Abstract
The ionic conductivity of alkali aluminum germanium phosphates (MAGP) has been investigated by two different techniques, i.) a fs-Plasma-Charge Attachment Induced Transport (CAIT) approach and ii.) a classical two electrode DC approach. Amorphous MAGP samples of the composition M1.5Al0.5Ge1.5(PO4)3 M=(Li–Cs) have been synthesized by the melt-quenching technique. Comparison of fs-Plasma-CAIT and DC data reveal that the ionic conductivities as well as the activation energies for ion transport agree within the error margins of the experiment. While conventional expectation suggests that a DC approach should fail because of spontaneous charge carrier blocking, this work demonstrates that DC measurements are a simple tool for quantifying ionic conductivities provided that only a small amount of charge has been transported in total.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: INST 160/627-1 FUGG
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Financial support of this work by the DFG (German Science Foundation) (INST 160/627-1 FUGG).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Barsoukov, E., Macdonald, J. R. Impedance Spectroscopy; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2005.10.1002/0471716243Suche in Google Scholar
2. Ohno, S., Bernges, T., Buchheim, J., Duchardt, M., Hatz, A.-K., Kraft, M. A., Kwak, H., Santhosha, A. L., Liu, Z., Minafra, N., Tsuji, F., Sakuda, A., Schlem, R., Xiong, S., Zhang, Z., Adelhelm, P., Chen, H., Hayashi, A., Jung, Y. S., Lotsch, B. V., Roling, B., Vargas-Barbosa, N. M., Zeier, W. G. ACS Energy Lett. 2020, 5, 910–915; https://doi.org/10.1021/acsenergylett.9b02764.Suche in Google Scholar
3. de Souza, R. A., Martin, M. Phys. Chem. Chem. Phys. 2008, 10, 2356–2367; https://doi.org/10.1039/b719618k.Suche in Google Scholar PubMed
4. Mehrer, H. Z. Phys. Chem. 2009, 223, 1143–1160; https://doi.org/10.1524/zpch.2009.6070.Suche in Google Scholar
5. Brinkmann, C., Faske, S., Koch, B., Vogel, M. Z. Phys. Chem. 2010, 224, 1535–1553; https://doi.org/10.1524/zpch.2010.0014.Suche in Google Scholar
6. Heitjans, P., Indris, S., Wilkening, M. Solid-state diffusion and NMR. In Diffusion Fundamentals, Leipzig 2005. First Diffusion Fundamentals Conference in Leipzig, September 22–24, 2005; Kärger J., Grinberg, F., Heitjans, P., Ito, T., Eds. Leipziger Univ.-Verl: Leipzig, 2005; pp. 45–64.10.62721/diffusion-fundamentals.2.231Suche in Google Scholar
7. Volgmann, K., Epp, V., Langer, J., Stanje, B., Heine, J., Nakhal, S., Lerch, M., Wilkening, M., Heitjans, P. Z. Phys. Chem. 2017, 231, 47; https://doi.org/10.1515/zpch-2017-0952.Suche in Google Scholar
8. Zielniok, D., Cramer, C., Eckert, H. Chem. Mater. 2007, 19, 3162–3170; https://doi.org/10.1021/cm0628092.Suche in Google Scholar
9. Wang, X.-L., An, K., Cai, L., Feng, Z., Nagler, S. E., Daniel, C., Rhodes, K. J., Stoica, A. D., Skorpenske, H. D., Liang, C., Zhang, W., Kim, J., Qi, Y., Harris, S. J. Sci. Rep. 2012, 2, 747; https://doi.org/10.1038/srep00747.Suche in Google Scholar PubMed PubMed Central
10. Schäfer, M., Weitzel, K.-M. Phys. Chem. Chem. Phys. 2011, 13, 20112–20122; https://doi.org/10.1039/c1cp21215j.Suche in Google Scholar PubMed
11. Menezes, P. V., Martin, J., Schäfer, M., Staesche, H., Roling, B., Weitzel, K.-M. Phys. Chem. Chem. Phys. 2011, 13, 20123–20128; https://doi.org/10.1039/c1cp21216h.Suche in Google Scholar PubMed
12. Martin, J., Graef, M., Kramer, T., Jooss, C., Choe, M.-J., Thornton, K., Weitzel, K.-M. Phys. Chem. Chem. Phys. 2017, 19, 9762–9769; https://doi.org/10.1039/c7cp00198c.Suche in Google Scholar PubMed
13. Hein, A., Schäfer, M., Weitzel, K.-M. Solid State Ionics 2019, 339, 114996; https://doi.org/10.1016/j.ssi.2019.06.004.Suche in Google Scholar
14. Hein, A., Schäfer, M., Weitzel, K.-M. Solid State Ionics 2019, 339, 114997; https://doi.org/10.1016/j.ssi.2019.06.005.Suche in Google Scholar
15. Schäfer, M., Weitzel, K.-M. Solid State Ionics 2015, 282, 70–75; https://doi.org/10.1016/j.ssi.2015.09.023.Suche in Google Scholar
16. Rein, K., Schäfer, M., Weitzel, K.-M. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1422–1427; https://doi.org/10.1109/tdei.2020.008814.Suche in Google Scholar
17. Wiemer, J. L., Weitzel, K.-M. Appl. Phys. Lett. 2018, 113, 52902; https://doi.org/10.1063/1.5045530.Suche in Google Scholar
18. Wiemer, J. L., Mardeck, S., Zülch, C., Weitzel, K.-M. Solid State Ionics 2020, 357, 115469; https://doi.org/10.1016/j.ssi.2020.115469.Suche in Google Scholar
19. Anantharamulu, N., Koteswara Rao, K., Rambabu, G., Vijaya Kumar, B., Radha, V., Vithal, M. J. Mater. Sci. 2011, 46, 2821–2837; https://doi.org/10.1007/s10853-011-5302-5.Suche in Google Scholar
20. Chen, S., Wu, C., Shen, L., Zhu, C., Huang, Y., Xi, K., Maier, J., Yu, Y. Advanced Materials 2017, 29, 1700431; https://doi.org/10.1002/adma.201700431.Suche in Google Scholar PubMed
21. Wiemer, J. L., Schäfer, M., Weitzel, K.-M. J. Phys. Chem. C 2021, 125, 4977–4985; https://doi.org/10.1021/acs.jpcc.0c11164.Suche in Google Scholar
22. Pradel, A., Ribes, M. J. Non-Cryst. Solids 1994, 172–174, 1315–1323; https://doi.org/10.1016/0022-3093(94)90658-0.Suche in Google Scholar
23. Bunde, A., Ingram, M. D., Maass, P. J. Non-Cryst. Solids 1994, 172–174, 1222–1236; https://doi.org/10.1016/0022-3093(94)90647-5.Suche in Google Scholar
24. Martin, J., Schäfer, M., Weitzel, K.-M. J. Non-Cryst. Solids 2015, 430, 73–78; https://doi.org/10.1016/j.jnoncrysol.2015.10.004.Suche in Google Scholar
25. Weppner, W., Huggins, R. A. Annu. Rev. Mater. Sci. 1978, 8, 269–311; https://doi.org/10.1146/annurev.ms.08.080178.001413.Suche in Google Scholar
26. Riess, I. Solid State Ionics 1991, 44, 207–214; https://doi.org/10.1016/0167-2738(91)90009-z.Suche in Google Scholar
27. Lindgren, P., Kastlunger, G., Peterson, A. A. ACS Catal. 2020, 10, 121–128; https://doi.org/10.1021/acscatal.9b02799.Suche in Google Scholar
28. Ebisuzaki, Y., Kass, W. J., O’Keeffe, M. J. Chem. Phys. 1968, 49, 3329–3332; https://doi.org/10.1063/1.1670604.Suche in Google Scholar
29. Ishiyama, T., Nishii, J., Yamashita, T., Kawazoe, H., Omata, T. J. Mater. Chem. A 2014, 2, 3940; https://doi.org/10.1039/c3ta14561a.Suche in Google Scholar
30. Rickert, H. Electrochemistry of Solids. An Introduction; Springer: Berlin, Heidelberg, 1982.10.1007/978-3-642-68312-1Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides
Artikel in diesem Heft
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides