Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
Abstract
A comprehensive multinuclear (7Li, 31P, 35Cl, 77Se, 79Br) nuclear magnetic resonance (NMR) study has been conducted to characterize local structural configurations and atomic distributions in the crystallographically disordered solid solutions of composition Li6PS5−x Se x X (0 ≤ x ≤ 1, X = Cl, Br) with the Argyrodite structure. In contrast to the situation with the corresponding iodide homologs, there is no structural ordering between the 4a and 4c sites, with the halide ions occupying both of them with close to statistical probabilities. Nevertheless, throughout the composition range, the 16e Wyckoff sites of the Argyrodite structure are exclusively occupied by the chalcogen atoms, forming PY4 3− (Y = S, Se) tetrahedra, indicating the absence of P-halogen bonds. 31P magic-angle spinning (MAS)-NMR can serve to differentiate between the various possible PS4−n Se n 3− tetrahedral units in a quantitative fashion. Compared to the case of the anion-ordered Li6PS5−x Se x I solid solutions, the preference of P–S over P–Se bonding is significantly stronger, but it is weaker than in the halide free solid solutions Li7PS6−x Se x . Each individual PS4−n Se n 3− tetrahedron is represented by a peak cluster of up to five resonances, representing the five different configurations in which the PY4 3− ions are surrounded by the four closest chalcogenide and halide anions occupying the 4c sites; this distribution is close to statistical and can be used to deduce deviations of sample compositions from ideal stoichiometry. Non-linear 7Li chemical shift trends as a function of x are interpreted to indicate that the Coulombic traps created by sulfur-rich PS4−n Se n 3− ions (n ≤ 2) within the energy landscape of the lithium ions are deeper than those of the other anionic species present (i.e., selenium-richer PY4 3− tetrahedra, isolated chalcogenide or iodide ions), causing the Li+ ions to spend on average more time near them. Temperature dependent static 7Li NMR linewidths indicate higher mobility in the present systems than in the previously studied Li6PS5−x Se x I solid solutions. Unlike the situation in Li6PS5−x Se x I no rate distinction between intra-cage and inter-cage ionic motion is evident. Lithium ionic mobility increases with increasing selenium content. This effect can be attributed to the influences of higher anionic polarizability and a widening of the lithium ion migration pathways caused by lattice expansion. The results offer interesting new insights into the structure/ionic mobility correlations in this new class of compounds.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: SFB 458
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This study was supported by Deutsche Forschungsgemeinschaft, SFB 458 (2000–2009).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Zheng, F., Kotobuki, M., Song, S., Lai, M. O., Li, L. J. Power Sources 2018, 389, 198; https://doi.org/10.1016/j.jpowsour.2018.04.022.Suche in Google Scholar
2. Wu, Z., Xie, Z., Yoshida, A., Wang, Z., Hao, X., Abudula, A., Guan, G. Renew. Sustain. Energy Rev. 2019, 109, 367; https://doi.org/10.1016/j.rser.2019.04.035.Suche in Google Scholar
3. Chen, S., Xie, D., Liu, G., Mwizerwa, J. P., Zhang, Q., Zhao, Y., Xu, X., Yao, X. Energy Storage Mater. 2018, 14, 58; https://doi.org/10.1016/j.ensm.2018.02.020.Suche in Google Scholar
4. Kuhs, W. P., Nitsche, R., Scheunemann, K. Mater. Res. Bull. 1979, 14, 241; https://doi.org/10.1016/0025-5408(79)90125-9.Suche in Google Scholar
5. Deiseroth, H. J., Kong, S. T., Eckert, H., Vannahme, J., Reiner, C., Zaiß, T., Schlosser, M. Angew. Chem. Int. Ed. 2008, 47, 755; https://doi.org/10.1002/anie.200703900.Suche in Google Scholar PubMed
6. Kong, S. T., Koch, B., Gün, Ö., Deiseroth, H. J., Eckert, H., Reiner, C. Chem. Eur J. 2010, 16, 5138; https://doi.org/10.1002/chem.200903023.Suche in Google Scholar PubMed
7. Kong, S. T., Deiseroth, H. J., Reiner, C., Gün, Ö., Neumann, E., Ritter, C., Zahn, D. Chem. Eur J. 2010, 16, 2198; https://doi.org/10.1002/chem.200902470.Suche in Google Scholar PubMed
8. Deiseroth, H. J., Maier, J., Weichert, K., Nickel, V., Kong, S. T., Reiner, C. Z. Anorg. Allg. Chem. 2011, 637, 1287; https://doi.org/10.1002/zaac.201100158.Suche in Google Scholar
9. Yubuchi, S., Uematsu, M., Deguchi, M., Hayashi, A., Tatsumisago, M. ACS Appl. Energy Mater. 2018, 1, 3622; https://doi.org/10.1021/acsaem.8b00280.Suche in Google Scholar
10. Ziolkowska, D., Arnold, W., Druffel, T., Sunkara, M., Wang, H. ACS Appl. Mater. Interfaces 2019, 11, 6015; https://doi.org/10.1021/acsami.8b19181.Suche in Google Scholar PubMed
11. Zhang, Z., Sun, Y., Duan, X., Peng, L., Jia, H., Zhang, Y., Shan, B., Xie, J. J. Mater. Chem. 2019, 7, 2717.10.1039/C8TA10790DSuche in Google Scholar
12. Arnold, W., Buchberger, D. A., Li, Y., Sunkara, M., Druffel, T., Wang, H. J. Power Sources 2020, 464, 228158; https://doi.org/10.1016/j.jpowsour.2020.228158.Suche in Google Scholar
13. Rao, R. P., Sharma, N., Peterson, V. K., Adams, S. Solid State Ionics 2013, 230, 72; https://doi.org/10.1016/j.ssi.2012.09.014.Suche in Google Scholar
14. Maughan, A. E., Ha, Y., Pekarek, R. T., Schulze, M. C. Chem. Mater. 2021, 33, 5127; https://doi.org/10.1021/acs.chemmater.1c01170.Suche in Google Scholar
15. Bernges, T., Culver, S. P., Minafra, N., Koerver, R., Zeier, W. G. Inorg. Chem. 2018, 57, 13920; https://doi.org/10.1021/acs.inorgchem.8b02443.Suche in Google Scholar PubMed
16. Schlem, R., Ghidiu, M., Culver, S. P., Hansen, A. L., Zeier, W. G. ACS Appl. Energy Mater. 2020, 3, 9; https://doi.org/10.1021/acsaem.9b01794.Suche in Google Scholar
17. Stamminger, A. R., Ziebarth, B., Mrovec, M., Hammerschmidt, T., Drautz, R. Chem. Mater. 2019, 31, 8673; https://doi.org/10.1021/acs.chemmater.9b02047.Suche in Google Scholar
18. Kraft, M. A., Ohno, S., Zinkevich, T., Koerver, T., Culver, S. P., Fuchs, T., Senyshyn, A., Indris, S., Morgan, B. J., Zeier, W. G. J. Am. Chem. Soc. 2018, 140, 16330; https://doi.org/10.1021/jacs.8b10282.Suche in Google Scholar PubMed
19. Kraft, M. A., Culver, S. P., Calderon, M., Böcher, F., Krauskopf, T., Senyshyn, A., Dietrich, C., Zevalkink, A., Janek, J., Zeier, W. G. J. Am. Chem. Soc. 2017, 139, 10909; https://doi.org/10.1021/jacs.7b06327.Suche in Google Scholar PubMed
20. Gautam, A., Ghidiu, M., Suard, E., Kraft, M., Zeier, W. G. ACS Appl. Energy Mater. 2021, 4, 7309; https://doi.org/10.1021/acsaem.1c01417.Suche in Google Scholar
21. Zhou, L., Minafra, N., Zeier, W. G., Nazar, L. F. Acc. Chem. Res. 2021, 54, 2717; https://doi.org/10.1021/acs.accounts.0c00874.Suche in Google Scholar PubMed
22. Gautam, A., Sadowski, M., Ghidiu, M., Minafra, N., Senyshyn, A., Albe, K., Zeier, W. G. Adv. Energy Mater. 2021, 11, 2003369; https://doi.org/10.1002/aenm.202003369.Suche in Google Scholar
23. Minafra, N., Hogrefe, K., Barbon, F., Helm, B., Li, C., Wilkening, H. M. R., Zeier, W. G. Chem. Mater. 2021, 33, 727; https://doi.org/10.1021/acs.chemmater.0c04150.Suche in Google Scholar
24. Minafra, N., Kraft, M. A., Bernges, T., Li, C., Schlem, R., Morgan, B. J., Zeier, W. G. Inorg. Chem. 2020, 59, 11009; https://doi.org/10.1021/acs.inorgchem.0c01504.Suche in Google Scholar PubMed
25. Gautam, A., Sadowski, M., Prins, N., Eickhoff, H., Minafra, N., Ghidiu, M., Culver, S. P., Albe, K., Fässler, T., Zobel, M., Zeier, W. G. Chem. Mater. 2019, 31, 10178; https://doi.org/10.1021/acs.chemmater.9b03852.Suche in Google Scholar
26. Ohno, S., Helm, B., Fuchs, T., Dewald, G., Kraft, M., Culver, S. P., Senyshyn, A., Zeier, W. G. Chem. Mater. 2019, 31, 4936; https://doi.org/10.1021/acs.chemmater.9b01857.Suche in Google Scholar
27. Zhang, J., Li, L., Zheng, C., Xia, Y., Gan, Y., Huang, H., Liang, C., He, X., Tao, X., Zhang, W. ACS Appl. Mater. Interfaces 2020, 12, 41538; https://doi.org/10.1021/acsami.0c11683.Suche in Google Scholar PubMed
28. Ganapathy, S., Yu, C., van Eck, E. R. H., Wagemaker, M. ACS Energy Lett. 2019, 4, 1092; https://doi.org/10.1021/acsenergylett.9b00610.Suche in Google Scholar
29. Wenzel, S., Sedlmaier, S. J., Dietrich, C., Zeier, W. G., Janek, J. Solid State Ionics 2018, 318, 102; https://doi.org/10.1016/j.ssi.2017.07.005.Suche in Google Scholar
30. Chen, M., Yin, X., Reddy, M. V., Adams, S. J. Mater. Chem. A 2015, 3, 10698.10.1039/C5TA02372FSuche in Google Scholar
31. Chida, S., Miura, A., Rosero-Navarro, N. C., Higuchi, M., Phuc, N. H., Muto, H., Matsuda, A., Tadanaga, K. Ceram. Int. 2018, 44, 742; https://doi.org/10.1016/j.ceramint.2017.09.241.Suche in Google Scholar
32. Chen, M., Adams, S. J. Solid State Electrochem. 2015, 19, 697; https://doi.org/10.1007/s10008-014-2654-1.Suche in Google Scholar
33. Chen, M., Rayavarapu, P. R., Adams, S. Solid State Ionics 2014, 268, 300; https://doi.org/10.1016/j.ssi.2014.05.004.Suche in Google Scholar
34. Li, Y., Arnold, W., Thapa, A., Jasinski, J. B., Sumanasekera, G., Sunkara, M., Druffel, T., Wang, H. ACS Appl. Mater. Interfaces 2020, 12, 42653; https://doi.org/10.1021/acsami.0c08261.Suche in Google Scholar PubMed
35. Jiang, Z., Peng, H., Liu, Y., Zhong, Y., Wang, X., Xia, X., Gu, C., Tu, J. ACS Adv. Energy Mater. 2021, 11, 2101521; https://doi.org/10.1002/aenm.202101521.Suche in Google Scholar
36. Stadler, F., Fietzek, C. ECS Trans. 2020, 25, 177.10.1149/1.3393854Suche in Google Scholar
37. Song, Y. B., Kim, D. H., Kwak, H., Han, D., Kang, S., Lee, J. H., Bak, S. M., Nam, K. W., Lee, H. W., Jung, Y. S. Nano Lett. 2020, 20, 4337; https://doi.org/10.1021/acs.nanolett.0c01028.Suche in Google Scholar PubMed
38. Pecher, O., Kong, S. T., Goebel, T., Nickel, V., Weichert, K., Reiner, C., Deiseroth, H. J., Maier, J., Haarmann, F., Zahn, D. Chem. Eur J. 2010, 16, 8347; https://doi.org/10.1002/chem.201000501.Suche in Google Scholar PubMed
39. De Clerk, N. J. J., Roslon, I., Wagemaker, M. Chem. Mater. 2016, 28, 7955.10.1021/acs.chemmater.6b03630Suche in Google Scholar
40. Morgan, B. J. Chem. Mater. 2021, 33, 2004; https://doi.org/10.1021/acs.chemmater.0c03738.Suche in Google Scholar PubMed PubMed Central
41. Epp, V., Gün, Ö., Deiseroth, H. J., Wilkening, M. J. Phys. Chem. Lett. 2013, 4, 2118; https://doi.org/10.1021/jz401003a.Suche in Google Scholar
42. Epp, V., Gün, Ö., Deiseroth, H. J., Wilkening, M. Phys. Chem. Chem. Phys. 2013, 15, 7121; https://doi.org/10.1039/c3cp44379e.Suche in Google Scholar PubMed
43. Yu, C., Ganapathy, S., van Eck, E. R. H., van Eijck, L., Basak, S., Liu, Y., Zhang, L., Zandbergen, H. W., Wagemaker, M. J. Mater. Chem. 2017, 5, 21178; https://doi.org/10.1039/c7ta05031c.Suche in Google Scholar
44. Yu, C., Ganapathy, S., van Eck, E. R. H., Wange, H., Basak, S., Li, Z., Wagemaker, M. Nat. Commun. 2017, 8, 2086; https://doi.org/10.1038/s41467-017-01187-y.Suche in Google Scholar PubMed PubMed Central
45. Wang, H., Yu, C., Ganapathy, S., van Eck, E. R. H., van Eijck, L., Wagemaker, M. J. Power Sources 2019, 412, 29; https://doi.org/10.1016/j.jpowsour.2018.11.029.Suche in Google Scholar
46. Brinek, M., Hiebl, C., Wilkening, H. M. R. Chem. Mater. 2020, 32, 4754; https://doi.org/10.1021/acs.chemmater.0c01367.Suche in Google Scholar PubMed PubMed Central
47. Brinek, M., Hiebl, C., Hogrefe, K., Hanghofer, I., Wilkening, H. M. R. J. Phys. Chem. 2020, 124, 22934; https://doi.org/10.1021/acs.jpcc.0c06090.Suche in Google Scholar PubMed PubMed Central
48. Hanghofer, I., Gadermaier, B., Wilkening, H. M. R. Chem. Mater. 2019, 31, 4591; https://doi.org/10.1021/acs.chemmater.9b01435.Suche in Google Scholar
49. Schlenker, R., Hansen, A. L., Senyshin, A., Zinkevich, T., Knapp, M., Hupfer, T., Ehrenberg, H., Indris, S. Chem. Mater. 2020, 32, 8420; https://doi.org/10.1021/acs.chemmater.0c02418.Suche in Google Scholar
50. Yu, C., Ganapathy, S., de Klerk, N. J. J., Roslon, I., van Eck, E. R. H., Kentgens, A. P. M., Wagemaker, M. J. Am. Chem. Soc. 2016, 138, 11192; https://doi.org/10.1021/jacs.6b05066.Suche in Google Scholar PubMed
51. Adeli, P., Bazak, J. D., Park, K. H., Kochetkov, I., Huq, A., Goward, G. R., Nazar, L. F. Angew. Chem. Int. Ed. 2019, 58, 8681; https://doi.org/10.1002/anie.201814222.Suche in Google Scholar PubMed
52. Hanghofer, I., Brinek, M., Eisbacher, S. I., Bitschnau, B., Volck, M., Hennige, V., Hanzu, I., Rettenwander, D., Wilkening, H. M. R. Phys. Chem. Chem. Phys. 2019, 21, 8489; https://doi.org/10.1039/c9cp00664h.Suche in Google Scholar PubMed
53. Koch, B. Festkörper-NMR-Studien zur Struktur und Kationenmobilität in kristallinen Lithiumionenleitern. Doctoral Dissertation, University of Münster, Münster, 2009.Suche in Google Scholar
54. Kong, S. T. Syntheses, Characterization and Structural Chemistry of Lithium Argyrodites. Doctoral Dissertation, University of Siegen, Siegen, 2011.Suche in Google Scholar
55. Gün, Ö. Syntheses, Characterization and Structural Chemistry of Lithium Seleno-Argyrodites. Doctoral Dissertation, University of Siegen, 2011.Suche in Google Scholar
56. Maxwell, R., Lathrop, D., Franke, D., Eckert, H. Angew. Chem. Int. Ed. 1990, 29, 882; https://doi.org/10.1002/anie.199008821.Suche in Google Scholar
57. Ohki, H., Harazono, K., Erata, T., Tasaki, A., Ikeda, R. Z. Naturforsch. 1993, 48a, 1005; https://doi.org/10.1515/zna-1993-1008.Suche in Google Scholar
58. Gaudin, E., Boucher, F., Evain, M., Taulelle, F. Chem. Mater. 2000, 12, 1715; https://doi.org/10.1021/cm001011u.Suche in Google Scholar
59. Wang, P., Liu, H., Patel, S., Feng, X., Chien, P. H., Wang, Y., Hu, Y. Y. Chem. Mater. 2020, 32, 3833; https://doi.org/10.1021/acs.chemmater.9b05331.Suche in Google Scholar
60. Koch, B., Kong, S. T., Gün, Ö., Deiseroth, H. J., Eckert, H. Z. Phys. Chem., 2022, 236, 689.Suche in Google Scholar
61. Waugh, J. S., Fedin, I. Sov. Phys. Solid State 1963, 4, 1633.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides
Artikel in diesem Heft
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides