Home Physical Sciences A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
Article
Licensed
Unlicensed Requires Authentication

A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis

  • Olena Porodko , Martin Fabián EMAIL logo , Hristo Kolev , Maksym Lisnichuk , Markéta Zukalová , Monika Vinarčíková , Vladimír Girman , Klebson Lucenildo Da Silva and Vladimír Šepelák
Published/Copyright: October 4, 2021

Abstract

For the first time, a spinel-type high entropy oxide (Zn0.25Cu0.25Mg0.25Co0.25)Al2O4 as well as its derivative lithiated high entropy oxyfluoride Li0.5(Zn0.25Cu0.25Mg0.25Co0.25)0.5Al2O3.5F0.5 and oxychloride Li0.5(Zn0.25Cu0.25Mg0.25Co0.25)0.5Al2O3.5Cl0.5 are prepared in the nanostructured state via high-energy co-milling of the simple oxide precursors and the halides (LiF or LiCl) as sources of lithium, fluorine and chlorine. Their nanostructure is investigated by XRD, HR-TEM, EDX and XPS spectroscopy. It is revealed that incorporation of lithium into the structure of spinel oxide together with the anionic substitution has significant effect on its short-range order, size and morphology of crystallites as well as on its oxidation/reduction processes. The charge capacity of the as-prepared nanomaterials tested by cyclic voltammetry is found to be rather poor despite lithiation of the samples in comparison to previously reported spinel-type high entropy oxides. Nevertheless, the present work offers the alternative one-step mechanochemical route to novel classes of high entropy oxides as well as to lithiated oxyfluorides and oxychlorides with the possibility to vary their cationic and anionic elemental composition.


Corresponding author: Martin Fabián, Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slovakia, E-mail:

Funding source: APVV

Award Identifier / Grant number: 19-0526

Funding source: VEGA

Award Identifier / Grant number: 2/0055/19

Funding source: Bilateral Cooperation BAS-SAS

Award Identifier / Grant number: 21-07

Funding source: Grant Agency of the Czech Republic

Award Identifier / Grant number: 20-03564S

Funding source: DFG

Award Identifier / Grant number: SE 1407/4-2

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the APVV (19-0526), the VEGA (2/0055/19) and the bilateral cooperation BAS-SAS (21-07). M.Z. and M.V. thank the Grant Agency of the Czech Republic (20-03564S) for supporting their research work. V.Š. acknowledges the support by the DFG (SE 1407/4-2).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Yeh, J.-W., Chen, S.-K., Lin, S.-J., Gan, J.-Y., Chin, T.-S., Shun, T.-T., Tsau, C.-H., Chang, S.-Y. Adv. Eng. Mater. 2004, 6, 299–303; https://doi.org/10.1002/adem.200300567.Search in Google Scholar

2. Musicό, B. L., Gilbert, D., Ward, T. Z., Page, K., George, E., Yan, J., Mandrus, D., Keppens, V. APL Mater. 2020, 8, 040912.10.1063/5.0003149Search in Google Scholar

3. Bérardan, D., Franger, S., Dragoe, D., Meena, A. K., Dragoe, N. Phys. Status Solidi Rapid Res. Lett. 2016, 10, 328–333; https://doi.org/10.1002/pssr.201600043.Search in Google Scholar

4. Sarkar, A., Velasco, L., Wang, D., Wang, Q., Talasila, G., de Biasi, L., Kübel, C., Brezesinski, T., Bhattacharya, S. S., Hahn, H., Breitung, B. Nat. Commun. 2018, 9, 1–9; https://doi.org/10.1038/s41467-018-05774-5.Search in Google Scholar PubMed PubMed Central

5. Meisenheimer, P. B., Williams, L. D., Sung, S. H., Gim, J., Shafer, P., Kotsonis, G. N., Maria, J., Trassin, M., Hovden, R., Kioupakis, E., Heron, J. T. Phys. Rev. Mater. 2019, 3, 104420; https://doi.org/10.1103/physrevmaterials.3.104420.Search in Google Scholar

6. Chen, H., Fu, J., Zhang, P., Peng, H., Abney, C. W., Jie, K., Liu, X., Chi, M., Dai, S. J. Mater. Chem. A 2018, 6, 11129–11133; https://doi.org/10.1039/c8ta01772g.Search in Google Scholar

7. Braun, J. L., Rost, C. M., Lim, M., Giri, A., Olson, D. H., Kotsonis, G. N., Stan, G., Brenner, D. W., Maria, J.-P., Hopkins, P. E. Adv. Mater. 2018, 30, 1805004; https://doi.org/10.1002/adma.201805004.Search in Google Scholar PubMed

8. Balcerzak, M., Kawamura, K., Bobrowski, R., Rutkowski, P., Brylewski, T. J. Electron. Mater. 2019, 48, 7105–7113; https://doi.org/10.1007/s11664-019-07512-z.Search in Google Scholar

9. Ren, K., Wang, Q., Shao, G., Zhao, X., Wang, Y. Scr. Mater. 2020, 178, 382–386; https://doi.org/10.1016/j.scriptamat.2019.12.006.Search in Google Scholar

10. Zhang, J., Zhang, X., Li, Y., Du, Q., Liu, X., Qi, X. Mater. Lett. 2019, 244, 167–170; https://doi.org/10.1016/j.matlet.2019.01.017.Search in Google Scholar

11. Rost, C. M., Sachet, E., Borman, T., Moballegh, A., Dickey, E. C., Hou, D., Jones, J. L., Curtarolo, S., Maria, J.-P. Nat. Commun. 2015, 6, 8485; https://doi.org/10.1038/ncomms9485.Search in Google Scholar PubMed PubMed Central

12. Wang, D., Jiang, S., Duan, C., Mao, J., Dong, Y., Dong, K., Wang, Z., Luo, S., Liu, Y., Qi, X. J. Alloys Compd. 2020, 844, 156158; https://doi.org/10.1016/j.jallcom.2020.156158.Search in Google Scholar

13. Chen, H., Qiu, N., Wu, B., Yang, Z., Sun, S., Wang, Y. RSC Adv. 2020, 10, 9736–9744; https://doi.org/10.1039/d0ra00255k.Search in Google Scholar PubMed PubMed Central

14. Chen, T., Wang, S., Kuo, C., Huang, S., Lin, M., Li, C., Chen, H., Wang, C., Liao, Y., Lin, C., Chang, Y., Yeh, J., Lin, S., Chen, T., Chen, H. J. Mater. Chem. A 2020, 8, 21756–21770; https://doi.org/10.1039/d0ta06455f.Search in Google Scholar

15. Nguyen, T. X., Patra, J., Chang, J.-K., Ting, J.-M. J. Mater. Chem. A 2020, 8, 18963–18973; https://doi.org/10.1039/d0ta04844e.Search in Google Scholar

16. Xiang, H.-Z., Xie, H.-X., Chen, Y.-X., Zhang, H., Mao, A., Zheng, C.-H. J. Mater. Sci. 2021, 56, 8127–8142; https://doi.org/10.1007/s10853-021-05805-5.Search in Google Scholar

17. Bérardan, D., Franger, S., Meena, A., Dragoe, N. J. Mater. Chem. A 2016, 4, 9536–9541; https://doi.org/10.1039/c6ta03249d.Search in Google Scholar

18. Rosciano, F., Pescarmona, P. P., Houthoofd, K., Persoons, A., Bottke, P., Wilkening, M. Phys. Chem. Chem. Phys. 2013, 15, 6107–6112; https://doi.org/10.1039/c3cp50803j.Search in Google Scholar PubMed

19. Djenadic, R., Botros, M., Hahn, H. Solid State Ion. 2016, 287, 71–76; https://doi.org/10.1016/j.ssi.2016.02.008.Search in Google Scholar

20. Wang, Q., Sarkar, A., Wang, D., Velasco, L., Azmi, R., Bhattacharya, S. S., Bergfeldt, T., Düvel, A., Heitjans, P., Brezesinski, T., Hahn, H., Breitung, B. Energy Environ. Sci. 2019, 12, 2433–2442; https://doi.org/10.1039/c9ee00368a.Search in Google Scholar

21. Fabián, M., Bottke, P., Girman, V., Düvel, A., Da Silva, K. L., Wilkening, M., Hahn, H., Heitjans, P., Šepelák, V. RSC Adv. 2015, 5, 54321–54328; https://doi.org/10.1039/c5ra09098a.Search in Google Scholar

22. Fabián, M., Harničárová, M., Valíček, J., Da Silva, K. L., Hahn, H., Šepelák, V., Lesňák, M., Kušnerová, M. J. Nanosci. Nanotechnol. 2019, 19, 3654–3657; https://doi.org/10.1166/jnn.2019.16492.Search in Google Scholar

23. Šepelák, V., Düvel, A., Wilkening, M., Becker, K. D., Heitjans, P. Chem. Soc. Rev. 2013, 42, 7507–7520.10.1039/c2cs35462dSearch in Google Scholar

24. Gomollón-Bel, F. Chem. Int. 2019, 41, 12–17; https://doi.org/10.1515/ci-2019-0203.Search in Google Scholar

25. Inorganic Crystal Structure Database (ICSD); Leibniz Institute for Information Infrastructure, FIZ Karlsruhe: Karlsruhe, 2020.Search in Google Scholar

26. Rodríguez-Carvajal, J. Fullprof Suite; Institute Laue-Langevin: Grenoble, France, 2019.Search in Google Scholar

27. Nath, D., Singh, F., Dasa, R. Mater. Chem. Phys. 2020, 239, 122021; https://doi.org/10.1016/j.matchemphys.2019.122021.Search in Google Scholar

28. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. Nat. Methods 2012, 9, 671–675; https://doi.org/10.1038/nmeth.2089.Search in Google Scholar

29. Shirley, D. Phys. Rev. B 1972, 5, 4709–4714; https://doi.org/10.1103/physrevb.5.4709.Search in Google Scholar

30. Scofield, J. H. J. Electron. Spectrosc. Relat. Phenom. 1976, 8, 129–137; https://doi.org/10.1016/0368-2048(76)80015-1.Search in Google Scholar

31. Shannon, R. D. Acta Crystallogr. A 1976, 32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

32. Strohmeier, B. R. Surf. Interface Anal. 1990, 15, 51–56; https://doi.org/10.1002/sia.740150109.Search in Google Scholar

33. Gusmano, G., Montesperelli, G., Traversa, E., Bearzotti, A., Petrocco, G., D’Amico, A., Di Natale, C. Sensor. Actuator. B Chem. 1992, 7, 460–463; https://doi.org/10.1016/0925-4005(92)80344-w.Search in Google Scholar

34. Todorova, S., Yordanova, I., Naydenov, A., Kolev, H., Cherkezova-Zhelev, Z., Tenchev, K., Kunev, B. Rev. Roum. Chim. 2014, 59, 259–265.Search in Google Scholar

35. Tyuliev, G., Angelov, S. Appl. Surf. Sci. 1988, 32, 381–391; https://doi.org/10.1016/0169-4332(88)90089-x.Search in Google Scholar

36. Tomina, V. V., Furtat, I. M., Lebed, A. P., Kotsyuda, S. S., Kolev, H., Kanuchova, M., Melnyk, I. V. ACS Omega 2020, 5, 15290–15300; https://doi.org/10.1021/acsomega.0c01335.Search in Google Scholar PubMed PubMed Central

37. Al-Gaashani, R., Radiman, S., Daud, A. R., Tabet, N., Al-Douri, Y. Ceram. Int. 2013, 39, 2283–2292; https://doi.org/10.1016/j.ceramint.2012.08.075.Search in Google Scholar

38. Huang, H.-H., Shih, W.-C., Lai, C.-H. Appl. Phys. Lett. 2010, 96, 193505; https://doi.org/10.1063/1.3429024.Search in Google Scholar

39. Cai, J., Zhang, Y., Qian, Y., Shan, C., Pan, B. Sci. Rep. 2018, 8, 1–10; https://doi.org/10.1038/s41598-018-29497-1.Search in Google Scholar PubMed PubMed Central

40. Tran, M.-P., Gonzalez-Aguirre, P., Beitia, C., Lundgren, J., Moon, S.-I., Fontaine, H. Microelectron. Eng. 2019, 207, 1–6; https://doi.org/10.1016/j.mee.2019.01.001.Search in Google Scholar

41. Lökçü, E., Toparli, Ç., Anik, M. ACS Appl. Mater. Interfaces 2020, 12, 23860–23866; https://doi.org/10.1021/acsami.0c03562.Search in Google Scholar PubMed

Received: 2021-07-30
Accepted: 2021-09-20
Published Online: 2021-10-04
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Preface
  3. Special issue on the occasion of the 75th birthday of Paul Heitjans
  4. Contribution to Special Issue dedicated to Paul Heitjans
  5. Unusual cation coordination in nanostructured mullites
  6. A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
  7. Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
  8. Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
  9. Status and progress of ion-implanted βNMR at TRIUMF
  10. How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
  11. Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
  12. Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
  13. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
  14. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
  15. Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
  16. How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
  17. Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
  18. Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
  19. Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
  20. On the CaF2-BaF2 interface
  21. The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
  22. Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
  23. Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
  24. Ionic transport in K2Ti6O13
  25. F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
  26. An overview of thermotransport in fluorite-related ionic oxides
Downloaded on 17.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3106/html
Scroll to top button