Startseite Naturwissenschaften Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br

  • Barbara Koch , Shiao Tong Kong , Özgül Gün , Hans-Jörg Deiseroth EMAIL logo und Hellmut Eckert EMAIL logo
Veröffentlicht/Copyright: 29. November 2021

Abstract

A comprehensive multinuclear (7Li, 31P, 35Cl, 77Se, 79Br) nuclear magnetic resonance (NMR) study has been conducted to characterize local structural configurations and atomic distributions in the crystallographically disordered solid solutions of composition Li6PS5−x Se x X (0 ≤ x ≤ 1, X = Cl, Br) with the Argyrodite structure. In contrast to the situation with the corresponding iodide homologs, there is no structural ordering between the 4a and 4c sites, with the halide ions occupying both of them with close to statistical probabilities. Nevertheless, throughout the composition range, the 16e Wyckoff sites of the Argyrodite structure are exclusively occupied by the chalcogen atoms, forming PY4 3− (Y = S, Se) tetrahedra, indicating the absence of P-halogen bonds. 31P magic-angle spinning (MAS)-NMR can serve to differentiate between the various possible PS4−n Se n 3− tetrahedral units in a quantitative fashion. Compared to the case of the anion-ordered Li6PS5−x Se x I solid solutions, the preference of P–S over P–Se bonding is significantly stronger, but it is weaker than in the halide free solid solutions Li7PS6−x Se x . Each individual PS4−n Se n 3− tetrahedron is represented by a peak cluster of up to five resonances, representing the five different configurations in which the PY4 3− ions are surrounded by the four closest chalcogenide and halide anions occupying the 4c sites; this distribution is close to statistical and can be used to deduce deviations of sample compositions from ideal stoichiometry. Non-linear 7Li chemical shift trends as a function of x are interpreted to indicate that the Coulombic traps created by sulfur-rich PS4−n Se n 3− ions (n ≤ 2) within the energy landscape of the lithium ions are deeper than those of the other anionic species present (i.e., selenium-richer PY4 3− tetrahedra, isolated chalcogenide or iodide ions), causing the Li+ ions to spend on average more time near them. Temperature dependent static 7Li NMR linewidths indicate higher mobility in the present systems than in the previously studied Li6PS5−x Se x I solid solutions. Unlike the situation in Li6PS5−x Se x I no rate distinction between intra-cage and inter-cage ionic motion is evident. Lithium ionic mobility increases with increasing selenium content. This effect can be attributed to the influences of higher anionic polarizability and a widening of the lithium ion migration pathways caused by lattice expansion. The results offer interesting new insights into the structure/ionic mobility correlations in this new class of compounds.


Corresponding authors: Hans-Jörg Deiseroth, Institut für Anorganische Chemie, Universität Siegen, Adolf-Reichwein-Str., 57068 Siegen, Germany, E-mail: ; and Hellmut Eckert, Institut für Physikalische Chemie, WWU Münster, Corrensstraße 30, D 48149 Münster, Germany; and São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador Sãocarlense 400, São Carlos, SP 13566-590, Brazil, E-mail:
Dedicated to Paul Heitjans on the occasion of his 75th birthday.

Award Identifier / Grant number: SFB 458

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was supported by Deutsche Forschungsgemeinschaft, SFB 458 (2000–2009).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zheng, F., Kotobuki, M., Song, S., Lai, M. O., Li, L. J. Power Sources 2018, 389, 198; https://doi.org/10.1016/j.jpowsour.2018.04.022.Suche in Google Scholar

2. Wu, Z., Xie, Z., Yoshida, A., Wang, Z., Hao, X., Abudula, A., Guan, G. Renew. Sustain. Energy Rev. 2019, 109, 367; https://doi.org/10.1016/j.rser.2019.04.035.Suche in Google Scholar

3. Chen, S., Xie, D., Liu, G., Mwizerwa, J. P., Zhang, Q., Zhao, Y., Xu, X., Yao, X. Energy Storage Mater. 2018, 14, 58; https://doi.org/10.1016/j.ensm.2018.02.020.Suche in Google Scholar

4. Kuhs, W. P., Nitsche, R., Scheunemann, K. Mater. Res. Bull. 1979, 14, 241; https://doi.org/10.1016/0025-5408(79)90125-9.Suche in Google Scholar

5. Deiseroth, H. J., Kong, S. T., Eckert, H., Vannahme, J., Reiner, C., Zaiß, T., Schlosser, M. Angew. Chem. Int. Ed. 2008, 47, 755; https://doi.org/10.1002/anie.200703900.Suche in Google Scholar PubMed

6. Kong, S. T., Koch, B., Gün, Ö., Deiseroth, H. J., Eckert, H., Reiner, C. Chem. Eur J. 2010, 16, 5138; https://doi.org/10.1002/chem.200903023.Suche in Google Scholar PubMed

7. Kong, S. T., Deiseroth, H. J., Reiner, C., Gün, Ö., Neumann, E., Ritter, C., Zahn, D. Chem. Eur J. 2010, 16, 2198; https://doi.org/10.1002/chem.200902470.Suche in Google Scholar PubMed

8. Deiseroth, H. J., Maier, J., Weichert, K., Nickel, V., Kong, S. T., Reiner, C. Z. Anorg. Allg. Chem. 2011, 637, 1287; https://doi.org/10.1002/zaac.201100158.Suche in Google Scholar

9. Yubuchi, S., Uematsu, M., Deguchi, M., Hayashi, A., Tatsumisago, M. ACS Appl. Energy Mater. 2018, 1, 3622; https://doi.org/10.1021/acsaem.8b00280.Suche in Google Scholar

10. Ziolkowska, D., Arnold, W., Druffel, T., Sunkara, M., Wang, H. ACS Appl. Mater. Interfaces 2019, 11, 6015; https://doi.org/10.1021/acsami.8b19181.Suche in Google Scholar PubMed

11. Zhang, Z., Sun, Y., Duan, X., Peng, L., Jia, H., Zhang, Y., Shan, B., Xie, J. J. Mater. Chem. 2019, 7, 2717.10.1039/C8TA10790DSuche in Google Scholar

12. Arnold, W., Buchberger, D. A., Li, Y., Sunkara, M., Druffel, T., Wang, H. J. Power Sources 2020, 464, 228158; https://doi.org/10.1016/j.jpowsour.2020.228158.Suche in Google Scholar

13. Rao, R. P., Sharma, N., Peterson, V. K., Adams, S. Solid State Ionics 2013, 230, 72; https://doi.org/10.1016/j.ssi.2012.09.014.Suche in Google Scholar

14. Maughan, A. E., Ha, Y., Pekarek, R. T., Schulze, M. C. Chem. Mater. 2021, 33, 5127; https://doi.org/10.1021/acs.chemmater.1c01170.Suche in Google Scholar

15. Bernges, T., Culver, S. P., Minafra, N., Koerver, R., Zeier, W. G. Inorg. Chem. 2018, 57, 13920; https://doi.org/10.1021/acs.inorgchem.8b02443.Suche in Google Scholar PubMed

16. Schlem, R., Ghidiu, M., Culver, S. P., Hansen, A. L., Zeier, W. G. ACS Appl. Energy Mater. 2020, 3, 9; https://doi.org/10.1021/acsaem.9b01794.Suche in Google Scholar

17. Stamminger, A. R., Ziebarth, B., Mrovec, M., Hammerschmidt, T., Drautz, R. Chem. Mater. 2019, 31, 8673; https://doi.org/10.1021/acs.chemmater.9b02047.Suche in Google Scholar

18. Kraft, M. A., Ohno, S., Zinkevich, T., Koerver, T., Culver, S. P., Fuchs, T., Senyshyn, A., Indris, S., Morgan, B. J., Zeier, W. G. J. Am. Chem. Soc. 2018, 140, 16330; https://doi.org/10.1021/jacs.8b10282.Suche in Google Scholar PubMed

19. Kraft, M. A., Culver, S. P., Calderon, M., Böcher, F., Krauskopf, T., Senyshyn, A., Dietrich, C., Zevalkink, A., Janek, J., Zeier, W. G. J. Am. Chem. Soc. 2017, 139, 10909; https://doi.org/10.1021/jacs.7b06327.Suche in Google Scholar PubMed

20. Gautam, A., Ghidiu, M., Suard, E., Kraft, M., Zeier, W. G. ACS Appl. Energy Mater. 2021, 4, 7309; https://doi.org/10.1021/acsaem.1c01417.Suche in Google Scholar

21. Zhou, L., Minafra, N., Zeier, W. G., Nazar, L. F. Acc. Chem. Res. 2021, 54, 2717; https://doi.org/10.1021/acs.accounts.0c00874.Suche in Google Scholar PubMed

22. Gautam, A., Sadowski, M., Ghidiu, M., Minafra, N., Senyshyn, A., Albe, K., Zeier, W. G. Adv. Energy Mater. 2021, 11, 2003369; https://doi.org/10.1002/aenm.202003369.Suche in Google Scholar

23. Minafra, N., Hogrefe, K., Barbon, F., Helm, B., Li, C., Wilkening, H. M. R., Zeier, W. G. Chem. Mater. 2021, 33, 727; https://doi.org/10.1021/acs.chemmater.0c04150.Suche in Google Scholar

24. Minafra, N., Kraft, M. A., Bernges, T., Li, C., Schlem, R., Morgan, B. J., Zeier, W. G. Inorg. Chem. 2020, 59, 11009; https://doi.org/10.1021/acs.inorgchem.0c01504.Suche in Google Scholar PubMed

25. Gautam, A., Sadowski, M., Prins, N., Eickhoff, H., Minafra, N., Ghidiu, M., Culver, S. P., Albe, K., Fässler, T., Zobel, M., Zeier, W. G. Chem. Mater. 2019, 31, 10178; https://doi.org/10.1021/acs.chemmater.9b03852.Suche in Google Scholar

26. Ohno, S., Helm, B., Fuchs, T., Dewald, G., Kraft, M., Culver, S. P., Senyshyn, A., Zeier, W. G. Chem. Mater. 2019, 31, 4936; https://doi.org/10.1021/acs.chemmater.9b01857.Suche in Google Scholar

27. Zhang, J., Li, L., Zheng, C., Xia, Y., Gan, Y., Huang, H., Liang, C., He, X., Tao, X., Zhang, W. ACS Appl. Mater. Interfaces 2020, 12, 41538; https://doi.org/10.1021/acsami.0c11683.Suche in Google Scholar PubMed

28. Ganapathy, S., Yu, C., van Eck, E. R. H., Wagemaker, M. ACS Energy Lett. 2019, 4, 1092; https://doi.org/10.1021/acsenergylett.9b00610.Suche in Google Scholar

29. Wenzel, S., Sedlmaier, S. J., Dietrich, C., Zeier, W. G., Janek, J. Solid State Ionics 2018, 318, 102; https://doi.org/10.1016/j.ssi.2017.07.005.Suche in Google Scholar

30. Chen, M., Yin, X., Reddy, M. V., Adams, S. J. Mater. Chem. A 2015, 3, 10698.10.1039/C5TA02372FSuche in Google Scholar

31. Chida, S., Miura, A., Rosero-Navarro, N. C., Higuchi, M., Phuc, N. H., Muto, H., Matsuda, A., Tadanaga, K. Ceram. Int. 2018, 44, 742; https://doi.org/10.1016/j.ceramint.2017.09.241.Suche in Google Scholar

32. Chen, M., Adams, S. J. Solid State Electrochem. 2015, 19, 697; https://doi.org/10.1007/s10008-014-2654-1.Suche in Google Scholar

33. Chen, M., Rayavarapu, P. R., Adams, S. Solid State Ionics 2014, 268, 300; https://doi.org/10.1016/j.ssi.2014.05.004.Suche in Google Scholar

34. Li, Y., Arnold, W., Thapa, A., Jasinski, J. B., Sumanasekera, G., Sunkara, M., Druffel, T., Wang, H. ACS Appl. Mater. Interfaces 2020, 12, 42653; https://doi.org/10.1021/acsami.0c08261.Suche in Google Scholar PubMed

35. Jiang, Z., Peng, H., Liu, Y., Zhong, Y., Wang, X., Xia, X., Gu, C., Tu, J. ACS Adv. Energy Mater. 2021, 11, 2101521; https://doi.org/10.1002/aenm.202101521.Suche in Google Scholar

36. Stadler, F., Fietzek, C. ECS Trans. 2020, 25, 177.10.1149/1.3393854Suche in Google Scholar

37. Song, Y. B., Kim, D. H., Kwak, H., Han, D., Kang, S., Lee, J. H., Bak, S. M., Nam, K. W., Lee, H. W., Jung, Y. S. Nano Lett. 2020, 20, 4337; https://doi.org/10.1021/acs.nanolett.0c01028.Suche in Google Scholar PubMed

38. Pecher, O., Kong, S. T., Goebel, T., Nickel, V., Weichert, K., Reiner, C., Deiseroth, H. J., Maier, J., Haarmann, F., Zahn, D. Chem. Eur J. 2010, 16, 8347; https://doi.org/10.1002/chem.201000501.Suche in Google Scholar PubMed

39. De Clerk, N. J. J., Roslon, I., Wagemaker, M. Chem. Mater. 2016, 28, 7955.10.1021/acs.chemmater.6b03630Suche in Google Scholar

40. Morgan, B. J. Chem. Mater. 2021, 33, 2004; https://doi.org/10.1021/acs.chemmater.0c03738.Suche in Google Scholar PubMed PubMed Central

41. Epp, V., Gün, Ö., Deiseroth, H. J., Wilkening, M. J. Phys. Chem. Lett. 2013, 4, 2118; https://doi.org/10.1021/jz401003a.Suche in Google Scholar

42. Epp, V., Gün, Ö., Deiseroth, H. J., Wilkening, M. Phys. Chem. Chem. Phys. 2013, 15, 7121; https://doi.org/10.1039/c3cp44379e.Suche in Google Scholar PubMed

43. Yu, C., Ganapathy, S., van Eck, E. R. H., van Eijck, L., Basak, S., Liu, Y., Zhang, L., Zandbergen, H. W., Wagemaker, M. J. Mater. Chem. 2017, 5, 21178; https://doi.org/10.1039/c7ta05031c.Suche in Google Scholar

44. Yu, C., Ganapathy, S., van Eck, E. R. H., Wange, H., Basak, S., Li, Z., Wagemaker, M. Nat. Commun. 2017, 8, 2086; https://doi.org/10.1038/s41467-017-01187-y.Suche in Google Scholar PubMed PubMed Central

45. Wang, H., Yu, C., Ganapathy, S., van Eck, E. R. H., van Eijck, L., Wagemaker, M. J. Power Sources 2019, 412, 29; https://doi.org/10.1016/j.jpowsour.2018.11.029.Suche in Google Scholar

46. Brinek, M., Hiebl, C., Wilkening, H. M. R. Chem. Mater. 2020, 32, 4754; https://doi.org/10.1021/acs.chemmater.0c01367.Suche in Google Scholar PubMed PubMed Central

47. Brinek, M., Hiebl, C., Hogrefe, K., Hanghofer, I., Wilkening, H. M. R. J. Phys. Chem. 2020, 124, 22934; https://doi.org/10.1021/acs.jpcc.0c06090.Suche in Google Scholar PubMed PubMed Central

48. Hanghofer, I., Gadermaier, B., Wilkening, H. M. R. Chem. Mater. 2019, 31, 4591; https://doi.org/10.1021/acs.chemmater.9b01435.Suche in Google Scholar

49. Schlenker, R., Hansen, A. L., Senyshin, A., Zinkevich, T., Knapp, M., Hupfer, T., Ehrenberg, H., Indris, S. Chem. Mater. 2020, 32, 8420; https://doi.org/10.1021/acs.chemmater.0c02418.Suche in Google Scholar

50. Yu, C., Ganapathy, S., de Klerk, N. J. J., Roslon, I., van Eck, E. R. H., Kentgens, A. P. M., Wagemaker, M. J. Am. Chem. Soc. 2016, 138, 11192; https://doi.org/10.1021/jacs.6b05066.Suche in Google Scholar PubMed

51. Adeli, P., Bazak, J. D., Park, K. H., Kochetkov, I., Huq, A., Goward, G. R., Nazar, L. F. Angew. Chem. Int. Ed. 2019, 58, 8681; https://doi.org/10.1002/anie.201814222.Suche in Google Scholar PubMed

52. Hanghofer, I., Brinek, M., Eisbacher, S. I., Bitschnau, B., Volck, M., Hennige, V., Hanzu, I., Rettenwander, D., Wilkening, H. M. R. Phys. Chem. Chem. Phys. 2019, 21, 8489; https://doi.org/10.1039/c9cp00664h.Suche in Google Scholar PubMed

53. Koch, B. Festkörper-NMR-Studien zur Struktur und Kationenmobilität in kristallinen Lithiumionenleitern. Doctoral Dissertation, University of Münster, Münster, 2009.Suche in Google Scholar

54. Kong, S. T. Syntheses, Characterization and Structural Chemistry of Lithium Argyrodites. Doctoral Dissertation, University of Siegen, Siegen, 2011.Suche in Google Scholar

55. Gün, Ö. Syntheses, Characterization and Structural Chemistry of Lithium Seleno-Argyrodites. Doctoral Dissertation, University of Siegen, 2011.Suche in Google Scholar

56. Maxwell, R., Lathrop, D., Franke, D., Eckert, H. Angew. Chem. Int. Ed. 1990, 29, 882; https://doi.org/10.1002/anie.199008821.Suche in Google Scholar

57. Ohki, H., Harazono, K., Erata, T., Tasaki, A., Ikeda, R. Z. Naturforsch. 1993, 48a, 1005; https://doi.org/10.1515/zna-1993-1008.Suche in Google Scholar

58. Gaudin, E., Boucher, F., Evain, M., Taulelle, F. Chem. Mater. 2000, 12, 1715; https://doi.org/10.1021/cm001011u.Suche in Google Scholar

59. Wang, P., Liu, H., Patel, S., Feng, X., Chien, P. H., Wang, Y., Hu, Y. Y. Chem. Mater. 2020, 32, 3833; https://doi.org/10.1021/acs.chemmater.9b05331.Suche in Google Scholar

60. Koch, B., Kong, S. T., Gün, Ö., Deiseroth, H. J., Eckert, H. Z. Phys. Chem., 2022, 236, 689.Suche in Google Scholar

61. Waugh, J. S., Fedin, I. Sov. Phys. Solid State 1963, 4, 1633.Suche in Google Scholar

Received: 2021-10-14
Accepted: 2021-11-08
Published Online: 2021-11-29
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Special issue on the occasion of the 75th birthday of Paul Heitjans
  4. Contribution to Special Issue dedicated to Paul Heitjans
  5. Unusual cation coordination in nanostructured mullites
  6. A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
  7. Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
  8. Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
  9. Status and progress of ion-implanted βNMR at TRIUMF
  10. How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
  11. Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
  12. Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
  13. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
  14. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
  15. Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
  16. How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
  17. Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
  18. Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
  19. Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
  20. On the CaF2-BaF2 interface
  21. The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
  22. Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
  23. Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
  24. Ionic transport in K2Ti6O13
  25. F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
  26. An overview of thermotransport in fluorite-related ionic oxides
Heruntergeladen am 17.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3139/html
Button zum nach oben scrollen