Startseite The crystal structure of (Z)-2-(4-(4-bromophenyl)thiazol-2-yl)-4-(3-hydroxybut-2-enoyl)-5-methyl -1,2-dihydro-3H-pyrazol-3-one – methanol (1/1), C18H18N3O4S
Artikel Open Access

The crystal structure of (Z)-2-(4-(4-bromophenyl)thiazol-2-yl)-4-(3-hydroxybut-2-enoyl)-5-methyl -1,2-dihydro-3H-pyrazol-3-one – methanol (1/1), C18H18N3O4S

  • Yunqian Feng , Jianghai Ye , Peng Wang , Shuqiong Tai und Tianqiong Lang EMAIL logo
Veröffentlicht/Copyright: 31. Januar 2022

Abstract

C18H18N3O4S, monoclinic, Cc (no. 9), a = 10.8839(14) Å, b = 14.2825(18) Å, c = 13.0717(16) Å, β = 108.618(3)°, V = 1925.6(4) Å3, Z = 4, Rgt(F) = 0.0359, wRref(F2) = 0.0812, Flack parameter = 0.009(6), T = 298(2) K.

CCDC no.: 2115704

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Brown needle
Size: 0.20 × 0.15 × 0.12 mm
Wavelength: MoKα radiation (0.71073 Å)
μ: 2.27 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 28.0°, 99%
N(hkl)measured, N(hkl)unique, Rint: 18136, 4529, 0.041
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 3051
N(param)refined: 250
Programs: Bruker [1], SHELX [2, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Br1 0.09384 (6) 0.45487 (4) −0.12543 (5) 0.0794 (2)
C1 0.4904 (5) 0.4359 (3) 0.5197 (3) 0.0466 (10)
C2 0.3825 (4) 0.3898 (3) 0.3551 (4) 0.0479 (10)
C3 0.3903 (5) 0.3081 (3) 0.4074 (4) 0.0645 (13)
H3 0.355564 0.252141 0.374204 0.077*
C4 0.3174 (4) 0.4065 (3) 0.2391 (4) 0.0481 (10)
C5 0.2806 (5) 0.3319 (3) 0.1684 (4) 0.0614 (12)
H5A 0.298796 0.271106 0.194387 0.074*
C6 0.2169 (5) 0.3464 (4) 0.0593 (4) 0.0643 (13)
H6B 0.193890 0.295907 0.012154 0.077*
C7 0.1883 (5) 0.4359 (4) 0.0218 (4) 0.0553 (12)
C8 0.2264 (5) 0.5116 (4) 0.0913 (4) 0.0585 (12)
H8 0.208693 0.572432 0.065437 0.070*
C9 0.2902 (5) 0.4959 (4) 0.1981 (4) 0.0564 (12)
H9 0.316056 0.546708 0.244487 0.068*
C10 0.6139 (5) 0.6310 (3) 0.6838 (4) 0.0519 (11)
C11 0.6525 (5) 0.5618 (3) 0.7647 (4) 0.0489 (11)
C12 0.6109 (5) 0.4736 (3) 0.7123 (3) 0.0507 (11)
C13 0.6322 (6) 0.7340 (3) 0.6910 (5) 0.0784 (16)
H00I 0.723092 0.748190 0.711934 0.118*
H00J 0.596601 0.758662 0.743810 0.118*
H00N 0.588819 0.761683 0.622015 0.118*
C14 0.7196 (5) 0.5757 (3) 0.8768 (4) 0.0522 (11)
C15 0.7757 (5) 0.4988 (3) 0.9463 (4) 0.0542 (11)
H15 0.764093 0.438564 0.917895 0.065*
C16 0.8445 (5) 0.5105 (4) 1.0511 (4) 0.0581 (13)
C17 0.9056 (6) 0.4324 (4) 1.1251 (5) 0.0744 (15)
H00A 0.879218 0.373740 1.088917 0.112*
H00C 0.878845 0.435130 1.188234 0.112*
H00E 0.998250 0.437953 1.145836 0.112*
C18 0.5241 (8) 0.2284 (4) 0.8762 (6) 0.103 (2)
H00B 0.493715 0.223414 0.798947 0.155*
H00D 0.463169 0.198916 0.905219 0.155*
H00Y 0.606785 0.197929 0.904154 0.155*
N1 0.4413 (4) 0.4648 (2) 0.4212 (3) 0.0469 (8)
N2 0.5544 (3) 0.4956 (3) 0.6036 (3) 0.0499 (9)
N3 0.5563 (4) 0.5906 (2) 0.5886 (3) 0.0509 (9)
H3C 0.525497 0.619240 0.527964 0.061*
O1 0.6144 (4) 0.3918 (2) 0.7440 (3) 0.0649 (9)
O2 0.7329 (4) 0.6581 (2) 0.9160 (3) 0.0739 (10)
O3 0.8616 (5) 0.5934 (3) 1.0968 (3) 0.0843 (11)
H3A 0.820199 0.632460 1.053497 0.14 (3)*
O4 0.5361 (8) 0.3165 (3) 0.9039 (4) 0.138 (3)
H00W 0.564160 0.345837 0.862213 0.208*
S1 0.47262 (14) 0.31900 (8) 0.54377 (10) 0.0660 (3)

Source of material

The title compound was obtained according to the following procedure: to a round-bottom flask (25 mL) was added thiosemicarbazone of dehydroacetic acid (0.5 mmol), 2,4′-dibromoacetophenone (0.5 mmol) and anhydrous EtOH (5 mL). The mixture was then stired at 80 °C for 20 h, until the starting material was completely consumed monitored by TLC. The solvent was removed under reduced pressure to obtain a residue, which was redissolved in hot methanol for recrystallization. The title compound was obtained as pale brown needles in low yield (22%). The structure was further confirmed by spectroscopical analysis.

Experimental details

A Bruker APEX–II CCD diffractometer was employed to perform the diffraction experiment of a single crystal selected carefully. The data was collected using APEX 2 [1] data collection software at 298 K. The structure was solved and refined using the Bruker SHELXTL Software Package [2, 3].

Comment

The pyrazolone structural motif has been a critical pharmacophore in novel drug discovery, which exhibit various biological effects including antimicrobial, anti-tumor, anti-inflammatory activities and so on [4, 5]. Thus, a lot of methods have been developed to synthesize pyrazolone derivatives with structural diversity [6]. Dehydroacetic acid has also been employed as the starting material to obtain pyrazolone derivatives containing a β-diketone moiety [7, 8].

There is one cystallographically independent target molecule and one additional methanol molecule in the asymmetric unit. The geometric parameters in the crystal structure of the title compound are all in normal ranges. In addition to the basic pyrazolone skeleton, the title compound contains a β-diketone moiety, and a 4-(4-bromophenyl)thiazol-2-yl group. After carefull analysis of the crystallographic data, the β-diketone moiety was identified to be present in its enol form, while NMR analysis indicated the presence of ketone/enol (4:5) mixed forms in deuterated DMSO. The observed phenomenon was in accordance with the literature [9, 10]. Based on the following characteristic bond length: d(O1–C12) = 1.235(5) Å, d(C11–C12) = 1.437(6) Å, d(C10–C11) = 1.410(6) Å, d (N3–C10) = 1.332(5) Å, d(N2–N3) = 1.371(5) Å, d(N2–C12) = 1.392(6) Å, the pyrazolone motif was then identified to be present in its NH tautomer, rather than in CH or OH tautomer in the literature [10]. The thiazol-2-yl group at N-2 seems to exhibit effects on the tautomeric forms of the pyrazolone, which deserves further studies in detail.


Corresponding author: Tianqiong Lang, School of Pharmacy Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China, E-mail:

Funding source: Department of Science and Technology of Guizhou Province for Basic Research

Award Identifier / Grant number: QKHJC[2016] 1017

Funding source: Starup Fund of Guizhou University of Traditional Chinese Medicinethe

Award Identifier / Grant number: GZYBSQD[2015]

Funding source: 1000 Talent Plan (Qian Cengci) of Guizhou Province

Award Identifier / Grant number: GZY[ZQ2018002]

Funding source: Undergraduate Innovation and Entrepreneurship Project of Guizhou University of Traditional Chinese Medicine

Award Identifier / Grant number: GZYDCHZ[2021]1

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was finacially supported by the Department of Science and Technology of Guizhou Province for Basic Research (QKHJC[2016] 1017), the Starup Fund of Guizhou University of Traditional Chinese Medicinethe (GZYBSQD[2015]), 1000 Talent Plan (Qian Cengci) of Guizhou Province (GZY[ZQ2018002]), and Undergraduate Innovation and Entrepreneurship Project of Guizhou University of Traditional Chinese Medicine (GZYDCHZ[2021]1).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker APEX2 Ver 2.0–1; Bruker AXS Inc.: Madison, Wisconsin, USA, 2005.Suche in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar PubMed PubMed Central

4. Zhao, Z. F., Dai, X. F., Li, C. Y., Wang, X., Tian, J. L., Feng, Y., Xie, J., Ma, C., Nie, Z., Fan, P. N., Qian, M. C., He, X. R., Wu, S. P., Zhang, Y. M., Zheng, X. H. Pyrazolone structural motif in medicinal chemistry: retrospect and prospect. Eur. J. Med. Chem. 2020, 186, 11893; https://doi.org/10.1016/j.ejmech.2019.111893.Suche in Google Scholar PubMed PubMed Central

5. Sharma, R., Chawla, P. A., Chawla, V., Verma, R., Nawal, N., Gupta, V. A therapeutic journey of 5-pyrazolones as a versatile scaffold: a review. Mini–Rev. Med. Chem. 2021, 21, 1770–1796; https://doi.org/10.2174/1389557521999210101224058.Suche in Google Scholar PubMed

6. Asif, M., Imran, M., Husain, A. Approaches for chemical synthesis and diverse pharmacological significance of pyrazolone derivatives: a review. J. Chil. Chem. Soc. 2021, 66, 5149–5163; https://doi.org/10.4067/s0717-97072021000205149.Suche in Google Scholar

7. Mor, S., Mohil, R., Kumar, D., Ahuja, M. Synthesis and antimicrobial activities of some isoxazolyl thiazolyl pyrazoles. Med. Chem. Res. 2012, 21, 3541–3548; https://doi.org/10.1007/s00044-011-9859-y.Suche in Google Scholar

8. Singh, S. P., Tarar, L. S., Kumar, D. A facile route for the synthesis of 1-[5-hydroxy-3-methyl-1-(2-thiazolyl)-4-pyrazolyl]-1,3-butanediones from dehydroacetic acid. Synth. Commun. 1993, 23, 1855–1861; https://doi.org/10.1080/00397919308011286.Suche in Google Scholar

9. Gelin, S., Chantegrel, B., Nadi, A. I. Synthesis of 4-(acylacetyl)-1- phenyl-2-pyrazolin-5-ones from 3-acyl-2H-pyran-2,4(3H)-diones. Their synthetic applications to functionalized 4-oxopyrano[2,3-c]pyrazole derivatives. J. Org. Chem. 1983, 48, 4078–4082; https://doi.org/10.1021/jo00170a041.Suche in Google Scholar

10. O’Connell, M. J., Ramsay, C. G., Steel, P. J. Heterocyclic tautomerism. II. 4-acylpyrazolones. X-ray crystal structures of 4-benzoyl-5-methyl-2- phenylpyrazol-3(2H)-one and 4-acetoacetyl-3-methyl-1-phenylpyrazol-5- ol. Aust. J. Chem. 1985, 38, 401–409; https://doi.org/10.1071/ch9850401.Suche in Google Scholar

Received: 2021-11-24
Accepted: 2022-01-18
Published Online: 2022-01-31
Published in Print: 2022-04-26

© 2022 Yunqian Feng et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of {2,2′-{cyclohexane-1,2-diylbis[(azanylylidene)methylylidene]}bis(2,4-dibromophenolato)-κ4 N,N′,O,O′}copper(II) ─ diethylformamide (1/1), C23H23Br4CuN3O3
  4. The crystal structure of 2-(2-methyl-6-phenyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione, C21H14O3
  5. Crystal structure of bis((1-methylbenzimidazol-2-yl)methyl)amine, C18H19N5
  6. Crystal structure of (E)-N′-(1-(2-hydroxy-4-methoxyphenyl)ethylidene) isonicotinohydrazide, C15H15N3O3
  7. Crystal structure of 2-((4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)thio)acetonitrile, C15H11N5S
  8. The crystal structure of 2,2′-((1E,1′E)-hydrazine-1,2-diylidenebis(methaneylylidene))bis(4-chlorophenol), C14H10Cl2N2O2
  9. Dichlorido-{2,6-bis(4,5-dihydro-1H-pyrazol-3-yl)pyridine-κ3 N,N′,N″}zinc(II), C11H9C12N5Zn
  10. The crystal structure of dichlorido-(2-((4-phenyl-2H-1,2,3-triazol-2-yl)methyl)pyridine-κ2N,N′)palladium(II), C14H12Cl2N4Pd
  11. The crystal structure of 1-(N1-benzyl-2-methyl-4-nitro-imidazol-5-yl)-4-(prop-2-yn-1-yl) piperazine, C18H21N5O2
  12. Crystal structure of (μ4-(1,2,4,5-tetra(1,2,4-triazol-1-ylmethyl)-benzene-κ4N:N1:N2:N3)disilver(I) diperchlorate
  13. The crystal structure of 1-(2-bromoethane)-4-amine-3,5-dinitropyrazole, C5H6Br1N5O4
  14. Crystal structure of (E)-1-(4-benzyl-3,5-dioxomorpholin-2-ylidene)ethyl acetate, C15H15N1O5
  15. The crystal structure of poly[diaqua-(μ2-1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ2N:N′)-bis(μ3-terephthalato-κ3O:O′:O′′)dicadmium(II)], C17H15N6O5Cd
  16. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)thiophene-2-carbohydrazide, C13H11ClN2O2S
  17. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylato-k2 N,O)cobalt(II)]-monohydrate, C36H26N4O5Co
  18. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-3-hydroxybenzo-hydrazide monohydrate, C14H13ClN2O4
  19. Crystal structure of 1,1′-(methylene)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C42H30N14Ni2S8
  20. Crystal structure of 1,1′-(1,2-ethanediyl)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S)nickel(II), C20H14N6NiS4
  21. The crystal structure of 1-methyl-1H-pyrazol-2-ium nitrate, C4H7O3N3
  22. The crystal structure of 4,4′-diselanediylbis(8-(hexyloxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile), C46H60N6O2Se2
  23. The crystal structure of tris(6-methylpyridin-2-yl)phosphine selenide, C18H18N3PSe
  24. The crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane ─ acetone (1/1), C11H12N8O9
  25. Crystal structure of [diaqua[2,2′-(1,2-phenylene)bis(1H-imidazole-4-carboxylato-5-carboxy)-κ4N,N′,O,O′]nickel(II)] tetrahydrate, C16H12N4NiO10·4H2O
  26. The crystal structure of tris(4-methyl-1H-pyrazol-1-yl)methane, C13H16N6
  27. The crystal structure of 5,6-dichloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H8Cl2N2O2
  28. Crystal structure of (E)-(2-methoxy-benzylidene)-(4-[1,2,4]triazol-1-yl-phenyl)-amine, C16H14N4O
  29. The crystal structure of (Z)-2-(4-(4-bromophenyl)thiazol-2-yl)-4-(3-hydroxybut-2-enoyl)-5-methyl -1,2-dihydro-3H-pyrazol-3-one – methanol (1/1), C18H18N3O4S
  30. Crystal structure of tetraaqua-tris(nitrato-κ2 O,O′) erbium(III) monohydrate, Er(NO3)3·5H2O, H10ErN3O14
  31. The crystal structure of 1-methyl-2-nitro-1H-imidazole 3-oxide, C4H5N3O3
  32. The crystal structure of 1-methyl-2-nitroimidazole, C4H5N3O2
  33. The crystal structure of 2-carboxyl-4-nitroimidazole monohydrate, C4H5N3O5
  34. Crystal structure of bis[hydrido-hexaphenylcarbodiphosphoran][tetra-trifluoromethyl-(μ-diiodo)-diplatinat]
  35. The crystal structure of poly[μ2-aqua- aqua-(μ3-(E)-2-(4-((2-carbamothioylhydrazineylidene)methyl)phenoxy)acetato-κ3 O:S:S)sodium(I)], C10H14N3O5SNa
  36. The twinned crystal structure of [4,4′-bipyridine]-1,1′-diium hexachloridostannate(IV), C10H10N2SnCl6
  37. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylate-k2 N,O)copper(II)], C34H24N4O4Cu
  38. Crystal structure of trans-1,2-bis(pyridinium-4-yl) ethylene bis(2-carboxy-4-bromobenzoate) – water (1/4), C14H14BrNO6
  39. Crystal structure of poly[diaqua-(μ3-fumarato)-(μ3-maleato)-(μ4-1,2,4,5-tetrakis((1H-1,2,4-triazol-1-yl)methyl)benzene)tetracadmium(II)] dihydrate, C34H32N12O9Cd4
  40. Crystal structure of a second modification of Pachypodol, C18H16O7
  41. Crystal structure of methyl 2-(4-(2-(cyclopentyl-amino)-1-(N-(4-methoxyphenyl)-1-methyl-5-phenyl-1-H-pyrazole-3-carboxamido)-2-oxoethyl)phenyl)acetate, C34H36N4O5
  42. The crystal structure of catena-poly[(m2-4,4′-bipyridine-κ2 N:N)-bis(6-phenylpyridine-2-carboxylato-κ2 N,O) zinc(II)], C34H24N4O4Zn
  43. The crystal structure of hexaquamagnesium(II) (2,4-bis(nitroimino)-6-oxo-1,3,5-triazinane-1,3-diide), C3H15MgN7O12
  44. The crystal structure of 7-Bromo-2-(4-chloro-phenyl)-quinoxaline, C14H9BrClN2
  45. Crystal structure of methyl 4-{[4-(4-cyanobenzamido)phenyl]amino}benzofuro[2,3-d]pyrimidine-6-carboxylate, C26H17N5O4
  46. The crystal structure of (4SR)-7-(3,4-dichlorobenzyl)-4,8,8-trimethyl-7,8-dihydroimidazo[5,1c][1,2,4]triazine-3,6(2H,4H)-dione, C15H16Cl2N4O2
  47. Crystal structure of catena-poly[{μ2-3-carboxy-2,3-bis((4-methylbenzoyl)oxy)propanoato-κ2 O:O′}tris(methanol-κ1 O)lanthanum(III)], C63H63LaO27
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0451/html
Button zum nach oben scrollen