Home Physical Sciences Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
Article
Licensed
Unlicensed Requires Authentication

Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica

  • Gerd Buntkowsky EMAIL logo , Sonja Döller , Nadia Haro-Mares , Torsten Gutmann and Markus Hoffmann
Published/Copyright: October 27, 2021

Abstract

This review gives an overview of current trends in the investigation of confined molecules such as higher alcohols, ethylene glycol and polyethylene glycol as guest molecules in neat and functionalized mesoporous silica materials. All these molecules have both hydrophobic and hydrophilic parts. They are characteristic role-models for the investigation of confined surfactants. Their properties are studied by a combination of solid-state NMR and relaxometry with other physicochemical techniques and molecular dynamics techniques. It is shown that this combination delivers unique insights into the structure, arrangement, dynamical properties and the guest-host interactions inside the confinement.


Corresponding author: Gerd Buntkowsky, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany, E-mail:
Dedicated to Paul Heitjans on the occasion of his 75th birthday.
  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Financial support by the Deutsche Forschungsgemeinschaft in the framework of the Forschergruppe FOR 1583 through grants Bu-911/18-1/2, Bu-911/24-1/2, and the National Science Foundation [grant no 1953428] is gratefully acknowledged.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry; Oxford University Press on Demand, 2001.10.1093/oso/9780198508823.001.0001Search in Google Scholar

2. Hartmann, M., Kostrov, X. Chem. Soc. Rev. 2013, 42, 6277. https://doi.org/10.1039/c3cs60021a.Search in Google Scholar PubMed

3. Nassif, N., Livage, J. Chem. Soc. Rev. 2011, 40, 849. https://doi.org/10.1039/c0cs00122h.Search in Google Scholar PubMed

4. Vafaeezadeh, M., Hashemi, M. M. J. Mol. Liq. 2015, 207, 73. https://doi.org/10.1016/j.molliq.2015.03.003.Search in Google Scholar

5. Han, W., Liu, C., Jin, Z. Adv. Synth. Catal. 2008, 350, 501. https://doi.org/10.1002/adsc.200700475.Search in Google Scholar

6. Pires, M., Purificação, S., Santos, A., Marques, M. Synthesis 2017, 49, 2337. https://doi.org/10.1055/s-0036-1589498.Search in Google Scholar

7. Khanmoradi, M., Nikoorazm, M., Ghorbani-Choghamarani, A. Catal. Lett. 2017, 147, 1114. https://doi.org/10.1007/s10562-016-1957-5.Search in Google Scholar

8. Buntkowsky, G., Vogel, M. Molecules 2020, 25, 3311; https://doi.org/10.3390/molecules25143311.Search in Google Scholar PubMed PubMed Central

9. Buntkowsky, G., Vogel, M., Winter, R. Z. Phys. Chem. 2018, 232, 937. https://doi.org/10.1515/zpch-2018-1110.Search in Google Scholar

10. Werner, M., Rothermel, N., Breitzke, H., Gutmann, T., Buntkowsky, G. Isr. J. Chem. 2014, 54, 60. https://doi.org/10.1002/ijch.201300095.Search in Google Scholar

11. Fumagalli, L., Esfandiar, A., Fabregas, R., Hu, S., Ares, P., Janardanan, A., Yang, Q., Radha, B., Taniguchi, T., Watanabe, K., Gomila, G., Novoselov, K. S., Geim, A. K. Science 2018, 360, 1339. https://doi.org/10.1126/science.aat4191.Search in Google Scholar PubMed

12. Carvalho, G., Paul, E., Novais, J. M., Pinheiro, H. M. Water Sci. Technol. 2000, 42, 135. https://doi.org/10.2166/wst.2000.0507.Search in Google Scholar

13. Hoffmann, M. Nonionic Liquid Surfactants as Green Solvents. U.S. Patent, US20080097121A1, 2008.Search in Google Scholar

14. Koganti, V. R., Rankin, S. E. J. Phys. Chem. B 2005, 109, 3279. https://doi.org/10.1021/jp045037a.Search in Google Scholar

15. Ramanathan, M., Shrestha, L. K., Mori, T., Ji, Q., Hill, J. P., Ariga, K. Phys. Chem. Chem. Phys. 2013, 15, 10580. https://doi.org/10.1039/c3cp50620g.Search in Google Scholar

16. Clark, K. K., Keller, A. A. Water Air Soil Pollut. 2012, 223, 3647. https://doi.org/10.1007/s11270-012-1138-0.Search in Google Scholar

17. Le Page, M., Beau, R., Duchene, J. Porous Silica Particles Containing a Crystallized Phase and Method. U.S. Patent US3493341A, 1970.Search in Google Scholar

18. Chiola, V., Ritsko, J. E., Vanderpool, C. D. Process for Producing Low-Bulk Density Silica. U.S. Patent US3556725A, 1970.Search in Google Scholar

19. Vinu, A., Hossain, K. Z., Ariga, K. J. Nanosci. Nanotechnol. 2005, 5, 347. https://doi.org/10.1166/jnn.2005.089.Search in Google Scholar

20. Yokoi, T., Yoshitake, H., Tatsumi, T. J. Mater. Chem. 2004, 14, 951. https://doi.org/10.1039/b310576h.Search in Google Scholar

21. Wang, X., Lin, K. S. K., Chan, J. C. C., Cheng, S. J. Phys. Chem. B 2005, 109, 1763. https://doi.org/10.1021/jp045798d.Search in Google Scholar

22. Gedat, E., Schreiber, A., Albrecht, J., Shenderovich, I., Findenegg, G., Limbach, H.-H., Buntkowsky, G., Buntkowsky, G. J. Phys. Chem. B 2002, 106, 1977. https://doi.org/10.1021/jp012391p.Search in Google Scholar

23. Medick, P., Blochowicz, T., Vogel, M., Roessler, E. J. Non-Cryst. Solids 2002, 307, 565. https://doi.org/10.1016/s0022-3093(02)01487-4.Search in Google Scholar

24. Dosseh, G., Xia, Y., Alba-Simionesco, C. J. Phys. Chem. B 2003, 107, 6445. https://doi.org/10.1021/jp034003k.Search in Google Scholar

25. Lusceac, S. A., Koplin, C., Medick, P., Vogel, M., Brodie-Linder, N., LeQuellec, C., Alba-Simionesco, C., Roessler, E. A. J. Phys. Chem. B 2004, 108, 16601. https://doi.org/10.1021/jp040376p.Search in Google Scholar

26. Alba-Simionesco, C., Coasne, B., Dosseh, G., Dudziak, G., Gubbins, K. E., Radhakrishnan, R., Sliwinska-Bartkowiak, M. J. Condens. Matter Phys. 2006, 18, R15. https://doi.org/10.1088/0953-8984/18/6/r01.Search in Google Scholar

27. Kiwilsza, A., Pajzderska, A., Gonzalez, M. A., Mielcarek, J., Wąsicki, J. J. Phys. Chem. C 2015, 119, 16578. https://doi.org/10.1021/acs.jpcc.5b02672.Search in Google Scholar

28. Krzyżak, A. T., Habina, I. Microporous Mesoporous Mater. 2016, 231, 230.10.1016/j.micromeso.2016.05.032Search in Google Scholar

29. Brilmayer, R., Kübelbeck, S., Khalil, A., Brodrecht, M., Kunz, U., Kleebe, H.-J., Buntkowsky, G., Baier, G., Andrieu-Brunsen, A. Adv. Mater. Interfaces 2020, 7, 1901914. https://doi.org/10.1002/admi.201901914.Search in Google Scholar

30. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834. https://doi.org/10.1021/ja00053a020.Search in Google Scholar

31. Zhao, D. Y., Huo, Q. S., Feng, J. L., Chmelka, B. F., Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024. https://doi.org/10.1021/ja974025i.Search in Google Scholar

32. Zhao, D. Y., Feng, J. L., Huo, Q. S., Melosh, N., Fredrickson, G. H., Chmelka, B. F., Stucky, G. D. Science 1998, 279, 548. https://doi.org/10.1126/science.279.5350.548.Search in Google Scholar PubMed

33. Nordberg, M. E. J. Am. Ceram. Soc. 1944, 27, 299. https://doi.org/10.1111/j.1151-2916.1944.tb14473.x.Search in Google Scholar

34. Gelb, L. D., Gubbins, K. E., Radhakrishnan, R., Sliwinska-Bartkowiak, M. Rep. Prog. Phys. 1999, 62, 1573. https://doi.org/10.1088/0034-4885/62/12/201.Search in Google Scholar

35. Ciesla, U., Schüth, F. Microporous Mesoporous Mater. 1999, 27, 131. https://doi.org/10.1016/s1387-1811(98)00249-2.Search in Google Scholar

36. Brunauer, S., Emmett, P. H., Teller, E. J. Am. Chem. Soc. 1938, 60, 309. https://doi.org/10.1021/ja01269a023.Search in Google Scholar

37. Barrett, E. P., Joyner, L. G., Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373. https://doi.org/10.1021/ja01145a126.Search in Google Scholar

38. Treacy, M. M. J., Higgins, J. B., von Ballmoos, R. Collection of Simulated XRD Powder Patterns for Zeolites; Elsevier: London, 1996.Search in Google Scholar

39. Marler, B., Oberhagemann, U., Vortmann, S., Gies, H. Microporous Mater. 1996, 6, 375. https://doi.org/10.1016/0927-6513(96)00016-8.Search in Google Scholar

40. Yao, M. H., Baird, R. J., Kunz, F. W., Hoost, T. E. J. Catal. 1997, 166, 67. https://doi.org/10.1006/jcat.1997.1504.Search in Google Scholar

41. Höhne, G., Hemminger, W. F., Flammersheim, H.-J. Differential Scanning Calorimetry; Springer: Berlin Heidelberg, 2003.10.1007/978-3-662-06710-9Search in Google Scholar

42. Hemminger, W. F., Cammenga, H. K. Methoden der thermischen Analyse; Springer: Berlin, 1989.10.1007/978-3-642-70175-7Search in Google Scholar

43. Freude, D., Kärger, J. Handbook of porous solids 2002, 1, 465.10.1002/9783527618286.ch14Search in Google Scholar

44. Koller, H., Weiß, M. Solid state NMR of porous materials. In Solid state NMR; Springer, 2011, pp 189–227.10.1007/128_2011_123Search in Google Scholar PubMed

45. Haouas, M., Martineau, C., Taulelle, F. Quadrupolar NMR of nanoporous materials. In eMagRes, 2011.10.1002/9780470034590.emrstm1216Search in Google Scholar

46. Kärger, J. ChemPhysChem 2015, 16, 24. https://doi.org/10.1002/cphc.201402340.Search in Google Scholar

47. Thankamony, A. S. L., Wittmann, J. J., Kaushik, M., Corzilius, B. Prog. NMR Spec. 2017, 120–195.10.1016/j.pnmrs.2017.06.002Search in Google Scholar

48. Rankin, A. G. M., Trébosc, J., Pourpoint, F., Amoureux, J.-P., Lafon, O. Solid State NMR 2019, 101, 116. https://doi.org/10.1016/j.ssnmr.2019.05.009.Search in Google Scholar

49. Faivre, C., Bellet, D., Dolino, G. Eur. Phys. J. B 1999, 7, 19. https://doi.org/10.1007/s100510050586.Search in Google Scholar

50. Alcoutlabi, M., McKenna, G. B. J. Condens. Matter Phys. 2005, 17, R461. https://doi.org/10.1088/0953-8984/17/15/r01.Search in Google Scholar

51. Schoen, M., Klapp, S. Rev. Comp. Chem. 2007, 24, 1.Search in Google Scholar

52. Buntkowsky, G., Breitzke, H., Adamczyk, A., Roelofs, F., Emmler, T., Gedat, E., Grünberg, B., Xu, Y., Limbach, H. H., Shenderovich, I., Vyalikh, A., Findenegg, G. H. Phys. Chem. Chem. Phys. 2007, 9, 4843. https://doi.org/10.1039/b707322d.Search in Google Scholar

53. Kärger, J., Pfeifer, H. Zeolites 1987, 7, 90. https://doi.org/10.1016/0144-2449(87)90067-4.Search in Google Scholar

54. Kaerger, J., Freude, D. Stud. Surf. Sci. Catal. 1997, 105, 551.10.1016/S0167-2991(97)80600-3Search in Google Scholar

55. Kaerger, J., Freude, D. Chem. Eng. Technol. 2002, 25, 769.10.1002/1521-4125(20020806)25:8<769::AID-CEAT769>3.0.CO;2-0Search in Google Scholar

56. Freude, D., Kärger, J. Handbook of porous solids 2002, 1, 465.10.1002/9783527618286.ch14Search in Google Scholar

57. Kärger, J., Freude, D., Haase, J. Processes 2018, 6, 147. https://doi.org/10.3390/pr6090147.Search in Google Scholar

58. Kaerger, J., Valiullin, R. Chem. Soc. Rev. 2013, 42, 4172.10.1039/c3cs35326eSearch in Google Scholar PubMed

59. Findenegg, G. H., Jaehnert, S., Akcakayiran, D., Schreiber, A. Chem. Phys. Chem. 2008, 9, 2651. https://doi.org/10.1002/cphc.200800616.Search in Google Scholar PubMed

60. Geppi, M., Borsacchi, S., Mollica, G., Veracini, C. A. Appl. Spectrosc. Rev. 2009, 44, 1.10.1080/05704920802352564Search in Google Scholar

61. Vogel, M. Eur. Phys. J. 2010, 189, 47. https://doi.org/10.1140/epjst/e2010-01309-9.Search in Google Scholar

62. Yang, Y., Beele, B., Bluemel, J. J. Am. Chem. Soc. 2008, 130, 3771–+. https://doi.org/10.1021/ja800541c.Search in Google Scholar PubMed

63. Bluemel, J. Coord. Chem. Rev. 2008, 252, 2410.10.1016/j.ccr.2008.06.013Search in Google Scholar

64. Gutmann, T., Grünberg, A., Rothermel, N., Werner, M., Srour, M., Abdulhussain, S., Tan, S., Xu, Y., Breitzke, H., Buntkowsky, G. Solid State NMR 2013, 55/56, 1–11.10.1016/j.ssnmr.2013.06.004Search in Google Scholar PubMed

65. Motokura, K., Itagaki, S., Iwasawa, Y., Miyaji, A., Baba, T. Green Chem. 2009, 11, 1876. https://doi.org/10.1039/b916764c.Search in Google Scholar

66. Wang, Q., Jordan, E., Shantz, D. F. J. Phys. Chem. C 2009, 113, 18142. https://doi.org/10.1021/jp9013527.Search in Google Scholar

67. Gath, J., Hoaston, G. L., Vold, R. L., Berthoud, R., Coperet, C., Grellier, M., Sabo-Etienne, S., Lesage, A., Emsley, L. Phys. Chem. Chem. Phys. 2009, 11, 6962. https://doi.org/10.1039/b907665d.Search in Google Scholar PubMed

68. Kandel, K., Althaus, S. M., Peeraphatdit, C., Kobayashi, T., Trewyn, B. G., Pruski, M., Slowing, I. I. J. Catal. 2012, 291, 63. https://doi.org/10.1016/j.jcat.2012.04.005.Search in Google Scholar

69. Kandel, K., Althaus, S. M., Peeraphatdit, C., Kobayashi, T., Trewyn, B. G., Pruski, M., Slowing, I. I. ACS Catal 2013, 3, 265. https://doi.org/10.1021/cs300748g.Search in Google Scholar

70. Jayanthi, S., Frydman, V., Vega, S. J. Phys. Chem. B 2012, 116, 10398. https://doi.org/10.1021/jp3061152.Search in Google Scholar PubMed

71. Sundaresan, J., Werner, M., Yeping, X., Buntkowsky, G., Vega, S. J Phys Chem C J Phys Chem C 2013.Search in Google Scholar

72. Jayanthi, S., Kababya, S., Schmidt, A., Vega, S. J. Phys. Chem. C 2016, 120, 2797. https://doi.org/10.1021/acs.jpcc.5b11429.Search in Google Scholar

73. Saint-Arroman, R. P., Chabanas, M., Baudouin, A., Coperet, C., Basset, J. H., Lesage, A., Emsley, L. J. Am. Chem. Soc. 2001, 123, 3820. https://doi.org/10.1021/ja002259n.Search in Google Scholar PubMed

74. Rataboul, F., Chabanas, M., de Mallmann, A., Coperet, C., Thivolle-Cazat, J., Basset, J. M. Chem. Eur J. 2003, 9, 1426. https://doi.org/10.1002/chem.200390162.Search in Google Scholar PubMed

75. Blanc, F., Basset, J. M., Coperet, C., Sinha, A., Tonzetich, Z. J., Schrock, R. R., Solans-Monfort, X., Clot, E., Eisenstein, O., Lesage, A., Emsley, L. J. Am. Chem. Soc. 2008, 130, 5886. https://doi.org/10.1021/ja077749v.Search in Google Scholar PubMed

76. Gajan, D., Levine, D., Zocher, E., Coperet, C., Lesage, A., Emsley, L. Chem. Sci. 2011, 2, 928. https://doi.org/10.1039/c0sc00579g.Search in Google Scholar

77. Lelli, M., Gajan, D., Lesage, A., Caporini, M. A., Vitzthum, V., Mieville, P., Heroguel, F., Rascon, F., Roussey, A., Thieuleux, C., Boualleg, M., Veyre, L., Bodenhausen, G., Coperet, C., Emsley, L. J. Am. Chem. Soc. 2011, 133, 2104–2107.10.1021/ja110791dSearch in Google Scholar PubMed

78. Kerber, R. N., Kermagoret, A., Callens, E., Florian, P., Massiot, D., Lesage, A., Coperet, C., Delbecq, F., Rozanska, X., Sautet, P. J. Am. Chem. Soc. 2012, 134, 6767. https://doi.org/10.1021/ja3008566.Search in Google Scholar PubMed

79. Valla, M., Rossini, A. J., Caillot, M., Chizallet, C., Raybaud, P., Digne, M., Chaumonnot, A., Lesage, A., Emsley, L., van Bokhoven, J. A., Coperet, C. J. Am. Chem. Soc. 2015, 137, 10710. https://doi.org/10.1021/jacs.5b06134.Search in Google Scholar PubMed PubMed Central

80. Conley, M., Coperet, C., Andersen, R. Abstr. Pap. Am. Chem. Soc. 2016, 251.Search in Google Scholar

81. Conley, M. P., Lapadula, G., Sanders, K., Gajan, D., Lesage, A., Del Rosa, I., Maron, L., Lukens, W. W., Coperet, C., Andersen, R. A. J. Am. Chem. Soc. 2016, 138, 3831. https://doi.org/10.1021/jacs.6b00071.Search in Google Scholar PubMed

82. Delley, M. F., Lapadula, G., Nunez-Zarur, F., Comas-Vives, A., Kalendra, V., Jeschke, G., Baabe, D., Walter, M. D., Rossini, A. J., Lesage, A., Emsley, L., Maury, O., Coperet, C. J. Am. Chem. Soc. 2017, 139, 8855. https://doi.org/10.1021/jacs.7b02179.Search in Google Scholar PubMed

83. Estes, D. P., Gordon, C. P., Fedorov, A., Liao, W. C., Ehrhorn, H., Bittner, C., Zier, M. L., Bockfeld, D., Chan, K. W., Eisenstein, O., Raynaud, C., Tamm, M., Coperet, C. J. Am. Chem. Soc. 2017, 139, 17597. https://doi.org/10.1021/jacs.7b09934.Search in Google Scholar PubMed

84. Trebosc, J., Wiench, J. W., Huh, S., Lin, V. S. Y., Pruski, M. J. Am. Chem. Soc. 2005, 127, 7587. https://doi.org/10.1021/ja0509127.Search in Google Scholar PubMed

85. Mao, K., Pruski, M. J. Magn. Reson. 2009, 201, 165. https://doi.org/10.1016/j.jmr.2009.09.004.Search in Google Scholar PubMed

86. Mao, K., Wiench, J. W., Lin, V., Pruski, M. J. Magn. Reson. 2009, 196, 92. https://doi.org/10.1016/j.jmr.2008.10.010.Search in Google Scholar PubMed

87. Hsin, T. M., Chen, S., Guo, E., Tsai, C. H., Pruski, M., Lin, V. Top. Catal. 2010, 53, 746. https://doi.org/10.1007/s11244-010-9462-3.Search in Google Scholar

88. Mao, K., Kobayashi, T., Wiench, J. W., Chen, H. T., Tsai, C. H., Lin, V. S. Y., Pruski, M. J. Am. Chem. Soc. 2010, 132, 12452. https://doi.org/10.1021/ja105007b.Search in Google Scholar PubMed

89. Kobayashi, T., Mao, K., Wang, S. G., Lin, V., Pruski, M. Solid State NMR 2011, 39, 65. https://doi.org/10.1016/j.ssnmr.2011.02.001.Search in Google Scholar PubMed

90. Hara, K., Akahane, S., Wiench, J. W., Burgin, B. R., Ishito, N., Lin, V. S. Y., Fukuoka, A., Pruski, M. J. Phys. Chem. C 2012, 116, 7083. https://doi.org/10.1021/jp300580f.Search in Google Scholar

91. Kobayashi, T., Singappuli-Arachchige, D., Wang, Z. R., Slowing, I. I., Pruski, M. Phys. Chem. Chem. Phys. 2017, 19, 1781. https://doi.org/10.1039/c6cp07642d.Search in Google Scholar PubMed

92. Perras, F., Kobayashi, T., Pruski, M. Abstr. Pap. Am. Chem. Soc. 2017, 253.Search in Google Scholar

93. Kobayashi, T., Singappuli-Arachchige, D., Slowing, I. I., Pruski, M. Phys. Chem. Chem. Phys. 2018, 20, 22203. https://doi.org/10.1039/c8cp04425b.Search in Google Scholar PubMed

94. Kobayashi, T., Pruski, M. ACS Catal 2019, 9, 7238. https://doi.org/10.1021/acscatal.9b02017.Search in Google Scholar

95. Adamczyk, A., Xu, Y., Walaszek, B., Roelofs, F., Pery, T., Pelzer, K., Philippot, K., Chaudret, B., Limbach, H. H., Breitzke, H., Buntkowsky, G. Top. Catal. 2008, 48, 75. https://doi.org/10.1007/s11244-008-9054-7.Search in Google Scholar

96. Gutmann, T., Ratajczyk, T., Xu, Y. P., Breitzke, H., Grunberg, A., Dillenberger, S., Bommerich, U., Trantzschel, T., Bernarding, J., Buntkowsky, G. Solid State NMR 2010, 38, 90. https://doi.org/10.1016/j.ssnmr.2011.03.001.Search in Google Scholar PubMed

97. Grunberg, A., Gutmann, T., Rothermel, N., Xu, Y. P., Breitzke, H., Buntkowsky, G. Z. Phys. Chem. 2013, 227, 901. https://doi.org/10.1524/zpch.2013.0398.Search in Google Scholar

98. Gutmann, T., Grunberg, A., Rothermel, N., Werner, M., Srour, M., Abdulhussain, S., Tan, S. L., Xu, Y. P., Breitzke, H., Buntkowsky, G. Solid State NMR 2013, 55–56, 1. https://doi.org/10.1016/j.ssnmr.2013.06.004.Search in Google Scholar PubMed

99. Abdulhussain, S., Breitzke, H., Ratajczyk, T., Grunberg, A., Srour, M., Arnaut, D., Weidler, H., Kunz, U., Kleebe, H. J., Bommerich, U., Bernarding, J., Gutmann, T., Buntkowsky, G. Chem. Eur J. 2014, 20, 1159. https://doi.org/10.1002/chem.201303020.Search in Google Scholar PubMed

100. Gutmann, T., Alkhagani, S., Rothermel, N., Limbach, H. H., Breitzke, H., Buntkowsky, G. Z. Phys. Chem. 2017, 231, 653. https://doi.org/10.1515/zpch-2016-0837.Search in Google Scholar

101. Liu, J. Q., Groszewicz, P. B., Wen, Q. B., Thankamony, A. S. L., Zhang, B., Kunz, U., Sauer, G., Xu, Y. P., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2017, 121, 17409. https://doi.org/10.1021/acs.jpcc.7b06807.Search in Google Scholar

102. de Oliveira, M., Seeburg, D., Weiß, J., Wohlrab, S., Buntkowsky, G., Bentrup, U., Gutmann, T. Catal. Sci. Technol. 2019, 9, 6180. https://doi.org/10.1039/c9cy01410a.Search in Google Scholar

103. de Oliveira, M., Herr, K., Brodrecht, M., Haro-Mares, N. B., Wissel, T., Klimavicius, V., Breitzke, H., Gutmann, T., Buntkowsky, G. Phys. Chem. Chem. Phys. 2021, 23, 12559. https://doi.org/10.1039/d1cp00985k.Search in Google Scholar PubMed

104. Li, Z., Rösler, L., Wissel, T., Breitzke, H., Gutmann, T., Buntkowsky, G. J. CO2 Util. 2021, 52, 101682. https://doi.org/10.1016/j.jcou.2021.101682.Search in Google Scholar

105. Srour, M., Hadjiali, S., Brunnengräber, K., Weidler, H., Xu, Y., Breitzke, H., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2021, 125, 7178. https://doi.org/10.1021/acs.jpcc.1c00112.Search in Google Scholar

106. Folliet, N., Gervais, C., Costa, D., Laurent, G., Babonneau, F., Stievano, L., Lambert, J.-F., Tielens, F. J. Phys. Chem. C 2013, 117, 4104. https://doi.org/10.1021/jp312195a.Search in Google Scholar

107. Ukmar, T., Cendak, T., Mazaj, M., Kaucic, V., Mali, G. J. Phys. Chem. C 2012, 116, 2662. https://doi.org/10.1021/jp2087016.Search in Google Scholar

108. Azaïs, T., Laurent, G., Panesar, K., Nossov, A., Guenneau, F., Sanfeliu Cano, C., Tourné-Péteilh, C., Devoisselle, J.-M., Babonneau, F. J. Phys. Chem. C 2017, 121, 26833. https://doi.org/10.1021/acs.jpcc.7b08919.Search in Google Scholar

109. Tielens, F., Folliet, N., Bondaz, L., Etemovic, S., Babonneau, F., Gervais, C., Azaïs, T. J. Phys. Chem. C 2017, 121, 17339. https://doi.org/10.1021/acs.jpcc.7b05045.Search in Google Scholar

110. Klimavicius, V., Dagys, L., Chizhik, V., Balevicius, V. Appl. Magn. Reson. 2017, 48, 673. https://doi.org/10.1007/s00723-017-0891-z.Search in Google Scholar

111. Wu, C., Guo, F., Zhuang, L., Ai, X., Zhong, F., Yang, H., Qian, J. ACS Energy Lett 2020, 5, 1644. https://doi.org/10.1021/acsenergylett.0c00804.Search in Google Scholar

112. Langer, J., Epp, V., Heitjans, P., Mautner, F. A., Wilkening, M. Phys. Rev. B 2013, 88, 094304; https://doi.org/10.1103/physrevb.88.094304.Search in Google Scholar

113. Heitjans, P. Z. Phys. Chem. 2015, 229, 1263. https://doi.org/10.1515/zpch-2015-9033.Search in Google Scholar

114. Wang, Q., Sarkar, A., Wang, Di., Velasco, L., Azmi, R., Bhattacharya, S. S., Bergfeldt, T., Düvel, A., Heitjans, P., Brezesinski, T., Hahn, H., Breitung, B. Energy Environ. Sci. 2019, 12, 2433. https://doi.org/10.1039/c9ee00368a.Search in Google Scholar

115. Heitjans, P., Kärger, J. Diffusion in Condensed Matter: Methods, Materials, Models, 3rd ed.; Springer: Berlin, 2018.Search in Google Scholar

116. Ishii, Y., Tycko, R. J. Magn. Reson. 2000, 142, 199. https://doi.org/10.1006/jmre.1999.1976.Search in Google Scholar PubMed

117. Maly, T., Debelouchina, G. T., Bajaj, V. S., Hu, K., Joo, C., Mak-Jurkauskas, M. L., Sirigiri, J. R., van der Wel, P. C. A., Herzfeld, J., Temkin, R. J., Griffin, R. G. J. Chem. Phys. 2008, 128, 52211. https://doi.org/10.1063/1.2833582.Search in Google Scholar PubMed PubMed Central

118. Hovav, Y., Feintuch, A., Vega, S. Phys. Chem. Chem. Phys. 2013, 15, 188. https://doi.org/10.1039/c2cp42897k.Search in Google Scholar PubMed

119. Mentink-Vigier, F., Akbey, U., Hovav, Y., Vega, S., Oschkinat, H., Feintuch, A. J. Magn. Reson. 2012, 224, 13. https://doi.org/10.1016/j.jmr.2012.08.013.Search in Google Scholar PubMed

120. Hovav, Y., Feintuch, A., Vega, S. J. Magn. Reson. 2012, 214, 29. https://doi.org/10.1016/j.jmr.2011.09.047.Search in Google Scholar PubMed

121. Lesage, A., Lelli, M., Gajan, D., Caporini, M. A., Vitzthum, V., Mieville, P., Alauzun, J., Roussey, A., Thieuleux, C., Mehdi, A., Bodenhausen, G., Coperet, C., Emsley, L. J. Am. Chem. Soc. 2010, 132, 15459. https://doi.org/10.1021/ja104771z.Search in Google Scholar PubMed

122. Conley, M. P., Drost, R. M., Baffert, M., Gajan, D., Elsevier, C., Franks, W. T., Oschkinat, H., Veyre, L., Zagdoun, A., Rossini, A., Lelli, M., Lesage, A., Casano, G., Ouari, O., Tordo, P., Emsley, L., Coperet, C., Thieuleux, C. Chem. Eur J. 2013, 19, 12234. https://doi.org/10.1002/chem.201302484.Search in Google Scholar PubMed

123. Conley, M. P., Rossini, A. J., Comas-Vives, A., Valla, M., Casano, G., Ouari, O., Tordo, P., Lesage, A., Emsley, L., Coperet, C. Phys. Chem. Chem. Phys. 2014, 16, 17822. https://doi.org/10.1039/c4cp01973c.Search in Google Scholar PubMed

124. Ong, T. C., Liao, W. C., Mougel, V., Gajan, D., Lesage, A., Emsley, L., Coperet, C. Angew. Chem. Int. Ed. 2016, 55, 4743. https://doi.org/10.1002/anie.201510821.Search in Google Scholar PubMed

125. Liao, W. C., Ong, T. C., Gajan, D., Bernada, F., Sauvee, C., Yulikov, M., Pucino, M., Schowner, R., Schwarzwalder, M., Buchmeiser, M. R., Jeschke, G., Tordo, P., Ouari, O., Lesage, A., Emsley, L., Coperet, C. Chem. Sci. 2017, 8, 416. https://doi.org/10.1039/c6sc03139k.Search in Google Scholar PubMed PubMed Central

126. Pump, E., Bendjeriou-Sedjerari, A., Viger-Gravel, J., Gajan, D., Scotto, B., Samantaray, M. K., Abou-Hamad, E., Gurinov, A., Almaksoud, W., Cao, Z., Lesage, A., Cavallo, L., Emsley, L., Basset, J. M. Chem. Sci. 2018, 9, 4866. https://doi.org/10.1039/c8sc00532j.Search in Google Scholar PubMed PubMed Central

127. Azais, T., von Euw, S., Ajili, W., Auzoux-Bordenave, S., Bertani, P., Gajan, D., Emsley, L., Nassif, N., Lesage, A. Solid State NMR 2019, 102, 2. https://doi.org/10.1016/j.ssnmr.2019.06.001.Search in Google Scholar PubMed

128. Eisenschmidt, T. C., Kirss, R. U., Deutsch, P. P., Hommeltoft, S. I., Eisenberg, R., Bargon, J., Lawler, R. G., Balch, A. L. J. Am. Chem. Soc. 1987, 109, 8089. https://doi.org/10.1021/ja00260a026.Search in Google Scholar

129. Bowers, C. R., Weitekamp, D. P. Phys. Rev. Lett. 1986, 57, 2645. https://doi.org/10.1103/physrevlett.57.2645.Search in Google Scholar

130. Bowers, C. R., Jones, D. H., Kurur, N. D., Labinger, J. A., Pravica, M. G., Weitekamp, D. P. Adv. Magn. Res. 1990, 15, 269. https://doi.org/10.1016/b978-0-12-025514-6.50018-6.Search in Google Scholar

131. Hunger, M. Catal. Today 2004, 97, 3. https://doi.org/10.1016/j.cattod.2004.03.061.Search in Google Scholar

132. Henning, H., Dyballa, M., Scheibe, M., Klemm, E., Hunger, M. Chem. Phys. Lett. 2013, 555, 258. https://doi.org/10.1016/j.cplett.2012.10.068.Search in Google Scholar

133. Arzumanov, S. S., Stepanov, A. G. J. Phys. Chem. C 2013, 117, 2888. https://doi.org/10.1021/jp311345r.Search in Google Scholar

134. Buntkowsky, G., Gutmann, T., Petrova, M. V., Ivanov, K. L., Bommerich, U., Plaumann, M., Bernarding, J. Solid State NMR 2014, 63-64, 20. https://doi.org/10.1016/j.ssnmr.2014.07.002.Search in Google Scholar PubMed

135. Heinze, M. T., Zill, J. C., Matysik, J., Einicke, W. D., Gläser, R., Stark, A. Phys. Chem. Chem. Phys. 2014, 16, 24359. https://doi.org/10.1039/c4cp02749c.Search in Google Scholar PubMed

136. Fraissard, J., Jameson, C., Saam, B., Brunner, E., Hersman, W., Goodson, B., Meersmann, T., Fujiwara, H., Wang, L.-Q., Sozzani, P. Hyperpolarized Xenon-129 Magnetic Resonance: Concepts, Production, Techniques and Applications; Royal Society of Chemistry: London Cambridge, 2015.Search in Google Scholar

137. Shantz, D. F., Fild, C., Koller, H., Lobo, R. F. J. Phys. Chem. B 1999, 103, 10858. https://doi.org/10.1021/jp992549u.Search in Google Scholar

138. Shantz, D. F., Lobo, R. F. Top. Catal. 1999, 9, 1. https://doi.org/10.1023/a:1019146102527.10.1023/A:1019146102527Search in Google Scholar

139. Wang, B., Côté, A. P., Furukawa, H., O’Keeffe, M., Yaghi, O. M. Nature 2008, 453, 207. https://doi.org/10.1038/nature06900.Search in Google Scholar PubMed

140. Riedel, E., Janiak, C. Anorganische Chemie; De Gruyter: Oldenburg, 2007.10.1515/9783110189032Search in Google Scholar

141. Zhang, C., Lively, R. P., Zhang, K., Johnson, J. R., Karvan, O., Koros, W. J. J. Phys. Chem. Lett. 2012, 3, 2130. https://doi.org/10.1021/jz300855a.Search in Google Scholar PubMed

142. CEJKA, J., van Bekkum, H., Corma, A., Schüth, F. Introduction to Zeolite Science and Practice, in Studies in Surface Science and Catalysis, Vol. 168; Elsevier BV: Amsterdam, Neth, 2007.Search in Google Scholar

143. Demuth, D., Sattig, M., Steinrücken, E., Weigler, M., Vogel, M. Z. Phys. Chem. 2018, 232, 1059. https://doi.org/10.1515/zpch-2017-1027.Search in Google Scholar

144. Kärger, J., Vasenkov, S., Auerbach, S. M. Diffusion in zeolites. In Handbook of Zeolite Science and Technology; CRC Press, 2003, pp 458–560.10.1201/9780203911167.ch10Search in Google Scholar

145. Weigler, M., Brodrecht, M., Breitzke, H., Dietrich, F., Sattig, M., Buntkowsky, G., Vogel, M. Z. Phys. Chem. 2018, 232, 1041. https://doi.org/10.1515/zpch-2017-1034.Search in Google Scholar

146. Grünberg, B., Emmler, T., Gedat, E., Shenderovich, I., Findenegg, G. H., Limbach, H. H., Buntkowsky, G. Chem. Eur J. 2004, 10, 5689. https://doi.org/10.1002/chem.200400351.Search in Google Scholar

147. Brodrecht, M., Breitzke, H., Gutmann, T., Buntkowsky, G. Chem. Eur J. 2018, 24, 17814. https://doi.org/10.1002/chem.201804065.Search in Google Scholar

148. Brodrecht, M., Kumari, B., Breitzke, H., Gutmann, T., Buntkowsky, G. Z. Phys. Chem. 2018, 232, 1127. https://doi.org/10.1515/zpch-2017-1059.Search in Google Scholar

149. Brodrecht, M., Kunnari, B., Thankamony, A. S. S. L., Breitzke, H., Gutmann, T., Buntkowsky, G. Chem. Eur J. 2019, 25, 5214. https://doi.org/10.1002/chem.201805480.Search in Google Scholar

150. Schottner, S., Brodrecht, M., Uhlein, E., Dietz, C., Breitzke, H., Tietze, A. A., Buntkowsky, G., Gallei, M. Macromolecules 2019, 52, 2631. https://doi.org/10.1021/acs.macromol.8b02758.Search in Google Scholar

151. Grün, M., Unger, K. K., Matsumoto, A., Tsutsumi, K. Microporous Mesoporous Mater. 1999, 27, 207. https://doi.org/10.1016/s1387-1811(98)00255-8.Search in Google Scholar

152. Buntkowsky, G., Vogel, M., Winter, R. Z. Phys. Chem. 2018, 232, 937. https://doi.org/10.1515/zpch-2018-1110.Search in Google Scholar

153. Richert, R. Annu. Rev. Phys. Chem. 2011, 62, 65. https://doi.org/10.1146/annurev-physchem-032210-103343.Search in Google Scholar PubMed

154. Brodrecht, M., Klotz, E., Lederle, C., Breitzke, H., Stühn, B., Vogel, M., Buntkowsky, G. Z. Phys. Chem. 2018, 232, 1003–1016. https://doi.org/10.1515/zpch-2017-1030.Search in Google Scholar

155. Guo, X.-Y., Watermann, T., Sebastiani, D. J. Phys. Chem. B 2014, 118, 10207. https://doi.org/10.1021/jp505203t.Search in Google Scholar PubMed

156. Hermens, J. L., de Bruijn, J. H., Brooke, D. N. Environ. Toxicol. Chem. 2013, 32, 732. https://doi.org/10.1002/etc.2141.Search in Google Scholar PubMed

157. Leo, A., Hansch, C., Elkins, D. Chem. Rev. 1971, 71, 525. https://doi.org/10.1021/cr60274a001.Search in Google Scholar

158. Kumari, B., Brodrecht, M., Gutmann, T., Breitzke, H., Buntkowsky, G. Appl. Magn. Reson. 2019, 50, 1399. https://doi.org/10.1007/s00723-019-01156-2.Search in Google Scholar

159. Kumari, B., Brodrecht, M., Breitzke, H., Werner, M., Grunberg, B., Limbach, H. H., Forg, S., Sanjon, E. P., Drossel, B., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2018, 122, 19540. https://doi.org/10.1021/acs.jpcc.8b04745.Search in Google Scholar

160. Vyalikh, A., Emmler, T., Shenderovich, I., Zeng, Y., Findenegg, G. H., Buntkowsky, G. Phys. Chem. Chem. Phys. 2007, 9, 2249. https://doi.org/10.1039/b617744a.Search in Google Scholar PubMed

161. Vyalikh, A., Emmler, T., Gedat, E., Shenderovich, I., Findenegg, G. H., Limbach, H. H., Buntkowsky, G. Solid State NMR 2005, 28, 117. https://doi.org/10.1016/j.ssnmr.2005.07.001.Search in Google Scholar PubMed

162. Harrach, M. F., Drossel, B., Winschel, W., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2015, 119, 28961. https://doi.org/10.1021/acs.jpcc.5b09537.Search in Google Scholar

163. van Rossum, B. J., Förster, H., de Groot, H. J. M. J. Magn. Reson. 1997, 124, 516. https://doi.org/10.1006/jmre.1996.1089.Search in Google Scholar

164. Hoffmann, M. M., Bothe, S., Brodrecht, M., Klimavicius, V., Haro-Mares, N. B., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2020, 124, 5145. https://doi.org/10.1021/acs.jpcc.9b10504.Search in Google Scholar

165. Hoffmann, M. M., Bothe, S., Gutmann, T., Buntkowsky, G. J. Phys. Chem. B 2018, 122, 4913. https://doi.org/10.1021/acs.jpcb.8b03456.Search in Google Scholar

166. Hoffmann, M. M., Too, M. D., Vogel, M., Gutmann, T., Buntkowsky, G. J. Phys. Chem. B 2020, 124, 9115. https://doi.org/10.1021/acs.jpcb.0c06124.Search in Google Scholar

167. Hoffmann, M. M., Horowitz, R. H., Gutmann, T., Buntkowsky, G. J. Chem. Eng. Data 2021, 66, 2480. https://doi.org/10.1021/acs.jced.1c00101.Search in Google Scholar

168. Daube, D., Aladin, V., Heiliger, J., Wittmann, J. J., Barthelmes, D., Bengs, C., Schwalbe, H., Corzilius, B. J. Am. Chem. Soc. 2016, 138, 16572. https://doi.org/10.1021/jacs.6b08683.Search in Google Scholar

169. Hoffmann, M. M., Bothe, S., Gutmann, T., Hartmann, F.-F., Reggelin, M., Buntkowsky, G. J. Phys. Chem. C 2017, 121, 2418. https://doi.org/10.1021/acs.jpcc.6b13087.Search in Google Scholar

170. Aladin, V., Corzilius, B. Solid State NMR 2019, 99, 27. https://doi.org/10.1016/j.ssnmr.2019.02.004.Search in Google Scholar

171. Park, H., Uluca-Yazgi, B., Heumann, S., Schlögl, R., Granwehr, J., Heise, H., Schleker, P. P. M. J. Magn. Reson. 2020, 312, 106688. https://doi.org/10.1016/j.jmr.2020.106688.Search in Google Scholar

172. Gibby, M. G., Pines, A., Waugh, J. S. Chem. Phys. Lett. 1972, 16, 296. https://doi.org/10.1016/0009-2614(72)80276-8.Search in Google Scholar

173. White, J. L., Haw, J. F. J. Am. Chem. Soc. 1990, 112, 5896. https://doi.org/10.1021/ja00171a049.Search in Google Scholar

174. Macdonald, P. M., Soong, R. J. Magn. Reson. 2007, 188, 1. https://doi.org/10.1016/j.jmr.2007.06.002.Search in Google Scholar

175. Higgins, J. S., Hodgson, A. H., Law, R. V. J. Mol. Struct. 2002, 602–603, 505. https://doi.org/10.1016/s0022-2860(01)00731-1.Search in Google Scholar

176. Hoffmann, M. M., Bothe, S., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2017, 121, 22948. https://doi.org/10.1021/acs.jpcc.7b07965.Search in Google Scholar

177. Bothe, S., Hoffmann, M. M., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2017, 121, 27089. https://doi.org/10.1021/acs.jpcc.7b07967.Search in Google Scholar

178. Bothe, S., Nowag, J., Klimavičius, V., Hoffmann, M., Troitskaya, T. I., Amosov, E. V., Tormyshev, V. M., Kirilyuk, I., Taratayko, A., Kuzhelev, A., Parkhomenko, D., Bagryanskaya, E., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2018, 122, 11422. https://doi.org/10.1021/acs.jpcc.8b02570.Search in Google Scholar

Received: 2021-09-20
Revised: 2021-10-12
Accepted: 2021-10-12
Published Online: 2021-10-27
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Preface
  3. Special issue on the occasion of the 75th birthday of Paul Heitjans
  4. Contribution to Special Issue dedicated to Paul Heitjans
  5. Unusual cation coordination in nanostructured mullites
  6. A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
  7. Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
  8. Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
  9. Status and progress of ion-implanted βNMR at TRIUMF
  10. How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
  11. Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
  12. Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
  13. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
  14. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
  15. Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
  16. How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
  17. Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
  18. Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
  19. Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
  20. On the CaF2-BaF2 interface
  21. The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
  22. Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
  23. Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
  24. Ionic transport in K2Ti6O13
  25. F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
  26. An overview of thermotransport in fluorite-related ionic oxides
Downloaded on 17.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3132/html
Scroll to top button