Startseite The crystal structure of 7-Bromo-2-(4-chloro-phenyl)-quinoxaline, C14H9BrClN2
Artikel Open Access

The crystal structure of 7-Bromo-2-(4-chloro-phenyl)-quinoxaline, C14H9BrClN2

  • Lilei Zhang ORCID logo EMAIL logo und Tianyu Cheng
Veröffentlicht/Copyright: 18. Februar 2022

Abstract

C14H8BrClN2, monoclinic, P21/n (no. 14), a = 17.1347(11) Å, b = 3.8441(2) Å, c = 18.4127(12) Å, β = 97.861(2)°, V = 1201.40(13) Å3, Z = 4, R gt (F) = 0.0388, wR ref (F2) = 0.1302, T = 170 K.

CCDC no.: 2150139

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.15 × 0.11 × 0.08 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 3.62 mm−1
Diffractometer, scan mode: D8 VENTURE, φ and ω
θmax, completeness: 26.5°, >99%
N(hkl)measured, N(hkl)unique, Rint: 12,671, 2469, 0.061
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 1895
N(param)refined: 163
Programs: Bruker [1], SHELX [2, 3], Olex2 [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom X y z Uiso*/Ueq
Br1 0.37170 (2) 0.66309 (11) 0.87227 (2) 0.03856 (19)
C1 0.4771 (2) 0.5789 (10) 0.7680 (2) 0.0294 (8)
H1 0.514521 0.682332 0.804515 0.035*
C2 0.4994 (2) 0.4754 (10) 0.70059 (19) 0.0273 (8)
C3 0.4430 (2) 0.3159 (9) 0.64800 (19) 0.0267 (8)
C4 0.3647 (2) 0.2718 (10) 0.6626 (2) 0.0327 (9)
H4 0.326420 0.169797 0.626665 0.039*
C5 0.3441 (2) 0.3757 (9) 0.7283 (2) 0.0330 (9)
H5 0.291675 0.344814 0.738596 0.040*
C6 0.4015 (2) 0.5294 (10) 0.78053 (19) 0.0296 (8)
C7 0.5366 (2) 0.2501 (10) 0.5724 (2) 0.0292 (8)
H7 0.552724 0.172374 0.527811 0.035*
C8 0.5938 (2) 0.4167 (9) 0.62477 (19) 0.0251 (8)
C9 0.6756 (2) 0.4743 (10) 0.60847 (19) 0.0263 (8)
C10 0.7310 (2) 0.6244 (9) 0.6621 (2) 0.0278 (8)
H10 0.715567 0.690231 0.707804 0.033*
C11 0.8080 (2) 0.6787 (10) 0.6498 (2) 0.0308 (8)
H11 0.845049 0.784634 0.686239 0.037*
C12 0.8301 (2) 0.5763 (10) 0.5835 (2) 0.0296 (8)
C13 0.7768 (2) 0.4293 (11) 0.5296 (2) 0.0320 (9)
H13 0.792527 0.364877 0.483959 0.038*
C14 0.6996 (2) 0.3756 (9) 0.5424 (2) 0.0306 (9)
H14 0.662893 0.270396 0.505580 0.037*
Cl1 0.92654 (6) 0.6448 (3) 0.56695 (6) 0.0400 (3)
N1 0.46344 (18) 0.1985 (8) 0.58250 (17) 0.0292 (7)
N2 0.57492 (17) 0.5262 (8) 0.68817 (15) 0.0266 (7)

Source of material

In a specific experiment, 1.86 g (10.0 mmol) 4-bromobenzene-1,2-diamine was initially dissolved in 40 mL toluene. About 1.55 g (11.0 mmol) 4-chlorobenzaldehyde was added to this solution and stirred for 5 min. Then 1.95 g (10.0 mmol) tosylmethyl isocyanide and 1.35 g (12.0 mmol) triethylene diamine were added. Subsequently, the mixture was heated to 80 °C and stirred for 4 h. The resulting solution was sequentially washed with hydrochloric acid (5%) and H2O. The organic compound was concentrated under reduced pressure and separated by silica-gel column chromatography with an ethyl acetate and petroleum ether (10%) mixture. Crystals obtained after slow evaporation of a combination of petroleum ether and ethyl acetate at room temperature within a week.

Experimental details

All hydrogen atoms were placed in calculated positions (C–H = 0.95 Å) and refined as riding atoms. The U iso values were constrained to be 1.2U eq . All the H atoms were refined as riding on their parent atom.

Comment

Quinoxaline, also known as benzopyrazine, is a bicyclic heterocyclic molecule composed of pyrazine and benzene rings. It has three other isomers, such as quinazoline, cinolin, and o-benzodiazine. Quinoxaline derivatives are widely used in industry [5, 6], dyes [7], [8], [9], and antibiotics [10], [11], [12]. They are essential in the industry because they can inhibit metal corrosion [5, 6]. And they can be used in dyes and electroluminescent materials because they have chromophores similar to natural systems. Additionally, they have attracted significant attention in the pharmacology industry because of their extensive biological characteristics. For example, they can fight against bacteria, fungi, viruses, Leishmania, tuberculosis, malaria, cancer, depression, and nervous activity. At present, many new compounds assembled with quinoxaline structure as precursors have been characterised [13], [14], [15], [16], [17], [18].

The asymmetric unit consists of one 7-bromo-2-(4-chloro-phenyl)-quinoxaline molecule. There is a bromine substituent bearing in the benzene ring of quinoxaline molecules, and the measured length of the C–Br bond is 1.901(4) Å. There is a chlorobenzene group substituted on the pyrazine ring at the para position of the chlorobenzene substituent, and the measured length of the C–C bond for C8–C9 is 1.490(6) Å. The size of the C–Cl bond in the chlorobenzene substituent is 1.741(4) Å. The two benzene rings are not entirely symmetrical. In the benzene ring of quinoxaline, the angle range of C–C–C is 119.1(4)–122.4(4)° with the minimum angle on the unsubstituted carbon atom and the maximum angle on the carbon atom with bromine substituent. In the benzene ring of chlorobenzene substituent, the angle range of C–C–C is 118.5(4)–121.2(4)° with the minimum angle on the carbon atom substituted by quinoxaline and the maximum angle on the carbon atom with chlorine substituent. C1⃛C6 and C9⃛C12 benzene rings are inclined to the average plane of heterocycles by 177.04(3)° and 176.5(3)° respectively, indicating that the styryl part is almost coplanar with the quinoline unit. For the given formula, all bond distances and angles are consistent with the expectation and in accord with the parent structure [19].


Corresponding author: Lilei Zhang, College of Chemistry and Chemical Engineering, Luoyang Normal University, 471934, Luoyang, China, E-mail:

Funding source: Key Scientific Research Projects of Colleges and Universities in Henan Province http://dx.doi.org/10.13039/501100013066

Award Identifier / Grant number: 22A430032

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was funded by the Key Scientific Research Projects of Colleges and Universities in Henan Province (22A430032).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SMART APEX-II CCD; Bruker AXS Inc.: Madison, WI, USA, 2006.Suche in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

5. Pereira, J. A., Pessoa, A. M., Cordeiro, M., Natália, D. S., Fernandes, R., Prudêncio, C., Noronha, J. P., Vieira, M. Quinoxaline, its derivatives and applications: a state of the art review. Eur. J. Med. Chem. 2015, 97, 664–672; https://doi.org/10.1016/j.ejmech.2014.06.058.Suche in Google Scholar PubMed

6. Chauhan, D. S., Singh, P., Quraishi, M. A. Quinoxaline derivatives as efficient corrosion inhibitors: current status, challenges and future perspectives. J. Mol. Liq. 2020, 320, 114387; https://doi.org/10.1016/j.molliq.2020.114387.Suche in Google Scholar

7. Pei, K., Wu, Y., Islam, A., Zhu, S., Han, L., Geng, Z., Zhu, W. Dye-sensitized solar cells based on quinoxaline dyes: effect of π-linker on absorption, energy levels, and photovoltaic performances. J. Phys. Chem. C 2014, 118, 16552–16561; https://doi.org/10.1021/jp412259t.Suche in Google Scholar

8. Jung, C. Y., Song, C. J., Yao, W., Park, J. M., Hyun, I. H., Seong, D. H., Jaung, J. Y. Synthesis and performance of new quinoxaline-based dyes for dye sensitized solar cell. Dyes Pigments 2015, 121, 204–210; https://doi.org/10.1016/j.dyepig.2015.05.019.Suche in Google Scholar

9. Jaung, J.-Y. Synthesis and halochromism of new quinoxaline fluorescent dyes. Dyes Pigments 2006, 71, 245–250; https://doi.org/10.1016/j.dyepig.2005.07.008.Suche in Google Scholar

10. Attia, A., Aziz, A., Alfallous, K., El-Shahat, M. New diethoxo-bridged dinuclear Cr (III) complexes with derivatives of the quinoxaline-2, 3-dione ligand and 2, 2′-bipyridine as a co-ligand: syntheses, spectral characterizations, magnetic properties, antimicrobial inhibitory activities and interpretation of the electronic absorption spectra using the ZINDO/S-CI semi-empirical method. Polyhedron 2013, 51, 243–254; https://doi.org/10.1016/j.poly.2012.12.034.Suche in Google Scholar

11. Teja, R., Kapu, S., Kadiyala, S., Dhanapal, V., Raman, A. N. Heterocyclic systems containing bridgehead nitrogen atom: synthesis and antimicrobial activity of thiadiazolo [2′,3′:2,3] imidazo [4,5-B] quinoxaline. J. Saudi Chem. Soc. 2016, 20, S387–S392; https://doi.org/10.1016/j.jscs.2012.12.011.Suche in Google Scholar

12. Vieira, M., Pinheiro, C., Fernandes, R., Noronha, J. P., Prudêncio, C. Antimicrobial activity of quinoxaline 1,4-dioxide with 2-and 3-substituted derivatives. Microbiol. Res. 2014, 169, 287–293; https://doi.org/10.1016/j.micres.2013.06.015.Suche in Google Scholar PubMed

13. Missioui, M., Mague, J. T., El, F. M., Taoufik, J., Essassi, E. M., Ramli, Y. Ethyl 2-[(3-methylquinoxalin-2-yl) sulfanyl] acetate. IUCrData 2017, 2, x171763; https://doi.org/10.1107/s2414314617017631.Suche in Google Scholar

14. Ramli, Y., Missioui, M., El, F. M., Ouhcine, M., Essassi, E. M., Mague, J. T. 2-{3-[2-(2-Chlorophenyl) ethyl]-2-oxo-1, 2-dihydroquinoxalin-1-yl} acetohydrazide. IUCrData 2017, 2, x171424; https://doi.org/10.1107/s2414314617014249.Suche in Google Scholar

15. Missioui, M., El Fal, M., Taoufik, J., Essassi, E. M., Mague, J. T., Ramli, Y. 2-(3-Methyl-2-oxo-1, 2-dihydroquinoxalin-1-yl) acetic acid dihydrate. IUCrData 2018, 3, x180882; https://doi.org/10.1107/s2414314618008829.Suche in Google Scholar

16. Missioui, M., Essassi El, M., Mague, J. T., Ramli, Y. Synthesis and crystal structure of (E)-1-benzyl-3-(4-methoxystyryl)quinoxalin-2(1H)-one, C24H20N2O2. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 1323–1325; https://doi.org/10.1515/ncrs-2020-0300.Suche in Google Scholar

17. Ramli, Y., Essassi El, M. Condensation study of hydrazonoyl chloride with 3-methylquinoxalin-2-one and 3-styrylquinoxalin-2-one. Moroc. J. Heterocycl. Chem. 2019, 18, 39–47.10.1107/S2414314618003905Suche in Google Scholar

18. Abad, N., Hajji, M., Ramli, Y., Belkhiria, M., Moftah, H., Elmgirhi, S., Habib, M., Guerfel, T., Mague, J., Essassi, E. M. A newly synthesized nitrogen-rich derivative of bicyclic quinoxaline - structural and conceptual DFT reactivity study. J. Phys. Org. Chem. 2020, 33, e4055; https://doi.org/10.1002/poc.4055.Suche in Google Scholar

19. Aghapoor, K., Mohsenzadeh, F., Shakeri, A., Darabi, H. R., Ghassemzadeh, M., Neumüller, B. Catalytic application of recyclable silica-supported bismuth(III) chloride in the benzo[N,N]-heterocyclic condensation. J. Organomet. Chem. 2013, 743, 170–178; https://doi.org/10.1016/j.jorganchem.2013.06.037.Suche in Google Scholar

Received: 2022-01-11
Accepted: 2022-02-04
Published Online: 2022-02-18
Published in Print: 2022-04-26

© 2022 Lilei Zhang and Tianyu Cheng, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of {2,2′-{cyclohexane-1,2-diylbis[(azanylylidene)methylylidene]}bis(2,4-dibromophenolato)-κ4 N,N′,O,O′}copper(II) ─ diethylformamide (1/1), C23H23Br4CuN3O3
  4. The crystal structure of 2-(2-methyl-6-phenyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione, C21H14O3
  5. Crystal structure of bis((1-methylbenzimidazol-2-yl)methyl)amine, C18H19N5
  6. Crystal structure of (E)-N′-(1-(2-hydroxy-4-methoxyphenyl)ethylidene) isonicotinohydrazide, C15H15N3O3
  7. Crystal structure of 2-((4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)thio)acetonitrile, C15H11N5S
  8. The crystal structure of 2,2′-((1E,1′E)-hydrazine-1,2-diylidenebis(methaneylylidene))bis(4-chlorophenol), C14H10Cl2N2O2
  9. Dichlorido-{2,6-bis(4,5-dihydro-1H-pyrazol-3-yl)pyridine-κ3 N,N′,N″}zinc(II), C11H9C12N5Zn
  10. The crystal structure of dichlorido-(2-((4-phenyl-2H-1,2,3-triazol-2-yl)methyl)pyridine-κ2N,N′)palladium(II), C14H12Cl2N4Pd
  11. The crystal structure of 1-(N1-benzyl-2-methyl-4-nitro-imidazol-5-yl)-4-(prop-2-yn-1-yl) piperazine, C18H21N5O2
  12. Crystal structure of (μ4-(1,2,4,5-tetra(1,2,4-triazol-1-ylmethyl)-benzene-κ4N:N1:N2:N3)disilver(I) diperchlorate
  13. The crystal structure of 1-(2-bromoethane)-4-amine-3,5-dinitropyrazole, C5H6Br1N5O4
  14. Crystal structure of (E)-1-(4-benzyl-3,5-dioxomorpholin-2-ylidene)ethyl acetate, C15H15N1O5
  15. The crystal structure of poly[diaqua-(μ2-1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ2N:N′)-bis(μ3-terephthalato-κ3O:O′:O′′)dicadmium(II)], C17H15N6O5Cd
  16. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)thiophene-2-carbohydrazide, C13H11ClN2O2S
  17. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylato-k2 N,O)cobalt(II)]-monohydrate, C36H26N4O5Co
  18. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-3-hydroxybenzo-hydrazide monohydrate, C14H13ClN2O4
  19. Crystal structure of 1,1′-(methylene)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C42H30N14Ni2S8
  20. Crystal structure of 1,1′-(1,2-ethanediyl)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S)nickel(II), C20H14N6NiS4
  21. The crystal structure of 1-methyl-1H-pyrazol-2-ium nitrate, C4H7O3N3
  22. The crystal structure of 4,4′-diselanediylbis(8-(hexyloxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile), C46H60N6O2Se2
  23. The crystal structure of tris(6-methylpyridin-2-yl)phosphine selenide, C18H18N3PSe
  24. The crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane ─ acetone (1/1), C11H12N8O9
  25. Crystal structure of [diaqua[2,2′-(1,2-phenylene)bis(1H-imidazole-4-carboxylato-5-carboxy)-κ4N,N′,O,O′]nickel(II)] tetrahydrate, C16H12N4NiO10·4H2O
  26. The crystal structure of tris(4-methyl-1H-pyrazol-1-yl)methane, C13H16N6
  27. The crystal structure of 5,6-dichloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H8Cl2N2O2
  28. Crystal structure of (E)-(2-methoxy-benzylidene)-(4-[1,2,4]triazol-1-yl-phenyl)-amine, C16H14N4O
  29. The crystal structure of (Z)-2-(4-(4-bromophenyl)thiazol-2-yl)-4-(3-hydroxybut-2-enoyl)-5-methyl -1,2-dihydro-3H-pyrazol-3-one – methanol (1/1), C18H18N3O4S
  30. Crystal structure of tetraaqua-tris(nitrato-κ2 O,O′) erbium(III) monohydrate, Er(NO3)3·5H2O, H10ErN3O14
  31. The crystal structure of 1-methyl-2-nitro-1H-imidazole 3-oxide, C4H5N3O3
  32. The crystal structure of 1-methyl-2-nitroimidazole, C4H5N3O2
  33. The crystal structure of 2-carboxyl-4-nitroimidazole monohydrate, C4H5N3O5
  34. Crystal structure of bis[hydrido-hexaphenylcarbodiphosphoran][tetra-trifluoromethyl-(μ-diiodo)-diplatinat]
  35. The crystal structure of poly[μ2-aqua- aqua-(μ3-(E)-2-(4-((2-carbamothioylhydrazineylidene)methyl)phenoxy)acetato-κ3 O:S:S)sodium(I)], C10H14N3O5SNa
  36. The twinned crystal structure of [4,4′-bipyridine]-1,1′-diium hexachloridostannate(IV), C10H10N2SnCl6
  37. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylate-k2 N,O)copper(II)], C34H24N4O4Cu
  38. Crystal structure of trans-1,2-bis(pyridinium-4-yl) ethylene bis(2-carboxy-4-bromobenzoate) – water (1/4), C14H14BrNO6
  39. Crystal structure of poly[diaqua-(μ3-fumarato)-(μ3-maleato)-(μ4-1,2,4,5-tetrakis((1H-1,2,4-triazol-1-yl)methyl)benzene)tetracadmium(II)] dihydrate, C34H32N12O9Cd4
  40. Crystal structure of a second modification of Pachypodol, C18H16O7
  41. Crystal structure of methyl 2-(4-(2-(cyclopentyl-amino)-1-(N-(4-methoxyphenyl)-1-methyl-5-phenyl-1-H-pyrazole-3-carboxamido)-2-oxoethyl)phenyl)acetate, C34H36N4O5
  42. The crystal structure of catena-poly[(m2-4,4′-bipyridine-κ2 N:N)-bis(6-phenylpyridine-2-carboxylato-κ2 N,O) zinc(II)], C34H24N4O4Zn
  43. The crystal structure of hexaquamagnesium(II) (2,4-bis(nitroimino)-6-oxo-1,3,5-triazinane-1,3-diide), C3H15MgN7O12
  44. The crystal structure of 7-Bromo-2-(4-chloro-phenyl)-quinoxaline, C14H9BrClN2
  45. Crystal structure of methyl 4-{[4-(4-cyanobenzamido)phenyl]amino}benzofuro[2,3-d]pyrimidine-6-carboxylate, C26H17N5O4
  46. The crystal structure of (4SR)-7-(3,4-dichlorobenzyl)-4,8,8-trimethyl-7,8-dihydroimidazo[5,1c][1,2,4]triazine-3,6(2H,4H)-dione, C15H16Cl2N4O2
  47. Crystal structure of catena-poly[{μ2-3-carboxy-2,3-bis((4-methylbenzoyl)oxy)propanoato-κ2 O:O′}tris(methanol-κ1 O)lanthanum(III)], C63H63LaO27
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0008/html
Button zum nach oben scrollen