A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
-
Olena Porodko
, Hristo Kolev
Abstract
For the first time, a spinel-type high entropy oxide (Zn0.25Cu0.25Mg0.25Co0.25)Al2O4 as well as its derivative lithiated high entropy oxyfluoride Li0.5(Zn0.25Cu0.25Mg0.25Co0.25)0.5Al2O3.5F0.5 and oxychloride Li0.5(Zn0.25Cu0.25Mg0.25Co0.25)0.5Al2O3.5Cl0.5 are prepared in the nanostructured state via high-energy co-milling of the simple oxide precursors and the halides (LiF or LiCl) as sources of lithium, fluorine and chlorine. Their nanostructure is investigated by XRD, HR-TEM, EDX and XPS spectroscopy. It is revealed that incorporation of lithium into the structure of spinel oxide together with the anionic substitution has significant effect on its short-range order, size and morphology of crystallites as well as on its oxidation/reduction processes. The charge capacity of the as-prepared nanomaterials tested by cyclic voltammetry is found to be rather poor despite lithiation of the samples in comparison to previously reported spinel-type high entropy oxides. Nevertheless, the present work offers the alternative one-step mechanochemical route to novel classes of high entropy oxides as well as to lithiated oxyfluorides and oxychlorides with the possibility to vary their cationic and anionic elemental composition.
Funding source: APVV
Award Identifier / Grant number: 19-0526
Funding source: VEGA
Award Identifier / Grant number: 2/0055/19
Funding source: Bilateral Cooperation BAS-SAS
Award Identifier / Grant number: 21-07
Funding source: Grant Agency of the Czech Republic
Award Identifier / Grant number: 20-03564S
Funding source: DFG
Award Identifier / Grant number: SE 1407/4-2
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the APVV (19-0526), the VEGA (2/0055/19) and the bilateral cooperation BAS-SAS (21-07). M.Z. and M.V. thank the Grant Agency of the Czech Republic (20-03564S) for supporting their research work. V.Š. acknowledges the support by the DFG (SE 1407/4-2).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Yeh, J.-W., Chen, S.-K., Lin, S.-J., Gan, J.-Y., Chin, T.-S., Shun, T.-T., Tsau, C.-H., Chang, S.-Y. Adv. Eng. Mater. 2004, 6, 299–303; https://doi.org/10.1002/adem.200300567.Suche in Google Scholar
2. Musicό, B. L., Gilbert, D., Ward, T. Z., Page, K., George, E., Yan, J., Mandrus, D., Keppens, V. APL Mater. 2020, 8, 040912.10.1063/5.0003149Suche in Google Scholar
3. Bérardan, D., Franger, S., Dragoe, D., Meena, A. K., Dragoe, N. Phys. Status Solidi Rapid Res. Lett. 2016, 10, 328–333; https://doi.org/10.1002/pssr.201600043.Suche in Google Scholar
4. Sarkar, A., Velasco, L., Wang, D., Wang, Q., Talasila, G., de Biasi, L., Kübel, C., Brezesinski, T., Bhattacharya, S. S., Hahn, H., Breitung, B. Nat. Commun. 2018, 9, 1–9; https://doi.org/10.1038/s41467-018-05774-5.Suche in Google Scholar PubMed PubMed Central
5. Meisenheimer, P. B., Williams, L. D., Sung, S. H., Gim, J., Shafer, P., Kotsonis, G. N., Maria, J., Trassin, M., Hovden, R., Kioupakis, E., Heron, J. T. Phys. Rev. Mater. 2019, 3, 104420; https://doi.org/10.1103/physrevmaterials.3.104420.Suche in Google Scholar
6. Chen, H., Fu, J., Zhang, P., Peng, H., Abney, C. W., Jie, K., Liu, X., Chi, M., Dai, S. J. Mater. Chem. A 2018, 6, 11129–11133; https://doi.org/10.1039/c8ta01772g.Suche in Google Scholar
7. Braun, J. L., Rost, C. M., Lim, M., Giri, A., Olson, D. H., Kotsonis, G. N., Stan, G., Brenner, D. W., Maria, J.-P., Hopkins, P. E. Adv. Mater. 2018, 30, 1805004; https://doi.org/10.1002/adma.201805004.Suche in Google Scholar PubMed
8. Balcerzak, M., Kawamura, K., Bobrowski, R., Rutkowski, P., Brylewski, T. J. Electron. Mater. 2019, 48, 7105–7113; https://doi.org/10.1007/s11664-019-07512-z.Suche in Google Scholar
9. Ren, K., Wang, Q., Shao, G., Zhao, X., Wang, Y. Scr. Mater. 2020, 178, 382–386; https://doi.org/10.1016/j.scriptamat.2019.12.006.Suche in Google Scholar
10. Zhang, J., Zhang, X., Li, Y., Du, Q., Liu, X., Qi, X. Mater. Lett. 2019, 244, 167–170; https://doi.org/10.1016/j.matlet.2019.01.017.Suche in Google Scholar
11. Rost, C. M., Sachet, E., Borman, T., Moballegh, A., Dickey, E. C., Hou, D., Jones, J. L., Curtarolo, S., Maria, J.-P. Nat. Commun. 2015, 6, 8485; https://doi.org/10.1038/ncomms9485.Suche in Google Scholar PubMed PubMed Central
12. Wang, D., Jiang, S., Duan, C., Mao, J., Dong, Y., Dong, K., Wang, Z., Luo, S., Liu, Y., Qi, X. J. Alloys Compd. 2020, 844, 156158; https://doi.org/10.1016/j.jallcom.2020.156158.Suche in Google Scholar
13. Chen, H., Qiu, N., Wu, B., Yang, Z., Sun, S., Wang, Y. RSC Adv. 2020, 10, 9736–9744; https://doi.org/10.1039/d0ra00255k.Suche in Google Scholar PubMed PubMed Central
14. Chen, T., Wang, S., Kuo, C., Huang, S., Lin, M., Li, C., Chen, H., Wang, C., Liao, Y., Lin, C., Chang, Y., Yeh, J., Lin, S., Chen, T., Chen, H. J. Mater. Chem. A 2020, 8, 21756–21770; https://doi.org/10.1039/d0ta06455f.Suche in Google Scholar
15. Nguyen, T. X., Patra, J., Chang, J.-K., Ting, J.-M. J. Mater. Chem. A 2020, 8, 18963–18973; https://doi.org/10.1039/d0ta04844e.Suche in Google Scholar
16. Xiang, H.-Z., Xie, H.-X., Chen, Y.-X., Zhang, H., Mao, A., Zheng, C.-H. J. Mater. Sci. 2021, 56, 8127–8142; https://doi.org/10.1007/s10853-021-05805-5.Suche in Google Scholar
17. Bérardan, D., Franger, S., Meena, A., Dragoe, N. J. Mater. Chem. A 2016, 4, 9536–9541; https://doi.org/10.1039/c6ta03249d.Suche in Google Scholar
18. Rosciano, F., Pescarmona, P. P., Houthoofd, K., Persoons, A., Bottke, P., Wilkening, M. Phys. Chem. Chem. Phys. 2013, 15, 6107–6112; https://doi.org/10.1039/c3cp50803j.Suche in Google Scholar PubMed
19. Djenadic, R., Botros, M., Hahn, H. Solid State Ion. 2016, 287, 71–76; https://doi.org/10.1016/j.ssi.2016.02.008.Suche in Google Scholar
20. Wang, Q., Sarkar, A., Wang, D., Velasco, L., Azmi, R., Bhattacharya, S. S., Bergfeldt, T., Düvel, A., Heitjans, P., Brezesinski, T., Hahn, H., Breitung, B. Energy Environ. Sci. 2019, 12, 2433–2442; https://doi.org/10.1039/c9ee00368a.Suche in Google Scholar
21. Fabián, M., Bottke, P., Girman, V., Düvel, A., Da Silva, K. L., Wilkening, M., Hahn, H., Heitjans, P., Šepelák, V. RSC Adv. 2015, 5, 54321–54328; https://doi.org/10.1039/c5ra09098a.Suche in Google Scholar
22. Fabián, M., Harničárová, M., Valíček, J., Da Silva, K. L., Hahn, H., Šepelák, V., Lesňák, M., Kušnerová, M. J. Nanosci. Nanotechnol. 2019, 19, 3654–3657; https://doi.org/10.1166/jnn.2019.16492.Suche in Google Scholar
23. Šepelák, V., Düvel, A., Wilkening, M., Becker, K. D., Heitjans, P. Chem. Soc. Rev. 2013, 42, 7507–7520.10.1039/c2cs35462dSuche in Google Scholar
24. Gomollón-Bel, F. Chem. Int. 2019, 41, 12–17; https://doi.org/10.1515/ci-2019-0203.Suche in Google Scholar
25. Inorganic Crystal Structure Database (ICSD); Leibniz Institute for Information Infrastructure, FIZ Karlsruhe: Karlsruhe, 2020.Suche in Google Scholar
26. Rodríguez-Carvajal, J. Fullprof Suite; Institute Laue-Langevin: Grenoble, France, 2019.Suche in Google Scholar
27. Nath, D., Singh, F., Dasa, R. Mater. Chem. Phys. 2020, 239, 122021; https://doi.org/10.1016/j.matchemphys.2019.122021.Suche in Google Scholar
28. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. Nat. Methods 2012, 9, 671–675; https://doi.org/10.1038/nmeth.2089.Suche in Google Scholar
29. Shirley, D. Phys. Rev. B 1972, 5, 4709–4714; https://doi.org/10.1103/physrevb.5.4709.Suche in Google Scholar
30. Scofield, J. H. J. Electron. Spectrosc. Relat. Phenom. 1976, 8, 129–137; https://doi.org/10.1016/0368-2048(76)80015-1.Suche in Google Scholar
31. Shannon, R. D. Acta Crystallogr. A 1976, 32, 751–767; https://doi.org/10.1107/s0567739476001551.Suche in Google Scholar
32. Strohmeier, B. R. Surf. Interface Anal. 1990, 15, 51–56; https://doi.org/10.1002/sia.740150109.Suche in Google Scholar
33. Gusmano, G., Montesperelli, G., Traversa, E., Bearzotti, A., Petrocco, G., D’Amico, A., Di Natale, C. Sensor. Actuator. B Chem. 1992, 7, 460–463; https://doi.org/10.1016/0925-4005(92)80344-w.Suche in Google Scholar
34. Todorova, S., Yordanova, I., Naydenov, A., Kolev, H., Cherkezova-Zhelev, Z., Tenchev, K., Kunev, B. Rev. Roum. Chim. 2014, 59, 259–265.Suche in Google Scholar
35. Tyuliev, G., Angelov, S. Appl. Surf. Sci. 1988, 32, 381–391; https://doi.org/10.1016/0169-4332(88)90089-x.Suche in Google Scholar
36. Tomina, V. V., Furtat, I. M., Lebed, A. P., Kotsyuda, S. S., Kolev, H., Kanuchova, M., Melnyk, I. V. ACS Omega 2020, 5, 15290–15300; https://doi.org/10.1021/acsomega.0c01335.Suche in Google Scholar PubMed PubMed Central
37. Al-Gaashani, R., Radiman, S., Daud, A. R., Tabet, N., Al-Douri, Y. Ceram. Int. 2013, 39, 2283–2292; https://doi.org/10.1016/j.ceramint.2012.08.075.Suche in Google Scholar
38. Huang, H.-H., Shih, W.-C., Lai, C.-H. Appl. Phys. Lett. 2010, 96, 193505; https://doi.org/10.1063/1.3429024.Suche in Google Scholar
39. Cai, J., Zhang, Y., Qian, Y., Shan, C., Pan, B. Sci. Rep. 2018, 8, 1–10; https://doi.org/10.1038/s41598-018-29497-1.Suche in Google Scholar PubMed PubMed Central
40. Tran, M.-P., Gonzalez-Aguirre, P., Beitia, C., Lundgren, J., Moon, S.-I., Fontaine, H. Microelectron. Eng. 2019, 207, 1–6; https://doi.org/10.1016/j.mee.2019.01.001.Suche in Google Scholar
41. Lökçü, E., Toparli, Ç., Anik, M. ACS Appl. Mater. Interfaces 2020, 12, 23860–23866; https://doi.org/10.1021/acsami.0c03562.Suche in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides
Artikel in diesem Heft
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides