Startseite Naturwissenschaften The crystal structure of 1-(N1-benzyl-2-methyl-4-nitro-imidazol-5-yl)-4-(prop-2-yn-1-yl) piperazine, C18H21N5O2
Artikel Open Access

The crystal structure of 1-(N1-benzyl-2-methyl-4-nitro-imidazol-5-yl)-4-(prop-2-yn-1-yl) piperazine, C18H21N5O2

  • Raed A. Al-Qawasmeh EMAIL logo , Sadeekah O. W. Saber ORCID logo , Yaseen A. Al-Soud und Monther A. Khanfar ORCID logo
Veröffentlicht/Copyright: 20. Januar 2022

Abstract

C18H21N5O2, monoclinic, P21/c (no. 4), a = 10.0914(6) Å, b = 11.8919(7) Å, c = 15.545(1) Å, β = 102.321(6)°, V = 1822.5(2) Å3, Z = 4, R gt (F) = 0.0503, wR ref (F 2) = 0.1419, T = 293(2) K.

CCDC no.: 2132118

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow needle
Size: 0.12 × 0.08 × 0.02 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.08 mm−1
Diffractometer, scan mode: Xcalibur, ω
θ max, completeness: 29.5°, >99%
N(hkl)measured, N(hkl)unique, R int: 27,507, 4593, 0.029
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2681
N(param)refined: 238
Programs: CrysAlisPRO [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.39788 (18) 0.85662 (14) 0.39620 (13) 0.0678 (5)
C2 0.50765 (16) 0.85408 (13) 0.52762 (11) 0.0571 (4)
C3 0.59947 (16) 0.81652 (12) 0.48078 (10) 0.0546 (4)
C4 0.2893 (3) 0.8728 (2) 0.31574 (19) 0.0961 (8)
H4A 0.275 (2) 0.801 (2) 0.2832 (15) 0.104 (7)*
H4B 0.206 (4) 0.889 (3) 0.334 (2) 0.177 (15)*
H4C 0.313 (2) 0.931 (2) 0.2772 (17) 0.124 (9)*
C5 0.5772 (2) 0.78057 (17) 0.31923 (12) 0.0787 (5)
H5A 0.6695 0.8077 0.3255 0.094*
H5B 0.5231 0.8146 0.2666 0.094*
C6 0.57666 (16) 0.65507 (15) 0.30680 (10) 0.0610 (4)
C7 0.6547 (2) 0.6106 (2) 0.25229 (14) 0.0929 (7)
H7 0.7078 0.6580 0.2260 0.111*
C8 0.6548 (3) 0.4979 (3) 0.23653 (18) 0.1177 (9)
H8 0.7054 0.4698 0.1978 0.141*
C9 0.5823 (3) 0.4256 (2) 0.27636 (17) 0.1012 (7)
H9 0.5849 0.3487 0.2663 0.121*
C10 0.5061 (2) 0.46734 (19) 0.33090 (16) 0.0926 (7)
H10 0.4561 0.4187 0.3585 0.111*
C11 0.50232 (19) 0.58224 (17) 0.34585 (14) 0.0791 (6)
H11 0.4487 0.6101 0.3828 0.095*
C12 0.83549 (17) 0.87279 (14) 0.52832 (13) 0.0686 (5)
H12A 0.8435 0.8849 0.5909 0.082*
H12B 0.8079 0.9429 0.4979 0.082*
C13 0.97004 (17) 0.83487 (14) 0.51051 (13) 0.0692 (5)
H13A 0.9623 0.8260 0.4476 0.083*
H13B 1.0385 0.8915 0.5314 0.083*
C14 0.90817 (17) 0.64230 (14) 0.52541 (13) 0.0652 (4)
H14A 0.9360 0.5726 0.5565 0.078*
H14B 0.8999 0.6287 0.4630 0.078*
C15 0.77311 (17) 0.67826 (14) 0.54216 (13) 0.0662 (5)
H15A 0.7051 0.6215 0.5204 0.079*
H15B 0.7791 0.6872 0.6049 0.079*
C16 1.14421 (18) 0.69196 (17) 0.54303 (13) 0.0743 (5)
H16A 1.1727 0.6279 0.5811 0.089*
H16B 1.2087 0.7521 0.5621 0.089*
C17 1.14980 (19) 0.66082 (16) 0.45276 (15) 0.0742 (5)
C18 1.1442 (3) 0.63501 (19) 0.37957 (18) 0.0970 (7)
H18 1.1398 0.6145 0.3213 0.116*
N1 0.38429 (14) 0.87939 (12) 0.47618 (11) 0.0666 (4)
N2 0.52531 (14) 0.81809 (11) 0.39517 (9) 0.0626 (4)
N3 0.53046 (17) 0.87016 (12) 0.62039 (10) 0.0692 (4)
N4 0.73480 (13) 0.78517 (10) 0.49693 (9) 0.0572 (3)
N5 1.01089 (13) 0.72848 (11) 0.55473 (9) 0.0609 (4)
O1 0.64251 (15) 0.84369 (13) 0.66527 (8) 0.0857 (4)
O2 0.44060 (16) 0.91050 (15) 0.65223 (10) 0.1051 (5)

Source of materials

The commercially available 2-methyl-4-nitro-1H-imidazole was reacted with benzyl chloride to produced 1-benzyl-2-methyl-4-nitro-1H-imidazole 1 [5]. Bromination of 1 with liquid bromine in DMF, in the presence potassium carbonate as a base afforded 1-benzyl-5-bromo-2-methyl-4-nitro-1H-imidazole 2 [5]. Reaction of 2 with piperazine using isopropanol as solvent gave 1-(1-benzyl-2-methyl-4-nitro-1H-imidazol-5-yl)piperazine 3 [5]. The title compound 4 has been prepared via reaction of the piperazine derivative 3 with propargyl bromide using NaH as base to produce the new compound 1-(N1-benzyl-2-methyl-4-nitro-imidazol-5-yl)-4-(prop-2-yn-1-yl) piperazine 4 as yellow flakes in 82% yield. M.p. = 122–124°. HRMS-ESI m/z: 362.15719 (M + Na)+. 1H NMR (500 MHz, DMSO-d 6, 298 K): δ 2.25 (s, 3H, H–C4); 2.46 (br.s, 4H, H–C13, H–C14); 2.99 (br.s, 4H, H–C12, H–C15); 3.17 (t, 1H, J = 2.2, H–C18); 3.28 (d, 2H, J = 2.2, H–C16); 5.17 (s, 2H, H–C5); 7.12 (d, 2H, J = 7.4 Hz, H–C7, H–C11); 7.32 (t, 1H, J = 7.3 Hz, H–C9); 7.39 (pseudo t, 2H, H–C8, H–C10). 13C NMR (125 MHz, DMSO-d 6, 298 K): δ 14.1 (C4); 46.2 (C5); 46.4 (C16); 48.5 (C12, C15); 51.4 (C13, C14); 76.3 (C17); 79.6 (C18); 126.9 (C7, C11); 128.1 (C9); 129.4 (C8, C10); 136.6 (C6); 138.8 (C2); 140.2 (C1); 140.9 (C3).

The chemicals were purchased from Aldrich (Germany), Fluka (Switzerland), and Scharlau; they were used without further purification. The NMR spectra were recorded on a Bruker Avance III-(500 MHz) spectrometer with tetramethylsilane (TMS) as an internal standard. 1H NMR (500 MHz), 13C-NMR (125 MHz), and 2D were recorded in Dimethylsulfoxide (DMSO-d 6). The following abbreviations are used to describe peak patterns: s = singlet, t = triplet, br.s = broad singlet. High-resolution mass spectra (HRMS) were measured (in positive/or negative ion mode) using the electrospray ion trap (ESI pos low mass) technique by collision-induced dissociation on a Bruker APEX-IV (7 Tesla) instrument. Melting points were determined on a Stuart (SMP-10) melting point apparatus.

Single crystal of C18H21N5O2 was obtained through crystallization of the pure compound from CHCl3/Et2O.

Experimental details

A suitable crystal was selected and mounted on a Xcalibur, Eos diffractometer. The crystal was kept at 293(2) K during data collection. Using Olex2 [2], the structure was solved with the ShelXT [3] structure solution program using Intrinsic Phasing and refined with the ShelXL [4] refinement package. All H atoms bonded to C atoms were refined as riding, with C–H distances of 0.93 Å (for aromatic ring).

Comment

Imidazole is an important nucleus with diverse biological properties. The high therapeutic properties of the imidazole-related drugs have encouraged medicinal chemists to design and synthesize a large number of novel chemotherapeutic agents like Pantoprazole [6] (a proton pump inhibitor used for treatment of gastroesophageal reflux disease), Trifenagrel [7] (a potent arachidonate cyclooxygenase inhibitor), Eprosartan [8] (an angiotensin II receptor antagonist), and Cimetidine [9] (a histamine H2 receptor antagonist that inhibits stomach acid production). In view of the interest in the activity spectrum and profile of the nitroimidazoles and in continuation of our research on the synthesis and biological evaluation of imidazole analogs [10], [11], [12], [13], [14], [15], [16], [17], we here present the imidazolyl containing title structure. Herein, the propargyl bromide was couples with imidazole ring to produce the target compound.

This title crystal structure consists of the C18H21N5O2 molecules, in which all bond lengths are in normal ranges. The crystal is stabilized via CH⃛O (H18⃛O1 = 2.482(1) Å) and CH⃛O (H4A⃛O1 = 2.66(3) Å). The average plane of imidazole ring is perpendicular (90.17(7)°) to the average plane of the methylene groups of piperazine (C12–C13–C14–C15). A further intramolecular CH⃛O interactions can be also seen (H12A⃛O1 = 2.586(1) Å) and (H15B⃛O1 = 2.607(1) Å).


Corresponding author: Raed A. Al-Qawasmeh, Department of Chemistry, Pure and Applied Chemistry Group, College of Sciences, University of Sharjah, Sharjah 27272, UAE; and Department of Chemistry, The University of Jordan, Amman 11942, Jordan, E-mail:

Funding source: Ministry of Higher Education, Jordan

Award Identifier / Grant number: Bas 1/1/2017

Acknowledgments

Part of this work has been carried out during sabbatical leave granted to RAA from the University of Jordan during the academic year 2020–2021.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was financially supported by Scientific Research Support Fund/Ministry of Higher Education, Jordan (grant no. Bas 1/1/2017).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffraction. CrysAlisPRO; Yarnton: England, 2015.Suche in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Al-Soud, Y. A., Al-Ahmad, A. H., Abu-Qatouseh, L., Shtaiwi, A., Alhelal, K. A. S., Al-Suod, H. H., Alsawakhneh, S. O., Al-Qawasmeh, R. A. Nitroimidazoles Part 9. Synthesis, molecular docking, and anticancer evaluations of piperazine-tagged imidazole derivatives. Z. Naturforsch., B: Chem. Sci. 2021, B72, 293–302; https://doi.org/10.1515/znb-2020-0200.Suche in Google Scholar

6. Senn-Bilfiger, J., Sturn, E. The development of a new proton-pump inhibitor: the case history of pantoprazole. In Analogue-Based Drug Discovery; Fischer, J., Ganellin, C. R., Eds. Wiley-VCH: Weinheim, 2006, pp. 115–136.10.1002/3527608001.ch6Suche in Google Scholar

7. Abrahams, S. L., Hazen, R. J., Batson, A. G., Phillips, A. P. Trifenagrel:a chemically novel platelet aggregation inhibitor. J. Pharmacol. Exp. Therapeut. 1989, 249, 359–365.Suche in Google Scholar

8. Grange, R. L., Ziogas, J., North, A. J., Angus, J. A., Schiesser, C. H. Selenosartans: novel selenophene analogues of milfasartan and eprosartan. Bioorg. Med. Chem. Lett 2008, 18, 1241–1244.https://doi.org/10.1016/j.bmcl.2007.11.136.Suche in Google Scholar

9. Beggs, W. H., Andrews, F. A., Sarosi, G. A. Action of imidazole-containing antifungal drugs. Life Sci. 1981, 28, 111–118; https://doi.org/10.1016/0024-3205(81)90542-7.Suche in Google Scholar

10. Al-Masoudi, N. A., Al-Soud, Y. A., Kalogerakisa, A., Pannecouquec, C., De Clercqc, E. Nitroimidazoles part 2. Synthesis, antiviral and antitumor activity of new 4-nitroimidazoles. Chem. Biodivers. 2006, 3, 515–526; https://doi.org/10.1002/cbdv.200690055.Suche in Google Scholar PubMed

11. Al-Soud, Y. A., Al-Sa’doni, H., Amajaour, H. A. S., Al-Masoudi, N. A. Nitroimidazole part 3. Synthesis and anti-HIV activity of new N-alkyl 4-nitroimidazoles, bearing benzothiazole and benzoxazole backbones. Z. Naturforsch., B: Chem. Sci. 2007, B62, 523–528; https://doi.org/10.1515/znb-2007-0406.Suche in Google Scholar

12. Al-Soud, Y. A., Al-Masoudi, N. A., De Clercqc, E., Pannecouquec, C. Nitroimidazoles part 4. Synthesis and anti-HIV activity of new 5-alkylsulfanyl and 5-(4′-arylsulphonyl) piperazine 4-nitroimidazole derivatives. Heteroat. Chem. 2007, 18, 333–340; https://doi.org/10.1002/hc.20301.Suche in Google Scholar

13. Al-Soud, Y. A., Al-Masoudi, N. A., Hassan, H., De Clercq, E., Pannecouque, C. Nitroimidazoles v. Synthesis and anti-HIV evaluation of new 5-substituted piperazinyl-4-nitroimidazole derivatives. Acta Pharm. 2007, 57, 379–393; https://doi.org/10.2478/v10007-007-0031-7.Suche in Google Scholar PubMed

14. Al-Masoudi, N. A., Al-Soud, Y. A., De Clercq, E., Pannecouque, C. Nitroimidazoles part 6. Synthesis, structure and in vitro anti-HIV activity of new 5-substituted piperazinyl-4-nitroimidazole derivatives. Antiviral Chem. Chemother. 2007, 18, 191–200; https://doi.org/10.1177/095632020701800403.Suche in Google Scholar PubMed

15. Al-Soud, Y. A., Al-Masoudi, N. A., Al-Suod, H. H., Pannecouque, C. Nitroimidazoles part 8. Synthesis and anti-HIV activity of new 4-nitroimidazole derivatives using the suzuki cross-coupling reaction. Z. Naturforsch., B: Chem. Sci. 2012, B67, 925–934; https://doi.org/10.5560/znb.2012-0185.Suche in Google Scholar

16. Al-Soud, Y. A., Alhelal, K. A. S., Bahjat, A. S., Abu-Qatouseh, L., Al-Suod, H. H., Al-Ahmad, A. H., Al-Masoudi, N. A., Al-Qawasmeh, R. A. Synthesis, anticancer activity and molecular docking studies of new 4-nitroimidazole derivatives. Arkivoc 2021, viii, 296–309; https://doi.org/10.24820/ark.5550190.p011.479.Suche in Google Scholar

17. Huesca, M., Al-Qawasmeh, R. A., Young, A. H., Lee, Y. Aryl Imidazoles and Their Use as Anti-cancer Agents. U.S. Patent, 2015; p. 8969372.Suche in Google Scholar

Received: 2021-11-22
Accepted: 2022-01-03
Published Online: 2022-01-20
Published in Print: 2022-04-26

© 2021 Raed A. Al-Qawasmeh et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of {2,2′-{cyclohexane-1,2-diylbis[(azanylylidene)methylylidene]}bis(2,4-dibromophenolato)-κ4 N,N′,O,O′}copper(II) ─ diethylformamide (1/1), C23H23Br4CuN3O3
  4. The crystal structure of 2-(2-methyl-6-phenyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione, C21H14O3
  5. Crystal structure of bis((1-methylbenzimidazol-2-yl)methyl)amine, C18H19N5
  6. Crystal structure of (E)-N′-(1-(2-hydroxy-4-methoxyphenyl)ethylidene) isonicotinohydrazide, C15H15N3O3
  7. Crystal structure of 2-((4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)thio)acetonitrile, C15H11N5S
  8. The crystal structure of 2,2′-((1E,1′E)-hydrazine-1,2-diylidenebis(methaneylylidene))bis(4-chlorophenol), C14H10Cl2N2O2
  9. Dichlorido-{2,6-bis(4,5-dihydro-1H-pyrazol-3-yl)pyridine-κ3 N,N′,N″}zinc(II), C11H9C12N5Zn
  10. The crystal structure of dichlorido-(2-((4-phenyl-2H-1,2,3-triazol-2-yl)methyl)pyridine-κ2N,N′)palladium(II), C14H12Cl2N4Pd
  11. The crystal structure of 1-(N1-benzyl-2-methyl-4-nitro-imidazol-5-yl)-4-(prop-2-yn-1-yl) piperazine, C18H21N5O2
  12. Crystal structure of (μ4-(1,2,4,5-tetra(1,2,4-triazol-1-ylmethyl)-benzene-κ4N:N1:N2:N3)disilver(I) diperchlorate
  13. The crystal structure of 1-(2-bromoethane)-4-amine-3,5-dinitropyrazole, C5H6Br1N5O4
  14. Crystal structure of (E)-1-(4-benzyl-3,5-dioxomorpholin-2-ylidene)ethyl acetate, C15H15N1O5
  15. The crystal structure of poly[diaqua-(μ2-1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ2N:N′)-bis(μ3-terephthalato-κ3O:O′:O′′)dicadmium(II)], C17H15N6O5Cd
  16. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)thiophene-2-carbohydrazide, C13H11ClN2O2S
  17. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylato-k2 N,O)cobalt(II)]-monohydrate, C36H26N4O5Co
  18. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-3-hydroxybenzo-hydrazide monohydrate, C14H13ClN2O4
  19. Crystal structure of 1,1′-(methylene)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C42H30N14Ni2S8
  20. Crystal structure of 1,1′-(1,2-ethanediyl)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S)nickel(II), C20H14N6NiS4
  21. The crystal structure of 1-methyl-1H-pyrazol-2-ium nitrate, C4H7O3N3
  22. The crystal structure of 4,4′-diselanediylbis(8-(hexyloxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile), C46H60N6O2Se2
  23. The crystal structure of tris(6-methylpyridin-2-yl)phosphine selenide, C18H18N3PSe
  24. The crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane ─ acetone (1/1), C11H12N8O9
  25. Crystal structure of [diaqua[2,2′-(1,2-phenylene)bis(1H-imidazole-4-carboxylato-5-carboxy)-κ4N,N′,O,O′]nickel(II)] tetrahydrate, C16H12N4NiO10·4H2O
  26. The crystal structure of tris(4-methyl-1H-pyrazol-1-yl)methane, C13H16N6
  27. The crystal structure of 5,6-dichloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H8Cl2N2O2
  28. Crystal structure of (E)-(2-methoxy-benzylidene)-(4-[1,2,4]triazol-1-yl-phenyl)-amine, C16H14N4O
  29. The crystal structure of (Z)-2-(4-(4-bromophenyl)thiazol-2-yl)-4-(3-hydroxybut-2-enoyl)-5-methyl -1,2-dihydro-3H-pyrazol-3-one – methanol (1/1), C18H18N3O4S
  30. Crystal structure of tetraaqua-tris(nitrato-κ2 O,O′) erbium(III) monohydrate, Er(NO3)3·5H2O, H10ErN3O14
  31. The crystal structure of 1-methyl-2-nitro-1H-imidazole 3-oxide, C4H5N3O3
  32. The crystal structure of 1-methyl-2-nitroimidazole, C4H5N3O2
  33. The crystal structure of 2-carboxyl-4-nitroimidazole monohydrate, C4H5N3O5
  34. Crystal structure of bis[hydrido-hexaphenylcarbodiphosphoran][tetra-trifluoromethyl-(μ-diiodo)-diplatinat]
  35. The crystal structure of poly[μ2-aqua- aqua-(μ3-(E)-2-(4-((2-carbamothioylhydrazineylidene)methyl)phenoxy)acetato-κ3 O:S:S)sodium(I)], C10H14N3O5SNa
  36. The twinned crystal structure of [4,4′-bipyridine]-1,1′-diium hexachloridostannate(IV), C10H10N2SnCl6
  37. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylate-k2 N,O)copper(II)], C34H24N4O4Cu
  38. Crystal structure of trans-1,2-bis(pyridinium-4-yl) ethylene bis(2-carboxy-4-bromobenzoate) – water (1/4), C14H14BrNO6
  39. Crystal structure of poly[diaqua-(μ3-fumarato)-(μ3-maleato)-(μ4-1,2,4,5-tetrakis((1H-1,2,4-triazol-1-yl)methyl)benzene)tetracadmium(II)] dihydrate, C34H32N12O9Cd4
  40. Crystal structure of a second modification of Pachypodol, C18H16O7
  41. Crystal structure of methyl 2-(4-(2-(cyclopentyl-amino)-1-(N-(4-methoxyphenyl)-1-methyl-5-phenyl-1-H-pyrazole-3-carboxamido)-2-oxoethyl)phenyl)acetate, C34H36N4O5
  42. The crystal structure of catena-poly[(m2-4,4′-bipyridine-κ2 N:N)-bis(6-phenylpyridine-2-carboxylato-κ2 N,O) zinc(II)], C34H24N4O4Zn
  43. The crystal structure of hexaquamagnesium(II) (2,4-bis(nitroimino)-6-oxo-1,3,5-triazinane-1,3-diide), C3H15MgN7O12
  44. The crystal structure of 7-Bromo-2-(4-chloro-phenyl)-quinoxaline, C14H9BrClN2
  45. Crystal structure of methyl 4-{[4-(4-cyanobenzamido)phenyl]amino}benzofuro[2,3-d]pyrimidine-6-carboxylate, C26H17N5O4
  46. The crystal structure of (4SR)-7-(3,4-dichlorobenzyl)-4,8,8-trimethyl-7,8-dihydroimidazo[5,1c][1,2,4]triazine-3,6(2H,4H)-dione, C15H16Cl2N4O2
  47. Crystal structure of catena-poly[{μ2-3-carboxy-2,3-bis((4-methylbenzoyl)oxy)propanoato-κ2 O:O′}tris(methanol-κ1 O)lanthanum(III)], C63H63LaO27
Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0447/html
Button zum nach oben scrollen