phys. Chem. 2018, 232, 937. https://doi.org/10.1515/zpch-2018-1110.Suche in Google Scholar

10. Werner, M., Rothermel, N., Breitzke, H., Gutmann, T., Buntkowsky, G. Isr. J. Chem. 2014, 54, 60. https://doi.org/10.1002/ijch.201300095.Suche in Google Scholar

11. Fumagalli, L., Esfandiar, A., Fabregas, R., Hu, S., Ares, P., Janardanan, A., Yang, Q., Radha, B., Taniguchi, T., Watanabe, K., Gomila, G., Novoselov, K. S., Geim, A. K. Science 2018, 360, 1339. https://doi.org/10.1126/science.aat4191.Suche in Google Scholar PubMed

12. Carvalho, G., Paul, E., Novais, J. M., Pinheiro, H. M. Water Sci. Technol. 2000, 42, 135. https://doi.org/10.2166/wst.2000.0507.Suche in Google Scholar

13. Hoffmann, M. Nonionic Liquid Surfactants as Green Solvents. U.S. Patent, US20080097121A1, 2008.Suche in Google Scholar

14. Koganti, V. R., Rankin, S. E. J. Phys. Chem. B 2005, 109, 3279. https://doi.org/10.1021/jp045037a.Suche in Google Scholar

15. Ramanathan, M., Shrestha, L. K., Mori, T., Ji, Q., Hill, J. P., Ariga, K. Phys. Chem. Chem. Phys. 2013, 15, 10580. https://doi.org/10.1039/c3cp50620g.Suche in Google Scholar

16. Clark, K. K., Keller, A. A. Water Air Soil Pollut. 2012, 223, 3647. https://doi.org/10.1007/s11270-012-1138-0.Suche in Google Scholar

17. Le Page, M., Beau, R., Duchene, J. Porous Silica Particles Containing a Crystallized Phase and Method. U.S. Patent US3493341A, 1970.Suche in Google Scholar

18. Chiola, V., Ritsko, J. E., Vanderpool, C. D. Process for Producing Low-Bulk Density Silica. U.S. Patent US3556725A, 1970.Suche in Google Scholar

19. Vinu, A., Hossain, K. Z., Ariga, K. J. Nanosci. Nanotechnol. 2005, 5, 347. https://doi.org/10.1166/jnn.2005.089.Suche in Google Scholar

20. Yokoi, T., Yoshitake, H., Tatsumi, T. J. Mater. Chem. 2004, 14, 951. https://doi.org/10.1039/b310576h.Suche in Google Scholar

21. Wang, X., Lin, K. S. K., Chan, J. C. C., Cheng, S. J. Phys. Chem. B 2005, 109, 1763. https://doi.org/10.1021/jp045798d.Suche in Google Scholar

22. Gedat, E., Schreiber, A., Albrecht, J., Shenderovich, I., Findenegg, G., Limbach, H.-H., Buntkowsky, G., Buntkowsky, G. J. Phys. Chem. B 2002, 106, 1977. https://doi.org/10.1021/jp012391p.Suche in Google Scholar

23. Medick, P., Blochowicz, T., Vogel, M., Roessler, E. J. Non-Cryst. Solids 2002, 307, 565. https://doi.org/10.1016/s0022-3093(02)01487-4.Suche in Google Scholar

24. Dosseh, G., Xia, Y., Alba-Simionesco, C. J. Phys. Chem. B 2003, 107, 6445. https://doi.org/10.1021/jp034003k.Suche in Google Scholar

25. Lusceac, S. A., Koplin, C., Medick, P., Vogel, M., Brodie-Linder, N., LeQuellec, C., Alba-Simionesco, C., Roessler, E. A. J. Phys. Chem. B 2004, 108, 16601. https://doi.org/10.1021/jp040376p.Suche in Google Scholar

26. Alba-Simionesco, C., Coasne, B., Dosseh, G., Dudziak, G., Gubbins, K. E., Radhakrishnan, R., Sliwinska-Bartkowiak, M. J. Condens. Matter Phys. 2006, 18, R15. https://doi.org/10.1088/0953-8984/18/6/r01.Suche in Google Scholar

27. Kiwilsza, A., Pajzderska, A., Gonzalez, M. A., Mielcarek, J., Wąsicki, J. J. Phys. Chem. C 2015, 119, 16578. https://doi.org/10.1021/acs.jpcc.5b02672.Suche in Google Scholar

28. Krzyżak, A. T., Habina, I. Microporous Mesoporous Mater. 2016, 231, 230.10.1016/j.micromeso.2016.05.032Suche in Google Scholar

29. Brilmayer, R., Kübelbeck, S., Khalil, A., Brodrecht, M., Kunz, U., Kleebe, H.-J., Buntkowsky, G., Baier, G., Andrieu-Brunsen, A. Adv. Mater. Interfaces 2020, 7, 1901914. https://doi.org/10.1002/admi.201901914.Suche in Google Scholar

30. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834. https://doi.org/10.1021/ja00053a020.Suche in Google Scholar

31. Zhao, D. Y., Huo, Q. S., Feng, J. L., Chmelka, B. F., Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024. https://doi.org/10.1021/ja974025i.Suche in Google Scholar

32. Zhao, D. Y., Feng, J. L., Huo, Q. S., Melosh, N., Fredrickson, G. H., Chmelka, B. F., Stucky, G. D. Science 1998, 279, 548. https://doi.org/10.1126/science.279.5350.548.Suche in Google Scholar PubMed

33. Nordberg, M. E. J. Am. Ceram. Soc. 1944, 27, 299. https://doi.org/10.1111/j.1151-2916.1944.tb14473.x.Suche in Google Scholar

34. Gelb, L. D., Gubbins, K. E., Radhakrishnan, R., Sliwinska-Bartkowiak, M. Rep. Prog. Phys. 1999, 62, 1573. https://doi.org/10.1088/0034-4885/62/12/201.Suche in Google Scholar

35. Ciesla, U., Schüth, F. Microporous Mesoporous Mater. 1999, 27, 131. https://doi.org/10.1016/s1387-1811(98)00249-2.Suche in Google Scholar

36. Brunauer, S., Emmett, P. H., Teller, E. J. Am. Chem. Soc. 1938, 60, 309. https://doi.org/10.1021/ja01269a023.Suche in Google Scholar

37. Barrett, E. P., Joyner, L. G., Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373. https://doi.org/10.1021/ja01145a126.Suche in Google Scholar

38. Treacy, M. M. J., Higgins, J. B., von Ballmoos, R. Collection of Simulated XRD Powder Patterns for Zeolites; Elsevier: London, 1996.Suche in Google Scholar

39. Marler, B., Oberhagemann, U., Vortmann, S., Gies, H. Microporous Mater. 1996, 6, 375. https://doi.org/10.1016/0927-6513(96)00016-8.Suche in Google Scholar

40. Yao, M. H., Baird, R. J., Kunz, F. W., Hoost, T. E. J. Catal. 1997, 166, 67. https://doi.org/10.1006/jcat.1997.1504.Suche in Google Scholar

41. Höhne, G., Hemminger, W. F., Flammersheim, H.-J. Differential Scanning Calorimetry; Springer: Berlin Heidelberg, 2003.10.1007/978-3-662-06710-9Suche in Google Scholar

42. Hemminger, W. F., Cammenga, H. K. Methoden der thermischen Analyse; Springer: Berlin, 1989.10.1007/978-3-642-70175-7Suche in Google Scholar

43. Freude, D., Kärger, J. Handbook of porous solids 2002, 1, 465.10.1002/9783527618286.ch14Suche in Google Scholar

44. Koller, H., Weiß, M. Solid state NMR of porous materials. In Solid state NMR; Springer, 2011, pp 189–227.10.1007/128_2011_123Suche in Google Scholar PubMed

45. Haouas, M., Martineau, C., Taulelle, F. Quadrupolar NMR of nanoporous materials. In eMagRes, 2011.10.1002/9780470034590.emrstm1216Suche in Google Scholar

46. Kärger, J. ChemPhysChem 2015, 16, 24. https://doi.org/10.1002/cphc.201402340.Suche in Google Scholar

47. Thankamony, A. S. L., Wittmann, J. J., Kaushik, M., Corzilius, B. Prog. NMR Spec. 2017, 120–195.10.1016/j.pnmrs.2017.06.002Suche in Google Scholar

48. Rankin, A. G. M., Trébosc, J., Pourpoint, F., Amoureux, J.-P., Lafon, O. Solid State NMR 2019, 101, 116. https://doi.org/10.1016/j.ssnmr.2019.05.009.Suche in Google Scholar

49. Faivre, C., Bellet, D., Dolino, G. Eur. Phys. J. B 1999, 7, 19. https://doi.org/10.1007/s100510050586.Suche in Google Scholar

50. Alcoutlabi, M., McKenna, G. B. J. Condens. Matter Phys. 2005, 17, R461. https://doi.org/10.1088/0953-8984/17/15/r01.Suche in Google Scholar

51. Schoen, M., Klapp, S. Rev. Comp. Chem. 2007, 24, 1.Suche in Google Scholar

52. Buntkowsky, G., Breitzke, H., Adamczyk, A., Roelofs, F., Emmler, T., Gedat, E., Grünberg, B., Xu, Y., Limbach, H. H., Shenderovich, I., Vyalikh, A., Findenegg, G. H. Phys. Chem. Chem. Phys. 2007, 9, 4843. https://doi.org/10.1039/b707322d.Suche in Google Scholar

53. Kärger, J., Pfeifer, H. Zeolites 1987, 7, 90. https://doi.org/10.1016/0144-2449(87)90067-4.Suche in Google Scholar

54. Kaerger, J., Freude, D. Stud. Surf. Sci. Catal. 1997, 105, 551.10.1016/S0167-2991(97)80600-3Suche in Google Scholar

55. Kaerger, J., Freude, D. Chem. Eng. Technol. 2002, 25, 769.10.1002/1521-4125(20020806)25:8<769::AID-CEAT769>3.0.CO;2-0Suche in Google Scholar

56. Freude, D., Kärger, J. Handbook of porous solids 2002, 1, 465.10.1002/9783527618286.ch14Suche in Google Scholar

57. Kärger, J., Freude, D., Haase, J. Processes 2018, 6, 147. https://doi.org/10.3390/pr6090147.Suche in Google Scholar

58. Kaerger, J., Valiullin, R. Chem. Soc. Rev. 2013, 42, 4172.10.1039/c3cs35326eSuche in Google Scholar PubMed

59. Findenegg, G. H., Jaehnert, S., Akcakayiran, D., Schreiber, A. Chem. Phys. Chem. 2008, 9, 2651. https://doi.org/10.1002/cphc.200800616.Suche in Google Scholar PubMed

60. Geppi, M., Borsacchi, S., Mollica, G., Veracini, C. A. Appl. Spectrosc. Rev. 2009, 44, 1.10.1080/05704920802352564Suche in Google Scholar

61. Vogel, M. Eur. Phys. J. 2010, 189, 47. https://doi.org/10.1140/epjst/e2010-01309-9.Suche in Google Scholar

62. Yang, Y., Beele, B., Bluemel, J. J. Am. Chem. Soc. 2008, 130, 3771–+. https://doi.org/10.1021/ja800541c.Suche in Google Scholar PubMed

63. Bluemel, J. Coord. Chem. Rev. 2008, 252, 2410.10.1016/j.ccr.2008.06.013Suche in Google Scholar

64. Gutmann, T., Grünberg, A., Rothermel, N., Werner, M., Srour, M., Abdulhussain, S., Tan, S., Xu, Y., Breitzke, H., Buntkowsky, G. Solid State NMR 2013, 55/56, 1–11.10.1016/j.ssnmr.2013.06.004Suche in Google Scholar PubMed

65. Motokura, K., Itagaki, S., Iwasawa, Y., Miyaji, A., Baba, T. Green Chem. 2009, 11, 1876. https://doi.org/10.1039/b916764c.Suche in Google Scholar

66. Wang, Q., Jordan, E., Shantz, D. F. J. Phys. Chem. C 2009, 113, 18142. https://doi.org/10.1021/jp9013527.Suche in Google Scholar

67. Gath, J., Hoaston, G. L., Vold, R. L., Berthoud, R., Coperet, C., Grellier, M., Sabo-Etienne, S., Lesage, A., Emsley, L. Phys. Chem. Chem. Phys. 2009, 11, 6962. https://doi.org/10.1039/b907665d.Suche in Google Scholar PubMed

68. Kandel, K., Althaus, S. M., Peeraphatdit, C., Kobayashi, T., Trewyn, B. G., Pruski, M., Slowing, I. I. J. Catal. 2012, 291, 63. https://doi.org/10.1016/j.jcat.2012.04.005.Suche in Google Scholar

69. Kandel, K., Althaus, S. M., Peeraphatdit, C., Kobayashi, T., Trewyn, B. G., Pruski, M., Slowing, I. I. ACS Catal 2013, 3, 265. https://doi.org/10.1021/cs300748g.Suche in Google Scholar

70. Jayanthi, S., Frydman, V., Vega, S. J. Phys. Chem. B 2012, 116, 10398. https://doi.org/10.1021/jp3061152.Suche in Google Scholar PubMed

71. Sundaresan, J., Werner, M., Yeping, X., Buntkowsky, G., Vega, S. J Phys Chem C J Phys Chem C 2013.Suche in Google Scholar

72. Jayanthi, S., Kababya, S., Schmidt, A., Vega, S. J. Phys. Chem. C 2016, 120, 2797. https://doi.org/10.1021/acs.jpcc.5b11429.Suche in Google Scholar

73. Saint-Arroman, R. P., Chabanas, M., Baudouin, A., Coperet, C., Basset, J. H., Lesage, A., Emsley, L. J. Am. Chem. Soc. 2001, 123, 3820. https://doi.org/10.1021/ja002259n.Suche in Google Scholar PubMed

74. Rataboul, F., Chabanas, M., de Mallmann, A., Coperet, C., Thivolle-Cazat, J., Basset, J. M. Chem. Eur J. 2003, 9, 1426. https://doi.org/10.1002/chem.200390162.Suche in Google Scholar PubMed

75. Blanc, F., Basset, J. M., Coperet, C., Sinha, A., Tonzetich, Z. J., Schrock, R. R., Solans-Monfort, X., Clot, E., Eisenstein, O., Lesage, A., Emsley, L. J. Am. Chem. Soc. 2008, 130, 5886. https://doi.org/10.1021/ja077749v.Suche in Google Scholar PubMed

76. Gajan, D., Levine, D., Zocher, E., Coperet, C., Lesage, A., Emsley, L. Chem. Sci. 2011, 2, 928. https://doi.org/10.1039/c0sc00579g.Suche in Google Scholar

77. Lelli, M., Gajan, D., Lesage, A., Caporini, M. A., Vitzthum, V., Mieville, P., Heroguel, F., Rascon, F., Roussey, A., Thieuleux, C., Boualleg, M., Veyre, L., Bodenhausen, G., Coperet, C., Emsley, L. J. Am. Chem. Soc. 2011, 133, 2104–2107.10.1021/ja110791dSuche in Google Scholar PubMed

78. Kerber, R. N., Kermagoret, A., Callens, E., Florian, P., Massiot, D., Lesage, A., Coperet, C., Delbecq, F., Rozanska, X., Sautet, P. J. Am. Chem. Soc. 2012, 134, 6767. https://doi.org/10.1021/ja3008566.Suche in Google Scholar PubMed

79. Valla, M., Rossini, A. J., Caillot, M., Chizallet, C., Raybaud, P., Digne, M., Chaumonnot, A., Lesage, A., Emsley, L., van Bokhoven, J. A., Coperet, C. J. Am. Chem. Soc. 2015, 137, 10710. https://doi.org/10.1021/jacs.5b06134.Suche in Google Scholar PubMed PubMed Central

80. Conley, M., Coperet, C., Andersen, R. Abstr. Pap. Am. Chem. Soc. 2016, 251.Suche in Google Scholar

81. Conley, M. P., Lapadula, G., Sanders, K., Gajan, D., Lesage, A., Del Rosa, I., Maron, L., Lukens, W. W., Coperet, C., Andersen, R. A. J. Am. Chem. Soc. 2016, 138, 3831. https://doi.org/10.1021/jacs.6b00071.Suche in Google Scholar PubMed

82. Delley, M. F., Lapadula, G., Nunez-Zarur, F., Comas-Vives, A., Kalendra, V., Jeschke, G., Baabe, D., Walter, M. D., Rossini, A. J., Lesage, A., Emsley, L., Maury, O., Coperet, C. J. Am. Chem. Soc. 2017, 139, 8855. https://doi.org/10.1021/jacs.7b02179.Suche in Google Scholar PubMed

83. Estes, D. P., Gordon, C. P., Fedorov, A., Liao, W. C., Ehrhorn, H., Bittner, C., Zier, M. L., Bockfeld, D., Chan, K. W., Eisenstein, O., Raynaud, C., Tamm, M., Coperet, C. J. Am. Chem. Soc. 2017, 139, 17597. https://doi.org/10.1021/jacs.7b09934.Suche in Google Scholar PubMed

84. Trebosc, J., Wiench, J. W., Huh, S., Lin, V. S. Y., Pruski, M. J. Am. Chem. Soc. 2005, 127, 7587. https://doi.org/10.1021/ja0509127.Suche in Google Scholar PubMed

85. Mao, K., Pruski, M. J. Magn. Reson. 2009, 201, 165. https://doi.org/10.1016/j.jmr.2009.09.004.Suche in Google Scholar PubMed

86. Mao, K., Wiench, J. W., Lin, V., Pruski, M. J. Magn. Reson. 2009, 196, 92. https://doi.org/10.1016/j.jmr.2008.10.010.Suche in Google Scholar PubMed

87. Hsin, T. M., Chen, S., Guo, E., Tsai, C. H., Pruski, M., Lin, V. Top. Catal. 2010, 53, 746. https://doi.org/10.1007/s11244-010-9462-3.Suche in Google Scholar

88. Mao, K., Kobayashi, T., Wiench, J. W., Chen, H. T., Tsai, C. H., Lin, V. S. Y., Pruski, M. J. Am. Chem. Soc. 2010, 132, 12452. https://doi.org/10.1021/ja105007b.Suche in Google Scholar PubMed

89. Kobayashi, T., Mao, K., Wang, S. G., Lin, V., Pruski, M. Solid State NMR 2011, 39, 65. https://doi.org/10.1016/j.ssnmr.2011.02.001.Suche in Google Scholar PubMed

90. Hara, K., Akahane, S., Wiench, J. W., Burgin, B. R., Ishito, N., Lin, V. S. Y., Fukuoka, A., Pruski, M. J. Phys. Chem. C 2012, 116, 7083. https://doi.org/10.1021/jp300580f.Suche in Google Scholar

91. Kobayashi, T., Singappuli-Arachchige, D., Wang, Z. R., Slowing, I. I., Pruski, M. Phys. Chem. Chem. Phys. 2017, 19, 1781. https://doi.org/10.1039/c6cp07642d.Suche in Google Scholar PubMed

92. Perras, F., Kobayashi, T., Pruski, M. Abstr. Pap. Am. Chem. Soc. 2017, 253.Suche in Google Scholar

93. Kobayashi, T., Singappuli-Arachchige, D., Slowing, I. I., Pruski, M. Phys. Chem. Chem. Phys. 2018, 20, 22203. https://doi.org/10.1039/c8cp04425b.Suche in Google Scholar PubMed

94. Kobayashi, T., Pruski, M. ACS Catal 2019, 9, 7238. https://doi.org/10.1021/acscatal.9b02017.Suche in Google Scholar

95. Adamczyk, A., Xu, Y., Walaszek, B., Roelofs, F., Pery, T., Pelzer, K., Philippot, K., Chaudret, B., Limbach, H. H., Breitzke, H., Buntkowsky, G. Top. Catal. 2008, 48, 75. https://doi.org/10.1007/s11244-008-9054-7.Suche in Google Scholar

96. Gutmann, T., Ratajczyk, T., Xu, Y. P., Breitzke, H., Grunberg, A., Dillenberger, S., Bommerich, U., Trantzschel, T., Bernarding, J., Buntkowsky, G. Solid State NMR 2010, 38, 90. https://doi.org/10.1016/j.ssnmr.2011.03.001.Suche in Google Scholar PubMed

97. Grunberg, A., Gutmann, T., Rothermel, N., Xu, Y. P., Breitzke, H., Buntkowsky, G. Z. Phys. Chem. 2013, 227, 901. https://doi.org/10.1524/zpch.2013.0398.Suche in Google Scholar

98. Gutmann, T., Grunberg, A., Rothermel, N., Werner, M., Srour, M., Abdulhussain, S., Tan, S. L., Xu, Y. P., Breitzke, H., Buntkowsky, G. Solid State NMR 2013, 55–56, 1. https://doi.org/10.1016/j.ssnmr.2013.06.004.Suche in Google Scholar PubMed

99. Abdulhussain, S., Breitzke, H., Ratajczyk, T., Grunberg, A., Srour, M., Arnaut, D., Weidler, H., Kunz, U., Kleebe, H. J., Bommerich, U., Bernarding, J., Gutmann, T., Buntkowsky, G. Chem. Eur J. 2014, 20, 1159. https://doi.org/10.1002/chem.201303020.Suche in Google Scholar PubMed

100. Gutmann, T., Alkhagani, S., Rothermel, N., Limbach, H. H., Breitzke, H., Buntkowsky, G. Z. Phys. Chem. 2017, 231, 653. https://doi.org/10.1515/zpch-2016-0837.Suche in Google Scholar

101. Liu, J. Q., Groszewicz, P. B., Wen, Q. B., Thankamony, A. S. L., Zhang, B., Kunz, U., Sauer, G., Xu, Y. P., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2017, 121, 17409. https://doi.org/10.1021/acs.jpcc.7b06807.Suche in Google Scholar

102. de Oliveira, M., Seeburg, D., Weiß, J., Wohlrab, S., Buntkowsky, G., Bentrup, U., Gutmann, T. Catal. Sci. Technol. 2019, 9, 6180. https://doi.org/10.1039/c9cy01410a.Suche in Google Scholar

103. de Oliveira, M., Herr, K., Brodrecht, M., Haro-Mares, N. B., Wissel, T., Klimavicius, V., Breitzke, H., Gutmann, T., Buntkowsky, G. Phys. Chem. Chem. Phys. 2021, 23, 12559. https://doi.org/10.1039/d1cp00985k.Suche in Google Scholar PubMed

104. Li, Z., Rösler, L., Wissel, T., Breitzke, H., Gutmann, T., Buntkowsky, G. J. CO2 Util. 2021, 52, 101682. https://doi.org/10.1016/j.jcou.2021.101682.Suche in Google Scholar

105. Srour, M., Hadjiali, S., Brunnengräber, K., Weidler, H., Xu, Y., Breitzke, H., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2021, 125, 7178. https://doi.org/10.1021/acs.jpcc.1c00112.Suche in Google Scholar

106. Folliet, N., Gervais, C., Costa, D., Laurent, G., Babonneau, F., Stievano, L., Lambert, J.-F., Tielens, F. J. Phys. Chem. C 2013, 117, 4104. https://doi.org/10.1021/jp312195a.Suche in Google Scholar

107. Ukmar, T., Cendak, T., Mazaj, M., Kaucic, V., Mali, G. J. Phys. Chem. C 2012, 116, 2662. https://doi.org/10.1021/jp2087016.Suche in Google Scholar

108. Azaïs, T., Laurent, G., Panesar, K., Nossov, A., Guenneau, F., Sanfeliu Cano, C., Tourné-Péteilh, C., Devoisselle, J.-M., Babonneau, F. J. Phys. Chem. C 2017, 121, 26833. https://doi.org/10.1021/acs.jpcc.7b08919.Suche in Google Scholar

109. Tielens, F., Folliet, N., Bondaz, L., Etemovic, S., Babonneau, F., Gervais, C., Azaïs, T. J. Phys. Chem. C 2017, 121, 17339. https://doi.org/10.1021/acs.jpcc.7b05045.Suche in Google Scholar

110. Klimavicius, V., Dagys, L., Chizhik, V., Balevicius, V. Appl. Magn. Reson. 2017, 48, 673. https://doi.org/10.1007/s00723-017-0891-z.Suche in Google Scholar

111. Wu, C., Guo, F., Zhuang, L., Ai, X., Zhong, F., Yang, H., Qian, J. ACS Energy Lett 2020, 5, 1644. https://doi.org/10.1021/acsenergylett.0c00804.Suche in Google Scholar

112. Langer, J., Epp, V., Heitjans, P., Mautner, F. A., Wilkening, M. Phys. Rev. B 2013, 88, 094304; https://doi.org/10.1103/physrevb.88.094304.Suche in Google Scholar

113. Heitjans, P. Z. Phys. Chem. 2015, 229, 1263. https://doi.org/10.1515/zpch-2015-9033.Suche in Google Scholar

114. Wang, Q., Sarkar, A., Wang, Di., Velasco, L., Azmi, R., Bhattacharya, S. S., Bergfeldt, T., Düvel, A., Heitjans, P., Brezesinski, T., Hahn, H., Breitung, B. Energy Environ. Sci. 2019, 12, 2433. https://doi.org/10.1039/c9ee00368a.Suche in Google Scholar

115. Heitjans, P., Kärger, J. Diffusion in Condensed Matter: Methods, Materials, Models, 3rd ed.; Springer: Berlin, 2018.Suche in Google Scholar

116. Ishii, Y., Tycko, R. J. Magn. Reson. 2000, 142, 199. https://doi.org/10.1006/jmre.1999.1976.Suche in Google Scholar PubMed

117. Maly, T., Debelouchina, G. T., Bajaj, V. S., Hu, K., Joo, C., Mak-Jurkauskas, M. L., Sirigiri, J. R., van der Wel, P. C. A., Herzfeld, J., Temkin, R. J., Griffin, R. G. J. Chem. Phys. 2008, 128, 52211. https://doi.org/10.1063/1.2833582.Suche in Google Scholar PubMed PubMed Central

118. Hovav, Y., Feintuch, A., Vega, S. Phys. Chem. Chem. Phys. 2013, 15, 188. https://doi.org/10.1039/c2cp42897k.Suche in Google Scholar PubMed

119. Mentink-Vigier, F., Akbey, U., Hovav, Y., Vega, S., Oschkinat, H., Feintuch, A. J. Magn. Reson. 2012, 224, 13. https://doi.org/10.1016/j.jmr.2012.08.013.Suche in Google Scholar PubMed

120. Hovav, Y., Feintuch, A., Vega, S. J. Magn. Reson. 2012, 214, 29. https://doi.org/10.1016/j.jmr.2011.09.047.Suche in Google Scholar PubMed

121. Lesage, A., Lelli, M., Gajan, D., Caporini, M. A., Vitzthum, V., Mieville, P., Alauzun, J., Roussey, A., Thieuleux, C., Mehdi, A., Bodenhausen, G., Coperet, C., Emsley, L. J. Am. Chem. Soc. 2010, 132, 15459. https://doi.org/10.1021/ja104771z.Suche in Google Scholar PubMed

122. Conley, M. P., Drost, R. M., Baffert, M., Gajan, D., Elsevier, C., Franks, W. T., Oschkinat, H., Veyre, L., Zagdoun, A., Rossini, A., Lelli, M., Lesage, A., Casano, G., Ouari, O., Tordo, P., Emsley, L., Coperet, C., Thieuleux, C. Chem. Eur J. 2013, 19, 12234. https://doi.org/10.1002/chem.201302484.Suche in Google Scholar PubMed

123. Conley, M. P., Rossini, A. J., Comas-Vives, A., Valla, M., Casano, G., Ouari, O., Tordo, P., Lesage, A., Emsley, L., Coperet, C. Phys. Chem. Chem. Phys. 2014, 16, 17822. https://doi.org/10.1039/c4cp01973c.Suche in Google Scholar PubMed

124. Ong, T. C., Liao, W. C., Mougel, V., Gajan, D., Lesage, A., Emsley, L., Coperet, C. Angew. Chem. Int. Ed. 2016, 55, 4743. https://doi.org/10.1002/anie.201510821.Suche in Google Scholar PubMed

125. Liao, W. C., Ong, T. C., Gajan, D., Bernada, F., Sauvee, C., Yulikov, M., Pucino, M., Schowner, R., Schwarzwalder, M., Buchmeiser, M. R., Jeschke, G., Tordo, P., Ouari, O., Lesage, A., Emsley, L., Coperet, C. Chem. Sci. 2017, 8, 416. https://doi.org/10.1039/c6sc03139k.Suche in Google Scholar PubMed PubMed Central

126. Pump, E., Bendjeriou-Sedjerari, A., Viger-Gravel, J., Gajan, D., Scotto, B., Samantaray, M. K., Abou-Hamad, E., Gurinov, A., Almaksoud, W., Cao, Z., Lesage, A., Cavallo, L., Emsley, L., Basset, J. M. Chem. Sci. 2018, 9, 4866. https://doi.org/10.1039/c8sc00532j.Suche in Google Scholar PubMed PubMed Central

127. Azais, T., von Euw, S., Ajili, W., Auzoux-Bordenave, S., Bertani, P., Gajan, D., Emsley, L., Nassif, N., Lesage, A. Solid State NMR 2019, 102, 2. https://doi.org/10.1016/j.ssnmr.2019.06.001.Suche in Google Scholar PubMed

128. Eisenschmidt, T. C., Kirss, R. U., Deutsch, P. P., Hommeltoft, S. I., Eisenberg, R., Bargon, J., Lawler, R. G., Balch, A. L. J. Am. Chem. Soc. 1987, 109, 8089. https://doi.org/10.1021/ja00260a026.Suche in Google Scholar

129. Bowers, C. R., Weitekamp, D. P. Phys. Rev. Lett. 1986, 57, 2645. https://doi.org/10.1103/physrevlett.57.2645.Suche in Google Scholar

130. Bowers, C. R., Jones, D. H., Kurur, N. D., Labinger, J. A., Pravica, M. G., Weitekamp, D. P. Adv. Magn. Res. 1990, 15, 269. https://doi.org/10.1016/b978-0-12-025514-6.50018-6.Suche in Google Scholar

131. Hunger, M. Catal. Today 2004, 97, 3. https://doi.org/10.1016/j.cattod.2004.03.061.Suche in Google Scholar

132. Henning, H., Dyballa, M., Scheibe, M., Klemm, E., Hunger, M. Chem. Phys. Lett. 2013, 555, 258. https://doi.org/10.1016/j.cplett.2012.10.068.Suche in Google Scholar

133. Arzumanov, S. S., Stepanov, A. G. J. Phys. Chem. C 2013, 117, 2888. https://doi.org/10.1021/jp311345r.Suche in Google Scholar

134. Buntkowsky, G., Gutmann, T., Petrova, M. V., Ivanov, K. L., Bommerich, U., Plaumann, M., Bernarding, J. Solid State NMR 2014, 63-64, 20. https://doi.org/10.1016/j.ssnmr.2014.07.002.Suche in Google Scholar PubMed

135. Heinze, M. T., Zill, J. C., Matysik, J., Einicke, W. D., Gläser, R., Stark, A. Phys. Chem. Chem. Phys. 2014, 16, 24359. https://doi.org/10.1039/c4cp02749c.Suche in Google Scholar PubMed

136. Fraissard, J., Jameson, C., Saam, B., Brunner, E., Hersman, W., Goodson, B., Meersmann, T., Fujiwara, H., Wang, L.-Q., Sozzani, P. Hyperpolarized Xenon-129 Magnetic Resonance: Concepts, Production, Techniques and Applications; Royal Society of Chemistry: London Cambridge, 2015.Suche in Google Scholar

137. Shantz, D. F., Fild, C., Koller, H., Lobo, R. F. J. Phys. Chem. B 1999, 103, 10858. https://doi.org/10.1021/jp992549u.Suche in Google Scholar

138. Shantz, D. F., Lobo, R. F. Top. Catal. 1999, 9, 1. https://doi.org/10.1023/a:1019146102527.10.1023/A:1019146102527Suche in Google Scholar

139. Wang, B., Côté, A. P., Furukawa, H., O’Keeffe, M., Yaghi, O. M. Nature 2008, 453, 207. https://doi.org/10.1038/nature06900.Suche in Google Scholar PubMed

140. Riedel, E., Janiak, C. Anorganische Chemie; De Gruyter: Oldenburg, 2007.10.1515/9783110189032Suche in Google Scholar

141. Zhang, C., Lively, R. P., Zhang, K., Johnson, J. R., Karvan, O., Koros, W. J. J. Phys. Chem. Lett. 2012, 3, 2130. https://doi.org/10.1021/jz300855a.Suche in Google Scholar PubMed

142. CEJKA, J., van Bekkum, H., Corma, A., Schüth, F. Introduction to Zeolite Science and Practice, in Studies in Surface Science and Catalysis, Vol. 168; Elsevier BV: Amsterdam, Neth, 2007.Suche in Google Scholar

143. Demuth, D., Sattig, M., Steinrücken, E., Weigler, M., Vogel, M. Z. Phys. Chem. 2018, 232, 1059. https://doi.org/10.1515/zpch-2017-1027.Suche in Google Scholar

144. Kärger, J., Vasenkov, S., Auerbach, S. M. Diffusion in zeolites. In Handbook of Zeolite Science and Technology; CRC Press, 2003, pp 458–560.10.1201/9780203911167.ch10Suche in Google Scholar

145. Weigler, M., Brodrecht, M., Breitzke, H., Dietrich, F., Sattig, M., Buntkowsky, G., Vogel, M. Z. Phys. Chem. 2018, 232, 1041. https://doi.org/10.1515/zpch-2017-1034.Suche in Google Scholar

146. Grünberg, B., Emmler, T., Gedat, E., Shenderovich, I., Findenegg, G. H., Limbach, H. H., Buntkowsky, G. Chem. Eur J. 2004, 10, 5689. https://doi.org/10.1002/chem.200400351.Suche in Google Scholar

147. Brodrecht, M., Breitzke, H., Gutmann, T., Buntkowsky, G. Chem. Eur J. 2018, 24, 17814. https://doi.org/10.1002/chem.201804065.Suche in Google Scholar

148. Brodrecht, M., Kumari, B., Breitzke, H., Gutmann, T., Buntkowsky, G. Z. Phys. Chem. 2018, 232, 1127. https://doi.org/10.1515/zpch-2017-1059.Suche in Google Scholar

149. Brodrecht, M., Kunnari, B., Thankamony, A. S. S. L., Breitzke, H., Gutmann, T., Buntkowsky, G. Chem. Eur J. 2019, 25, 5214. https://doi.org/10.1002/chem.201805480.Suche in Google Scholar

150. Schottner, S., Brodrecht, M., Uhlein, E., Dietz, C., Breitzke, H., Tietze, A. A., Buntkowsky, G., Gallei, M. Macromolecules 2019, 52, 2631. https://doi.org/10.1021/acs.macromol.8b02758.Suche in Google Scholar

151. Grün, M., Unger, K. K., Matsumoto, A., Tsutsumi, K. Microporous Mesoporous Mater. 1999, 27, 207. https://doi.org/10.1016/s1387-1811(98)00255-8.Suche in Google Scholar

152. Buntkowsky, G., Vogel, M., Winter, R. Z. Phys. Chem. 2018, 232, 937. https://doi.org/10.1515/zpch-2018-1110.Suche in Google Scholar

153. Richert, R. Annu. Rev. Phys. Chem. 2011, 62, 65. https://doi.org/10.1146/annurev-physchem-032210-103343.Suche in Google Scholar PubMed

154. Brodrecht, M., Klotz, E., Lederle, C., Breitzke, H., Stühn, B., Vogel, M., Buntkowsky, G. Z. Phys. Chem. 2018, 232, 1003–1016. https://doi.org/10.1515/zpch-2017-1030.Suche in Google Scholar

155. Guo, X.-Y., Watermann, T., Sebastiani, D. J. Phys. Chem. B 2014, 118, 10207. https://doi.org/10.1021/jp505203t.Suche in Google Scholar PubMed

156. Hermens, J. L., de Bruijn, J. H., Brooke, D. N. Environ. Toxicol. Chem. 2013, 32, 732. https://doi.org/10.1002/etc.2141.Suche in Google Scholar PubMed

157. Leo, A., Hansch, C., Elkins, D. Chem. Rev. 1971, 71, 525. https://doi.org/10.1021/cr60274a001.Suche in Google Scholar

158. Kumari, B., Brodrecht, M., Gutmann, T., Breitzke, H., Buntkowsky, G. Appl. Magn. Reson. 2019, 50, 1399. https://doi.org/10.1007/s00723-019-01156-2.Suche in Google Scholar

159. Kumari, B., Brodrecht, M., Breitzke, H., Werner, M., Grunberg, B., Limbach, H. H., Forg, S., Sanjon, E. P., Drossel, B., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2018, 122, 19540. https://doi.org/10.1021/acs.jpcc.8b04745.Suche in Google Scholar

160. Vyalikh, A., Emmler, T., Shenderovich, I., Zeng, Y., Findenegg, G. H., Buntkowsky, G. Phys. Chem. Chem. Phys. 2007, 9, 2249. https://doi.org/10.1039/b617744a.Suche in Google Scholar PubMed

161. Vyalikh, A., Emmler, T., Gedat, E., Shenderovich, I., Findenegg, G. H., Limbach, H. H., Buntkowsky, G. Solid State NMR 2005, 28, 117. https://doi.org/10.1016/j.ssnmr.2005.07.001.Suche in Google Scholar PubMed

162. Harrach, M. F., Drossel, B., Winschel, W., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2015, 119, 28961. https://doi.org/10.1021/acs.jpcc.5b09537.Suche in Google Scholar

163. van Rossum, B. J., Förster, H., de Groot, H. J. M. J. Magn. Reson. 1997, 124, 516. https://doi.org/10.1006/jmre.1996.1089.Suche in Google Scholar

164. Hoffmann, M. M., Bothe, S., Brodrecht, M., Klimavicius, V., Haro-Mares, N. B., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2020, 124, 5145. https://doi.org/10.1021/acs.jpcc.9b10504.Suche in Google Scholar

165. Hoffmann, M. M., Bothe, S., Gutmann, T., Buntkowsky, G. J. Phys. Chem. B 2018, 122, 4913. https://doi.org/10.1021/acs.jpcb.8b03456.Suche in Google Scholar

166. Hoffmann, M. M., Too, M. D., Vogel, M., Gutmann, T., Buntkowsky, G. J. Phys. Chem. B 2020, 124, 9115. https://doi.org/10.1021/acs.jpcb.0c06124.Suche in Google Scholar

167. Hoffmann, M. M., Horowitz, R. H., Gutmann, T., Buntkowsky, G. J. Chem. Eng. Data 2021, 66, 2480. https://doi.org/10.1021/acs.jced.1c00101.Suche in Google Scholar

168. Daube, D., Aladin, V., Heiliger, J., Wittmann, J. J., Barthelmes, D., Bengs, C., Schwalbe, H., Corzilius, B. J. Am. Chem. Soc. 2016, 138, 16572. https://doi.org/10.1021/jacs.6b08683.Suche in Google Scholar

169. Hoffmann, M. M., Bothe, S., Gutmann, T., Hartmann, F.-F., Reggelin, M., Buntkowsky, G. J. Phys. Chem. C 2017, 121, 2418. https://doi.org/10.1021/acs.jpcc.6b13087.Suche in Google Scholar

170. Aladin, V., Corzilius, B. Solid State NMR 2019, 99, 27. https://doi.org/10.1016/j.ssnmr.2019.02.004.Suche in Google Scholar

171. Park, H., Uluca-Yazgi, B., Heumann, S., Schlögl, R., Granwehr, J., Heise, H., Schleker, P. P. M. J. Magn. Reson. 2020, 312, 106688. https://doi.org/10.1016/j.jmr.2020.106688.Suche in Google Scholar

172. Gibby, M. G., Pines, A., Waugh, J. S. Chem. Phys. Lett. 1972, 16, 296. https://doi.org/10.1016/0009-2614(72)80276-8.Suche in Google Scholar

173. White, J. L., Haw, J. F. J. Am. Chem. Soc. 1990, 112, 5896. https://doi.org/10.1021/ja00171a049.Suche in Google Scholar

174. Macdonald, P. M., Soong, R. J. Magn. Reson. 2007, 188, 1. https://doi.org/10.1016/j.jmr.2007.06.002.Suche in Google Scholar

175. Higgins, J. S., Hodgson, A. H., Law, R. V. J. Mol. Struct. 2002, 602–603, 505. https://doi.org/10.1016/s0022-2860(01)00731-1.Suche in Google Scholar

176. Hoffmann, M. M., Bothe, S., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2017, 121, 22948. https://doi.org/10.1021/acs.jpcc.7b07965.Suche in Google Scholar

177. Bothe, S., Hoffmann, M. M., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2017, 121, 27089. https://doi.org/10.1021/acs.jpcc.7b07967.Suche in Google Scholar

178. Bothe, S., Nowag, J., Klimavičius, V., Hoffmann, M., Troitskaya, T. I., Amosov, E. V., Tormyshev, V. M., Kirilyuk, I., Taratayko, A., Kuzhelev, A., Parkhomenko, D., Bagryanskaya, E., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2018, 122, 11422. https://doi.org/10.1021/acs.jpcc.8b02570.Suche in Google Scholar

Received: 2021-09-20
Revised: 2021-10-12
Accepted: 2021-10-12
Published Online: 2021-10-27
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Special issue on the occasion of the 75th birthday of Paul Heitjans
  4. Contribution to Special Issue dedicated to Paul Heitjans
  5. Unusual cation coordination in nanostructured mullites
  6. A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
  7. Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
  8. Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
  9. Status and progress of ion-implanted βNMR at TRIUMF
  10. How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
  11. Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
  12. Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
  13. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
  14. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
  15. Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
  16. How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
  17. Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
  18. Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
  19. Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
  20. On the CaF2-BaF2 interface
  21. The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
  22. Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
  23. Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
  24. Ionic transport in K2Ti6O13
  25. F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
  26. An overview of thermotransport in fluorite-related ionic oxides
Heruntergeladen am 17.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3132/html
Button zum nach oben scrollen