Home Physical Sciences The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
Article
Licensed
Unlicensed Requires Authentication

The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements

  • Jan L. Wiemer , Kevin Rein and Karl-Michael Weitzel EMAIL logo
Published/Copyright: September 15, 2021

Abstract

The ionic conductivity of alkali aluminum germanium phosphates (MAGP) has been investigated by two different techniques, i.) a fs-Plasma-Charge Attachment Induced Transport (CAIT) approach and ii.) a classical two electrode DC approach. Amorphous MAGP samples of the composition M1.5Al0.5Ge1.5(PO4)3 M=(Li–Cs) have been synthesized by the melt-quenching technique. Comparison of fs-Plasma-CAIT and DC data reveal that the ionic conductivities as well as the activation energies for ion transport agree within the error margins of the experiment. While conventional expectation suggests that a DC approach should fail because of spontaneous charge carrier blocking, this work demonstrates that DC measurements are a simple tool for quantifying ionic conductivities provided that only a small amount of charge has been transported in total.


Corresponding author: Karl-Michael Weitzel, Chemistry Department, Philipps Universität Marburg, Marburg 35032, Germany, E-mail:
Dedicated to Paul Heitjans on the occasion of his 75th birthday.

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: INST 160/627-1 FUGG

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Financial support of this work by the DFG (German Science Foundation) (INST 160/627-1 FUGG).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Barsoukov, E., Macdonald, J. R. Impedance Spectroscopy; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2005.10.1002/0471716243Search in Google Scholar

2. Ohno, S., Bernges, T., Buchheim, J., Duchardt, M., Hatz, A.-K., Kraft, M. A., Kwak, H., Santhosha, A. L., Liu, Z., Minafra, N., Tsuji, F., Sakuda, A., Schlem, R., Xiong, S., Zhang, Z., Adelhelm, P., Chen, H., Hayashi, A., Jung, Y. S., Lotsch, B. V., Roling, B., Vargas-Barbosa, N. M., Zeier, W. G. ACS Energy Lett. 2020, 5, 910–915; https://doi.org/10.1021/acsenergylett.9b02764.Search in Google Scholar

3. de Souza, R. A., Martin, M. Phys. Chem. Chem. Phys. 2008, 10, 2356–2367; https://doi.org/10.1039/b719618k.Search in Google Scholar PubMed

4. Mehrer, H. Z. Phys. Chem. 2009, 223, 1143–1160; https://doi.org/10.1524/zpch.2009.6070.Search in Google Scholar

5. Brinkmann, C., Faske, S., Koch, B., Vogel, M. Z. Phys. Chem. 2010, 224, 1535–1553; https://doi.org/10.1524/zpch.2010.0014.Search in Google Scholar

6. Heitjans, P., Indris, S., Wilkening, M. Solid-state diffusion and NMR. In Diffusion Fundamentals, Leipzig 2005. First Diffusion Fundamentals Conference in Leipzig, September 22–24, 2005; Kärger J., Grinberg, F., Heitjans, P., Ito, T., Eds. Leipziger Univ.-Verl: Leipzig, 2005; pp. 45–64.10.62721/diffusion-fundamentals.2.231Search in Google Scholar

7. Volgmann, K., Epp, V., Langer, J., Stanje, B., Heine, J., Nakhal, S., Lerch, M., Wilkening, M., Heitjans, P. Z. Phys. Chem. 2017, 231, 47; https://doi.org/10.1515/zpch-2017-0952.Search in Google Scholar

8. Zielniok, D., Cramer, C., Eckert, H. Chem. Mater. 2007, 19, 3162–3170; https://doi.org/10.1021/cm0628092.Search in Google Scholar

9. Wang, X.-L., An, K., Cai, L., Feng, Z., Nagler, S. E., Daniel, C., Rhodes, K. J., Stoica, A. D., Skorpenske, H. D., Liang, C., Zhang, W., Kim, J., Qi, Y., Harris, S. J. Sci. Rep. 2012, 2, 747; https://doi.org/10.1038/srep00747.Search in Google Scholar PubMed PubMed Central

10. Schäfer, M., Weitzel, K.-M. Phys. Chem. Chem. Phys. 2011, 13, 20112–20122; https://doi.org/10.1039/c1cp21215j.Search in Google Scholar PubMed

11. Menezes, P. V., Martin, J., Schäfer, M., Staesche, H., Roling, B., Weitzel, K.-M. Phys. Chem. Chem. Phys. 2011, 13, 20123–20128; https://doi.org/10.1039/c1cp21216h.Search in Google Scholar PubMed

12. Martin, J., Graef, M., Kramer, T., Jooss, C., Choe, M.-J., Thornton, K., Weitzel, K.-M. Phys. Chem. Chem. Phys. 2017, 19, 9762–9769; https://doi.org/10.1039/c7cp00198c.Search in Google Scholar PubMed

13. Hein, A., Schäfer, M., Weitzel, K.-M. Solid State Ionics 2019, 339, 114996; https://doi.org/10.1016/j.ssi.2019.06.004.Search in Google Scholar

14. Hein, A., Schäfer, M., Weitzel, K.-M. Solid State Ionics 2019, 339, 114997; https://doi.org/10.1016/j.ssi.2019.06.005.Search in Google Scholar

15. Schäfer, M., Weitzel, K.-M. Solid State Ionics 2015, 282, 70–75; https://doi.org/10.1016/j.ssi.2015.09.023.Search in Google Scholar

16. Rein, K., Schäfer, M., Weitzel, K.-M. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1422–1427; https://doi.org/10.1109/tdei.2020.008814.Search in Google Scholar

17. Wiemer, J. L., Weitzel, K.-M. Appl. Phys. Lett. 2018, 113, 52902; https://doi.org/10.1063/1.5045530.Search in Google Scholar

18. Wiemer, J. L., Mardeck, S., Zülch, C., Weitzel, K.-M. Solid State Ionics 2020, 357, 115469; https://doi.org/10.1016/j.ssi.2020.115469.Search in Google Scholar

19. Anantharamulu, N., Koteswara Rao, K., Rambabu, G., Vijaya Kumar, B., Radha, V., Vithal, M. J. Mater. Sci. 2011, 46, 2821–2837; https://doi.org/10.1007/s10853-011-5302-5.Search in Google Scholar

20. Chen, S., Wu, C., Shen, L., Zhu, C., Huang, Y., Xi, K., Maier, J., Yu, Y. Advanced Materials 2017, 29, 1700431; https://doi.org/10.1002/adma.201700431.Search in Google Scholar PubMed

21. Wiemer, J. L., Schäfer, M., Weitzel, K.-M. J. Phys. Chem. C 2021, 125, 4977–4985; https://doi.org/10.1021/acs.jpcc.0c11164.Search in Google Scholar

22. Pradel, A., Ribes, M. J. Non-Cryst. Solids 1994, 172–174, 1315–1323; https://doi.org/10.1016/0022-3093(94)90658-0.Search in Google Scholar

23. Bunde, A., Ingram, M. D., Maass, P. J. Non-Cryst. Solids 1994, 172–174, 1222–1236; https://doi.org/10.1016/0022-3093(94)90647-5.Search in Google Scholar

24. Martin, J., Schäfer, M., Weitzel, K.-M. J. Non-Cryst. Solids 2015, 430, 73–78; https://doi.org/10.1016/j.jnoncrysol.2015.10.004.Search in Google Scholar

25. Weppner, W., Huggins, R. A. Annu. Rev. Mater. Sci. 1978, 8, 269–311; https://doi.org/10.1146/annurev.ms.08.080178.001413.Search in Google Scholar

26. Riess, I. Solid State Ionics 1991, 44, 207–214; https://doi.org/10.1016/0167-2738(91)90009-z.Search in Google Scholar

27. Lindgren, P., Kastlunger, G., Peterson, A. A. ACS Catal. 2020, 10, 121–128; https://doi.org/10.1021/acscatal.9b02799.Search in Google Scholar

28. Ebisuzaki, Y., Kass, W. J., O’Keeffe, M. J. Chem. Phys. 1968, 49, 3329–3332; https://doi.org/10.1063/1.1670604.Search in Google Scholar

29. Ishiyama, T., Nishii, J., Yamashita, T., Kawazoe, H., Omata, T. J. Mater. Chem. A 2014, 2, 3940; https://doi.org/10.1039/c3ta14561a.Search in Google Scholar

30. Rickert, H. Electrochemistry of Solids. An Introduction; Springer: Berlin, Heidelberg, 1982.10.1007/978-3-642-68312-1Search in Google Scholar

Received: 2021-07-09
Accepted: 2021-09-07
Published Online: 2021-09-15
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Preface
  3. Special issue on the occasion of the 75th birthday of Paul Heitjans
  4. Contribution to Special Issue dedicated to Paul Heitjans
  5. Unusual cation coordination in nanostructured mullites
  6. A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
  7. Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
  8. Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
  9. Status and progress of ion-implanted βNMR at TRIUMF
  10. How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
  11. Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
  12. Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
  13. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
  14. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
  15. Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
  16. How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
  17. Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
  18. Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
  19. Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
  20. On the CaF2-BaF2 interface
  21. The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
  22. Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
  23. Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
  24. Ionic transport in K2Ti6O13
  25. F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
  26. An overview of thermotransport in fluorite-related ionic oxides
Downloaded on 17.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3091/html
Scroll to top button