Startseite Crystal structure of (E)-N′-(1-(2-hydroxy-4-methoxyphenyl)ethylidene) isonicotinohydrazide, C15H15N3O3
Artikel Open Access

Crystal structure of (E)-N′-(1-(2-hydroxy-4-methoxyphenyl)ethylidene) isonicotinohydrazide, C15H15N3O3

  • Valeri V. Mossine ORCID logo EMAIL logo , Steven P. Kelley und Thomas P. Mawhinney
Veröffentlicht/Copyright: 10. Januar 2022

Abstract

C15H15N3O3, triclinic, P 1 (no. 2), a = 9.0752(2) Å, b = 9.1969(2) Å, c = 9.9519(2) Å, α = 112.7059(8)°, β = 92.4309(8)°, γ = 115.2776(7)°, V = 671.16(3) Å3, Z = 2, R gt (F) = 0.0347, wR ref (F 2) = 0.1113, T = 100 K.

CCDC no.: 2129570

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.40 × 0.30 × 0.12 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.10 mm−1
Diffractometer, scan mode: Bruker Apex-II, φ and ω
θ max, completeness: 47.0°, >99%
N(hkl) measured, N(hkl) unique, R int: 114,957, 12,029, 0.020
Criterion for I obs, N(hkl) gt: I obs > 2 σ(I obs), 10,312
N(param) refined: 235
Programs: Bruker [1], Shelx [2, 3], Olex2 [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso */U eq
C1 1.38839 (5) 1.54660 (5) 1.23512 (4) 0.01559 (5)
H1 1.4238 (11) 1.5677 (11) 1.3357 (9) 0.019*
C2 1.26066 (4) 1.37850 (5) 1.13136 (4) 0.01430 (5)
H2B 1.2052 (11) 1.2847 (11) 1.1577 (9) 0.017*
C3 1.22084 (4) 1.34826 (4) 0.98295 (4) 0.01247 (5)
C4 1.30377 (4) 1.48893 (5) 0.94615 (4) 0.01365 (5)
H4 1.2761 (10) 1.4733 (11) 0.8422 (9) 0.016*
C5 1.42654 (4) 1.65340 (5) 1.05875 (4) 0.01459 (5)
H5 1.4898 (10) 1.7537 (11) 1.0363 (9) 0.018*
C6 1.09154 (4) 1.16559 (5) 0.86686 (4) 0.01488 (5)
C7 1.07521 (4) 0.83347 (4) 0.52745 (4) 0.01247 (5)
C8 1.24427 (5) 0.90730 (6) 0.49466 (5) 0.02019 (7)
H8A 1.3179 (13) 0.8866 (13) 0.5385 (11) 0.030*
H8B 1.2969 (13) 1.0355 (13) 0.5292 (11) 0.030*
H8C 1.2340 (13) 0.8617 (13) 0.3902 (11) 0.030*
C9 0.94432 (4) 0.64664 (4) 0.43348 (3) 0.01144 (4)
C10 0.77924 (4) 0.58063 (4) 0.45476 (3) 0.01172 (4)
C11 0.65747 (4) 0.40107 (4) 0.36802 (4) 0.01260 (5)
H11 0.5439 (10) 0.3652 (11) 0.3897 (9) 0.015*
C12 0.69869 (4) 0.28329 (4) 0.26127 (4) 0.01195 (4)
C13 0.86150 (4) 0.34382 (4) 0.23877 (4) 0.01354 (5)
H13 0.8881 (10) 0.2575 (11) 0.1633 (9) 0.016*
C14 0.97989 (4) 0.52271 (5) 0.32373 (4) 0.01319 (5)
H14 1.0893 (10) 0.5636 (11) 0.3046 (9) 0.016*
C15 0.41500 (5) 0.05115 (5) 0.17986 (5) 0.01735 (6)
H15A 0.3526 (12) −0.0773 (13) 0.1030 (10) 0.026*
H15B 0.3797 (12) 0.1246 (13) 0.1581 (10) 0.026*
H15C 0.4027 (12) 0.0560 (12) 0.2809 (10) 0.026*
N1 1.47189 (4) 1.68281 (4) 1.20065 (4) 0.01568 (5)
N2 1.14458 (4) 1.09676 (4) 0.74218 (3) 0.01441 (5)
H2A 1.2524 (12) 1.1488 (12) 0.7429 (10) 0.024*
N3 1.03301 (4) 0.92441 (4) 0.63899 (3) 0.01403 (4)
O1 0.95204 (4) 1.08579 (5) 0.88383 (4) 0.02588 (7)
O2 0.72951 (4) 0.68512 (4) 0.55778 (3) 0.01644 (5)
H2 0.8266 (13) 0.7914 (13) 0.6122 (11) 0.030*
O3 0.58672 (3) 0.10699 (4) 0.17321 (3) 0.01561 (5)

Source of material

To a solution of 103 mg (0.75 mmol) isonicotinic hydrazide in 5 mL 95% EtOH were added 125 mg (0.75 mmol) 2′-hydroxy-4′-methoxyacetophenone, and the reaction mixture was heated at 70 °C for 2 h. The resulting solution was brought to 4 °C and left for two days to deposit crystals as colorless blocks.

Experimental details

The hydrazide H1 atom was located in difference–Fourier maps while all other hydrogen atoms were initially placed in calculated positions. All hydrogen atom coordinates were allowed to refine freely, while displacement parameters were constrained (U iso (methine H) = 1.2U eq and U iso (methyl H) = 1.5U eq ).

Comment

The title compound, 2′-hydroxy-4′-methoxyacetophenone isonicotinoyl hydrazone (HMAIH), is a condensation product of two biologically active agents, an anti-inflammatory phytochemical Paeonol and an anti-tubercular drug Isoniazid. HMAIH is a structural analogue of salicylaldehyde isonicotinoyl hydrazone (SIH), which possesses high affinity to intracellular iron. In that capacity, SIH and similar hydrazide-hydrazones have been actively studied as potential anti-inflammatory [5], anti-tumour [6], or cardioprotective [7] agents. We have explored the utility of chelators for inhibition of iron-dependent cytotoxic virulence factors from drug-resistant bacteria [8, 9] and, in the course of the study, have prepared a series of hydrazide-hydrazones, including the title compound.

HMAIH crystallizes in the triclinic P 1 space group, with two equivalent molecules per unit cell. The asymmetric unit of the title structure thus contains one molecule of HMAIH, shown in the upper part of the Figure. The bond lengths and angles are in the expected ranges. The major portion of the molecule, excluding the pyridyl ring, is approximately flat: all atoms are located within 1.05 Å of the phenyl ring plane. The pyridyl ring plane is at 69.3° to the phenyl ring plane. The conventional hydrogen bonding in crystal structure of HMAIH is limited to one bifurcated intramolecular bond (O2⃛N3 = 2.5188(5) Å, H2⃛N3 = 1.681(12) Å, O2–H2⃛N3 = 150.4(11)° and O2⃛O1 = 3.470(1) Å, H2⃛O1 = 2.719(10) Å, O2–H2⃛O1 = 139.9(9)°) and one intermolecular heteroatom contact (N2⃛N1 = 3.0763(6) Å, H2A⃛N1 = 2.208(11) Å, N2–H2A⃛N1 = 166.9(8)°) shown in the upper part of the Figure. In the crystal, the H-bonded molecules form dimers that are reinforced by the ππ stacking. In addition, a short intermolecular contact, the C11–H11⃛O2, which satisfies to the distance and directionality conditions (C11⃛O2 = 3.4354(6) Å, H11⃛O2 = 2.441(10) Å, C11–H11⃛O2 = 172.2(8)°), may contribute to the stability of the molecular packing in the HMAIH crystal, as well [12]. The pyridyl rings are engaged into strong ππ stacking interactions, with the shortest contact between the rings Cg1⃛Cg1′ = 3.4775(2) Å (′ = 3 − x, 3 − y, 2 − z). A short C4–H4⃛Cg2″ (H4⃛Cg2 = 2.406(9) Å, ″ = 2 − x, 2 − y, 1 − z) contact is a significant contributor to the non-polar interactions in the crystal structure, as well. To account for all interactions involved in the build-up of the crystal structure, we have performed DFT calculations, at the B3LYP/6–31G(d,p) theory level [10, 11], of the electrostatic, dispersion, polarization, and repulsion energies in the HAIH crystal structure. According to the calculations, the interactions between hydrogen-bonded pairs of molecules provided the largest contribution, about 23%, to the lattice energy, with the dispersion energy contributing the most for the attractive forces between neighbouring molecules of HAIH (i.e. E elstat  = −34.7 kJ/mol, E disp  = −78.0 kJ/mol for 2 − x, 2 − y, 1 − z). The spatial distribution of the energetically most significant interactions is illustrated in the lower part of the Figure, showing the dispersion energy framework as green cylinders penetrating the crystal lattice of HAIH. The cylinders connect centroids of the interacting molecules, and their diameters are proportional to the total energies of the interactions, with the 16 kJ/mol cut-off, for clarity. The most extensive intermolecular interactions occur in the directions parallel to (100). To estimate the lattice energy, all total energies of unique pairwise interactions between molecules were summed up, thus yielding E lattice  = −329 kJ/mol for the HAIH crystal.


Corresponding author: Valeri V. Mossine, Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA, E-mail:

Funding source: University of Missouri Agriculture Experiment Station Chemical Laboratories

Funding source: National Institute of Food and Agriculture

Award Identifier / Grant number: MO–HABC0002

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: University of Missouri Agriculture Experimental Station and Grant No. Hatch 1023929 from the National Institute of Food and Agriculture, http://dx.doi.org/10.13039/100005825.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. Apex3 v. 2016.9–0 and SAINT v. 8.37A; Bruker Axs Inc.: Madison, Wisconsin, USA, 2016.Suche in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELX. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. Olex2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

5. Capiralla, H., Vingtdeux, V., Venkatesh, J., Dreses-Werringloer, U., Zhao, H., Davies, P., Marambaud, P. Identification of potent small-molecule inhibitors of STAT3 with anti-inflammatory properties in RAW 264.7 macrophages. FEBS J. 2012, 279, 3791–3799; https://doi.org/10.1111/j.1742-4658.2012.08739.x.Suche in Google Scholar PubMed PubMed Central

6. Moussa, R. S., Kovacevic, Z., Richardson, D. R. Differential targeting of the cyclin-dependent kinase inhibitor, p21, by chelators with anti-proliferative activity in a range of tumor cell-types. Oncotarget 2015, 6, 29694–29711; https://doi.org/10.18632/oncotarget.5088.Suche in Google Scholar PubMed PubMed Central

7. Hašková, P., Kovaříková, P., Koubková, L., Vávrová, A., Macková, E., Šimunek, T. Iron chelation with salicylaldehyde isonicotinoyl hydrazone protects against catecholamine autoxidation and cardiotoxicity. Free Radical Biol. Med. 2011, 50, 537–549.10.1016/j.freeradbiomed.2010.12.004Suche in Google Scholar PubMed

8. Mossine, V. V., Waters, J. K., Chance, D. L., Mawhinney, T. P. Transient proteotoxicity of bacterial virulence factor pyocyanin in renal tubular epithelial cells induces ER-related vacuolation and can be efficiently modulated by iron chelators. Toxicol. Sci. 2016, 154, 403–415; https://doi.org/10.1093/toxsci/kfw174.Suche in Google Scholar PubMed PubMed Central

9. Mossine, V. V., Kelley, S. P., Mawhinney, T. P. Crystal structure of (E)-3-methoxy--(1-(pyridin-2-yl)ethylidene)benzohydrazide, CHNO. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 907–909; https://doi.org/10.1515/ncrs-2020-0097.Suche in Google Scholar

10. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011; https://doi.org/10.1107/s1600576721002910.Suche in Google Scholar

11. Thomas, S. P., Spackman, P. R., Jayatilaka, D., Spackman, M. A. Accurate lattice energies for molecular crystals from experimental crystal structures. J. Chem. Theor. Comput. 2018, 14, 1614–1623; https://doi.org/10.1021/acs.jctc.7b01200.Suche in Google Scholar PubMed

12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1021/acs.jctc.7b01200.Suche in Google Scholar PubMed

Received: 2021-11-09
Accepted: 2021-12-17
Published Online: 2022-01-10
Published in Print: 2022-04-26

© 2021 Valeri V. Mossine et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of {2,2′-{cyclohexane-1,2-diylbis[(azanylylidene)methylylidene]}bis(2,4-dibromophenolato)-κ4 N,N′,O,O′}copper(II) ─ diethylformamide (1/1), C23H23Br4CuN3O3
  4. The crystal structure of 2-(2-methyl-6-phenyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione, C21H14O3
  5. Crystal structure of bis((1-methylbenzimidazol-2-yl)methyl)amine, C18H19N5
  6. Crystal structure of (E)-N′-(1-(2-hydroxy-4-methoxyphenyl)ethylidene) isonicotinohydrazide, C15H15N3O3
  7. Crystal structure of 2-((4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)thio)acetonitrile, C15H11N5S
  8. The crystal structure of 2,2′-((1E,1′E)-hydrazine-1,2-diylidenebis(methaneylylidene))bis(4-chlorophenol), C14H10Cl2N2O2
  9. Dichlorido-{2,6-bis(4,5-dihydro-1H-pyrazol-3-yl)pyridine-κ3 N,N′,N″}zinc(II), C11H9C12N5Zn
  10. The crystal structure of dichlorido-(2-((4-phenyl-2H-1,2,3-triazol-2-yl)methyl)pyridine-κ2N,N′)palladium(II), C14H12Cl2N4Pd
  11. The crystal structure of 1-(N1-benzyl-2-methyl-4-nitro-imidazol-5-yl)-4-(prop-2-yn-1-yl) piperazine, C18H21N5O2
  12. Crystal structure of (μ4-(1,2,4,5-tetra(1,2,4-triazol-1-ylmethyl)-benzene-κ4N:N1:N2:N3)disilver(I) diperchlorate
  13. The crystal structure of 1-(2-bromoethane)-4-amine-3,5-dinitropyrazole, C5H6Br1N5O4
  14. Crystal structure of (E)-1-(4-benzyl-3,5-dioxomorpholin-2-ylidene)ethyl acetate, C15H15N1O5
  15. The crystal structure of poly[diaqua-(μ2-1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ2N:N′)-bis(μ3-terephthalato-κ3O:O′:O′′)dicadmium(II)], C17H15N6O5Cd
  16. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)thiophene-2-carbohydrazide, C13H11ClN2O2S
  17. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylato-k2 N,O)cobalt(II)]-monohydrate, C36H26N4O5Co
  18. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-3-hydroxybenzo-hydrazide monohydrate, C14H13ClN2O4
  19. Crystal structure of 1,1′-(methylene)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C42H30N14Ni2S8
  20. Crystal structure of 1,1′-(1,2-ethanediyl)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S)nickel(II), C20H14N6NiS4
  21. The crystal structure of 1-methyl-1H-pyrazol-2-ium nitrate, C4H7O3N3
  22. The crystal structure of 4,4′-diselanediylbis(8-(hexyloxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile), C46H60N6O2Se2
  23. The crystal structure of tris(6-methylpyridin-2-yl)phosphine selenide, C18H18N3PSe
  24. The crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane ─ acetone (1/1), C11H12N8O9
  25. Crystal structure of [diaqua[2,2′-(1,2-phenylene)bis(1H-imidazole-4-carboxylato-5-carboxy)-κ4N,N′,O,O′]nickel(II)] tetrahydrate, C16H12N4NiO10·4H2O
  26. The crystal structure of tris(4-methyl-1H-pyrazol-1-yl)methane, C13H16N6
  27. The crystal structure of 5,6-dichloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H8Cl2N2O2
  28. Crystal structure of (E)-(2-methoxy-benzylidene)-(4-[1,2,4]triazol-1-yl-phenyl)-amine, C16H14N4O
  29. The crystal structure of (Z)-2-(4-(4-bromophenyl)thiazol-2-yl)-4-(3-hydroxybut-2-enoyl)-5-methyl -1,2-dihydro-3H-pyrazol-3-one – methanol (1/1), C18H18N3O4S
  30. Crystal structure of tetraaqua-tris(nitrato-κ2 O,O′) erbium(III) monohydrate, Er(NO3)3·5H2O, H10ErN3O14
  31. The crystal structure of 1-methyl-2-nitro-1H-imidazole 3-oxide, C4H5N3O3
  32. The crystal structure of 1-methyl-2-nitroimidazole, C4H5N3O2
  33. The crystal structure of 2-carboxyl-4-nitroimidazole monohydrate, C4H5N3O5
  34. Crystal structure of bis[hydrido-hexaphenylcarbodiphosphoran][tetra-trifluoromethyl-(μ-diiodo)-diplatinat]
  35. The crystal structure of poly[μ2-aqua- aqua-(μ3-(E)-2-(4-((2-carbamothioylhydrazineylidene)methyl)phenoxy)acetato-κ3 O:S:S)sodium(I)], C10H14N3O5SNa
  36. The twinned crystal structure of [4,4′-bipyridine]-1,1′-diium hexachloridostannate(IV), C10H10N2SnCl6
  37. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylate-k2 N,O)copper(II)], C34H24N4O4Cu
  38. Crystal structure of trans-1,2-bis(pyridinium-4-yl) ethylene bis(2-carboxy-4-bromobenzoate) – water (1/4), C14H14BrNO6
  39. Crystal structure of poly[diaqua-(μ3-fumarato)-(μ3-maleato)-(μ4-1,2,4,5-tetrakis((1H-1,2,4-triazol-1-yl)methyl)benzene)tetracadmium(II)] dihydrate, C34H32N12O9Cd4
  40. Crystal structure of a second modification of Pachypodol, C18H16O7
  41. Crystal structure of methyl 2-(4-(2-(cyclopentyl-amino)-1-(N-(4-methoxyphenyl)-1-methyl-5-phenyl-1-H-pyrazole-3-carboxamido)-2-oxoethyl)phenyl)acetate, C34H36N4O5
  42. The crystal structure of catena-poly[(m2-4,4′-bipyridine-κ2 N:N)-bis(6-phenylpyridine-2-carboxylato-κ2 N,O) zinc(II)], C34H24N4O4Zn
  43. The crystal structure of hexaquamagnesium(II) (2,4-bis(nitroimino)-6-oxo-1,3,5-triazinane-1,3-diide), C3H15MgN7O12
  44. The crystal structure of 7-Bromo-2-(4-chloro-phenyl)-quinoxaline, C14H9BrClN2
  45. Crystal structure of methyl 4-{[4-(4-cyanobenzamido)phenyl]amino}benzofuro[2,3-d]pyrimidine-6-carboxylate, C26H17N5O4
  46. The crystal structure of (4SR)-7-(3,4-dichlorobenzyl)-4,8,8-trimethyl-7,8-dihydroimidazo[5,1c][1,2,4]triazine-3,6(2H,4H)-dione, C15H16Cl2N4O2
  47. Crystal structure of catena-poly[{μ2-3-carboxy-2,3-bis((4-methylbenzoyl)oxy)propanoato-κ2 O:O′}tris(methanol-κ1 O)lanthanum(III)], C63H63LaO27
Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0435/html
Button zum nach oben scrollen