Startseite Crystal structure of poly[diaqua-(μ3-fumarato)-(μ3-maleato)-(μ4-1,2,4,5-tetrakis((1H-1,2,4-triazol-1-yl)methyl)benzene)tetracadmium(II)] dihydrate, C34H32N12O9Cd4
Artikel Open Access

Crystal structure of poly[diaqua-(μ3-fumarato)-(μ3-maleato)-(μ4-1,2,4,5-tetrakis((1H-1,2,4-triazol-1-yl)methyl)benzene)tetracadmium(II)] dihydrate, C34H32N12O9Cd4

  • Hua-Rui Wang ORCID logo EMAIL logo
Veröffentlicht/Copyright: 18. Februar 2022

Abstract

C34H32N12O9Cd4, monoclinic, P 1 (no. 2), a = 9.894(2) Å, b = 9.942(2) Å, c = 10.896(2) Å, α = 94.35(3)°, β = 96.80(3)°, γ = 93.35(3)°, V = 1058.7(4) Å3, Z = 1, R gt (F) = 0.0406, wRref(F2) = 0.0984, T = 293(2) K.

CCDC no.: 2149837

A part of the title coordination polymer is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.26 × 0.21 × 0.15 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 2.08 mm−1
Diffractometer, scan mode: Rigaku Saturn 724, ω
θmax, completeness: 27.9°, 99%
N(hkl)measuredN(hkl)uniqueRint: 12,985, 4985, 0.025
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 4319
N(param)refined: 316
Programs: CrysAlisPRO [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Cd1 0.38499 (3) 0.60679 (3) 0.26674 (3) 0.04006 (10)
Cd2 0.57500 (3) 0.82836 (3) −0.01463 (3) 0.04661 (11)
O1 0.4111 (3) 0.7063 (4) 0.0711 (3) 0.0540 (8)
O2 0.2142 (4) 0.6124 (5) 0.0908 (3) 0.0824 (14)
O3 0.4093 (3) 0.4703 (3) −0.2634 (3) 0.0474 (7)
O4 0.5338 (3) 0.6431 (3) −0.1625 (3) 0.0538 (8)
O5 0.3158 (4) 0.8051 (4) 0.3513 (3) 0.0603 (9)
O6 0.4559 (4) 0.7031 (4) 0.4779 (3) 0.0587 (9)
O7 0.3467 (5) 1.1137 (4) 0.7466 (4) 0.0935 (16)
O8 0.4597 (4) 0.9954 (3) 0.8763 (3) 0.0518 (8)
O12 0.7248 (4) 0.6799 (4) 0.0854 (4) 0.0772 (12)
H12A 0.7420 0.7300 0.1529 0.116*
H12B 0.6860 0.6208 0.1298 0.116*
N1 −0.2320 (3) −0.0992 (3) 0.9098 (3) 0.0400 (8)
N2 −0.0813 (3) 0.0178 (3) 0.8250 (3) 0.0328 (7)
N3 −0.0151 (4) −0.0875 (4) 0.8704 (3) 0.0431 (8)
N4 0.2324 (4) 0.4668 (4) 0.3446 (3) 0.0410 (8)
N5 0.0310 (4) 0.3847 (4) 0.3897 (4) 0.0471 (9)
N6 0.1342 (3) 0.3540 (3) 0.4759 (3) 0.0370 (7)
C1 0.4092 (5) 1.0149 (5) 0.7678 (4) 0.0476 (10)
C4 0.3644 (6) 0.9042 (5) 0.5557 (4) 0.0584 (13)
H4 0.3010 0.9678 0.5384 0.070*
C5 0.4334 (5) 0.9124 (5) 0.6660 (4) 0.0480 (10)
H5 0.5004 0.8522 0.6821 0.058*
C6 0.2374 (4) 0.6923 (5) −0.1023 (4) 0.0471 (10)
H6 0.1568 0.7361 −0.1127 0.056*
C7 0.1074 (5) 0.2752 (4) 0.5791 (4) 0.0461 (10)
H7A 0.0433 0.3205 0.6259 0.055*
H7B 0.1917 0.2719 0.6339 0.055*
C8 −0.1089 (4) −0.1541 (4) 0.9205 (4) 0.0419 (9)
H8 −0.0930 −0.2324 0.9600 0.050*
C10 −0.0157 (4) 0.1127 (4) 0.7521 (3) 0.0370 (8)
H10A 0.0758 0.1389 0.7924 0.044*
H10B −0.0662 0.1934 0.7494 0.044*
C11 0.0576 (4) 0.0764 (4) 0.4190 (3) 0.0353 (8)
H11 0.0974 0.1286 0.3638 0.042*
C12 0.0959 (4) 0.4513 (4) 0.3138 (4) 0.0416 (9)
H12 0.0517 0.4855 0.2438 0.050*
C23 0.0503 (4) 0.1323 (4) 0.5380 (3) 0.0331 (8)
C24 −0.0077 (4) 0.0545 (4) 0.6208 (3) 0.0312 (7)
C25 0.2921 (4) 0.6688 (4) 0.0268 (4) 0.0399 (9)
C26 −0.2103 (4) 0.0081 (4) 0.8486 (3) 0.0347 (8)
H26 −0.2755 0.0681 0.8254 0.042*
C27 0.4213 (4) 0.5867 (4) −0.2082 (3) 0.0391 (9)
C29 0.2924 (5) 0.6568 (5) −0.2033 (4) 0.0463 (10)
H29 0.2467 0.6774 −0.2784 0.056*
C30 0.3822 (5) 0.7974 (5) 0.4556 (4) 0.0455 (10)
C31 0.2518 (4) 0.4028 (4) 0.4478 (4) 0.0416 (9)
H31 0.3361 0.3940 0.4931 0.050*
O9a 0.0447 (13) 0.4372 (13) −0.0431 (14) 0.148 (5)
H9Aa −0.0326 0.3931 −0.0537 0.222*
H9Ba 0.0959 0.3873 −0.0812 0.222*
  1. aOccupancy: 0.5.

Source of material

Maleic acid (0.012 g, 0.1 mmol), 1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)benzene (0.02 g, 0.05 mmol) and cadmium(II) acetate (0.023 g, 0.1 mmol) were added to the mixture of acetonitrile (7 mL) and water (1 mL) in a Teflon-lined stainless steel reactor. The mixture was heated at 433 K for three days, and then slowly cooled down to room temperature. Colorless crystals of the title compound were obtained.

Experimental details

The crystallographic data of title complex was collected on a Rigaku Saturn 724 CCD diffractometer at room temperature. Absorption corrections were applied by using multi-scan program [1]. Using Olex2 [2], the structure was solved with the ShelXT [3] structure solution program using Intrinsic Phasing and refined with the ShelXL [4] refinement package. The H atoms bonded to C atoms were fixed, with C–H distance of 0.93 Å; and/or positioned geometrically in the riding-model approximation, with C–H distance of 0.97 Å; Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(O).

Comment

A serial of complexes based on flexible 1,2,4-triazole-containing ligands were reported, as 1,4-bis(1,2,4-triazol-1-ylmethyl)-benzene (bbtz), 1,4-bis(1,2,4-triazol-1-yl)butane (btb), 1,3,5-tris(1,2,4-triazol-1-ylmethyl)-2,4,6-trimethylbenzene (tttmb) [5], [6], [7], [8], [9], [10], [11], [12]. To further understand the coordination principle for these coordination complexes, we selected the flexible tetrapodal 1,2,4,5-tetra(1,2,4-triazol-1-ylmethyl)-benzene (ttyb) as a functional ligand and used the “mix-ligand” synthetic strategy to explore the assembly with “mixed” ttyb and aromatic polycarboxylate ligands [13], [14], [15]. In this context, we reacted 1,2,4,5-tetra(1,2,4-triazol-1-ylmethyl)-benzene (ttyb) with Cd2+ ions, then we added maleic acid (H2mal) as a precursor of an auxiliary ligand.

The asymmetric unit of compound 1 consists of two crystallographically independent Cd(II) atoms, one half of a ttyb ligand, one maleate ligand (mal), one fumarate (fum) ligand and two water molecules. The Cd1 is six-coordinated by three carboxylate oxygen atoms from two fum ligands, two carboxylate oxygen atoms from one mal ligand and one nitrogen atom from one ttyb ligand. This results in a distorted octahedral coordination of Cd1. The Cd2 is also six-coordinated by two carboxylate oxygen atoms from one fum ligand, two carboxylate oxygen atoms from two mal ligands, one nitrogen atom from ttyb ligand and one oxygen atom from coordinated water molecule. The Cd–O bond lengths are in the range of 2.220(3)–2.451(3) Å. The Cd–N lengths are 2.275(3) Å and 2.268(3) Å. Moreover, in malate dianion, carboxylate groups with two kinds of coordination modes have been found; one is bridging and the other chelating-bridging. In fumarate dianion, carboxylate groups with two chelating-bridging coordination modes have been found. The fum ligand coordinates to the three Cd center in chelating mode. Each malate dianion ligand coordinates to three Cd1 and Cd2 atoms to generate a 2D layer. ttyb acts as a μ4-bridge linking four Cd(II) ions, and connect the 2D layer to extend to a 3D network. H2male was used as initial reactant, but the mal and fum ligands were found in the resultant crystal structure. For the male ligand, the conformation transformation happened in situ hydrothermal reaction process [16, 17].


Corresponding author: Hua-Rui Wang, College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, LuoYang Normal University, Luoyang, Henan 471934, P. R. China, E-mail:

Funding source: Key Scientific Research Projects of Higher Education of Henan Province 10.13039/501100013066

Award Identifier / Grant number: 16A150016

Funding source: Henan Province Natural Science Foundation

Award Identifier / Grant number: 182300410237

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Key Scientific Research Projects of Higher Education of Henan Province (16A150016, DOI: 10.13039/501100013066) and Henan Province Natural Science Foundation (182300410237, DOI: 10.13039/501100006407).

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Oxford Diffraction Ltd. CrysAlispro: Abingdon, Oxfordshire, England, 2006.Suche in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Chang, X.-H., Yang, X.-G., Zhai, Z.-M., Chen, J.-Y., Li, F.-F. Synthesis, structure and highly enhanced phosphorescence of a cadmium(II) coordination polymer assembled with 1,4-naphthalenedicarboxylic acid and 2-propylimidazole. Chin. J. Struct. Chem. 2021, 40, 187–192.Suche in Google Scholar

6. Liu, X., Du, L., Li, R., Ma, N., You, M., Feng, X. Different effects in the selective detection of aniline and Fe3+ by lanthanide-based coordination polymers containing multiple reactive sites. CrystEngComm 2020, 22, 2837–2844; https://doi.org/10.1039/d0ce00238k.Suche in Google Scholar

7. Yang, X. G., Zhai, Z. M., Lu, X. M., Zhao, Y., Chang, X. H., Ma, L. F. Room temperature phosphorescence of Mn(II) and Zn(II) coordination polymers for photoelectron response applications. Dalton Trans. 2019, 48, 10785–10789; https://doi.org/10.1039/c9dt02178g.Suche in Google Scholar PubMed

8. Lin, Z.-J., Lü, J., Hong, M., Cao, R. Metal-organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev. 2014, 43, 5867–5895; https://doi.org/10.1039/c3cs60483g.Suche in Google Scholar PubMed

9. Qin, J.-H., Xu, P., Huang, Y.-D., Xiao, L.-Y., Lu, W., Yang, X.-G., Ma, L., Zang, S.-Q. High loading of Mn(II)-metalated porphyrin in MOF for photocatalytic CO2 reduction in gas-solid condition. Chem. Commun. 2021, 57, 8468–8471; https://doi.org/10.1039/d1cc02847b.Suche in Google Scholar PubMed

10. Hawes, C. S., Hamilton, S. E., Hicks, J., Knowles, G. P., Chaffee, A. L., Turner, D. R., Batten, S. R. Coordination chemistry and structural dynamics of a long and flexible piperazine-derived ligand. Inorg. Chem. 2016, 55, 6692–6702; https://doi.org/10.1021/acs.inorgchem.6b00933.Suche in Google Scholar PubMed

11. Miao, S.-B., Sun, X.-J., Wang, K.-X., Xu, C.-Y., Li, Z.-H., Wang, Z.-Q. Effect of charge on the structures of Zn(II) coordination polymers with triazole-carboxylate ligands: syntheses, structures, and luminescent properties. Crystals 2018, 8, 312; https://doi.org/10.3390/cryst8080312.Suche in Google Scholar

12. Qin, J. H., Zhang, H., Sun, P., Huang, Y. D., Shen, Q., Yang, X. G., Ma, L. F. Ionic liquid induced highly dense assembly of porphyrin in MOF nanosheets for photodynamic therapy. Dalton Trans. 2020, 49, 17772–17778; https://doi.org/10.1039/d0dt03031g.Suche in Google Scholar PubMed

13. Xu, G.-C., Hua, Q., Okamura, T., Bai, Z.-S., Ding, Y.-J., Huang, Y.-Q., Liu, G.-X., Sun, W.-Y., Ueyama, N. Cadmium(II) coordination polymers with flexible tetradentate ligand 1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene: anion effect and reversible anion exchange property. CrystEngComm 2009, 11, 261–270; https://doi.org/10.1039/b813220h.Suche in Google Scholar

14. Hua, Q., Zhao, Y., Xu, G.-C., Chen, M.-S., Su, Z., Cai, K., Sun, W.-Y. Synthesis, structures, and properties of zinc(II) and cadmium(II) complexes with 1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene and multicarboxylate ligands. Cryst. Growth Des. 2010, 10, 2553–2562; https://doi.org/10.1021/cg901480y.Suche in Google Scholar

15. Hua, Q., Su, Z., Zhao, Y., Okamura, T., Xu, G. C., Sun, W.-Y., Ueyama, N. Synthesis, structure and property of manganese(II) complexes with mixed tetradentate imidazole-containing ligand and benzenedicarboxylate. Inorg. Chim. Acta 2010, 363, 3550–3557; https://doi.org/10.1016/j.ica.2010.07.012.Suche in Google Scholar

16. Zhang, S., Huang, L., Qu, L., Peng, H., Zhao, Y. Two novel R- and S-malato-bridged coordination polymers by reacting lanthanide chloride and maleic anhydride, 1,10-phenanthroline at hydrothermal condition. J. Mol. Struct. 2006, 787, 14–17; https://doi.org/10.1016/j.molstruc.2005.10.026.Suche in Google Scholar

17. Bai, H., Ma, J., Liu, Y., Yang, J. Hydrothermal syntheses, crystal structures and topological analyses of four new 3D coordination polymers with mixed ligands. Inorg. Chim. Acta 2011, 376, 332–339; https://doi.org/10.1016/j.ica.2011.06.043.Suche in Google Scholar

Received: 2021-12-15
Accepted: 2022-02-03
Published Online: 2022-02-18
Published in Print: 2022-04-26

© 2022 Hua-Rui Wang, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of {2,2′-{cyclohexane-1,2-diylbis[(azanylylidene)methylylidene]}bis(2,4-dibromophenolato)-κ4 N,N′,O,O′}copper(II) ─ diethylformamide (1/1), C23H23Br4CuN3O3
  4. The crystal structure of 2-(2-methyl-6-phenyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione, C21H14O3
  5. Crystal structure of bis((1-methylbenzimidazol-2-yl)methyl)amine, C18H19N5
  6. Crystal structure of (E)-N′-(1-(2-hydroxy-4-methoxyphenyl)ethylidene) isonicotinohydrazide, C15H15N3O3
  7. Crystal structure of 2-((4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)thio)acetonitrile, C15H11N5S
  8. The crystal structure of 2,2′-((1E,1′E)-hydrazine-1,2-diylidenebis(methaneylylidene))bis(4-chlorophenol), C14H10Cl2N2O2
  9. Dichlorido-{2,6-bis(4,5-dihydro-1H-pyrazol-3-yl)pyridine-κ3 N,N′,N″}zinc(II), C11H9C12N5Zn
  10. The crystal structure of dichlorido-(2-((4-phenyl-2H-1,2,3-triazol-2-yl)methyl)pyridine-κ2N,N′)palladium(II), C14H12Cl2N4Pd
  11. The crystal structure of 1-(N1-benzyl-2-methyl-4-nitro-imidazol-5-yl)-4-(prop-2-yn-1-yl) piperazine, C18H21N5O2
  12. Crystal structure of (μ4-(1,2,4,5-tetra(1,2,4-triazol-1-ylmethyl)-benzene-κ4N:N1:N2:N3)disilver(I) diperchlorate
  13. The crystal structure of 1-(2-bromoethane)-4-amine-3,5-dinitropyrazole, C5H6Br1N5O4
  14. Crystal structure of (E)-1-(4-benzyl-3,5-dioxomorpholin-2-ylidene)ethyl acetate, C15H15N1O5
  15. The crystal structure of poly[diaqua-(μ2-1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ2N:N′)-bis(μ3-terephthalato-κ3O:O′:O′′)dicadmium(II)], C17H15N6O5Cd
  16. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)thiophene-2-carbohydrazide, C13H11ClN2O2S
  17. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylato-k2 N,O)cobalt(II)]-monohydrate, C36H26N4O5Co
  18. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-3-hydroxybenzo-hydrazide monohydrate, C14H13ClN2O4
  19. Crystal structure of 1,1′-(methylene)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C42H30N14Ni2S8
  20. Crystal structure of 1,1′-(1,2-ethanediyl)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S)nickel(II), C20H14N6NiS4
  21. The crystal structure of 1-methyl-1H-pyrazol-2-ium nitrate, C4H7O3N3
  22. The crystal structure of 4,4′-diselanediylbis(8-(hexyloxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile), C46H60N6O2Se2
  23. The crystal structure of tris(6-methylpyridin-2-yl)phosphine selenide, C18H18N3PSe
  24. The crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane ─ acetone (1/1), C11H12N8O9
  25. Crystal structure of [diaqua[2,2′-(1,2-phenylene)bis(1H-imidazole-4-carboxylato-5-carboxy)-κ4N,N′,O,O′]nickel(II)] tetrahydrate, C16H12N4NiO10·4H2O
  26. The crystal structure of tris(4-methyl-1H-pyrazol-1-yl)methane, C13H16N6
  27. The crystal structure of 5,6-dichloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H8Cl2N2O2
  28. Crystal structure of (E)-(2-methoxy-benzylidene)-(4-[1,2,4]triazol-1-yl-phenyl)-amine, C16H14N4O
  29. The crystal structure of (Z)-2-(4-(4-bromophenyl)thiazol-2-yl)-4-(3-hydroxybut-2-enoyl)-5-methyl -1,2-dihydro-3H-pyrazol-3-one – methanol (1/1), C18H18N3O4S
  30. Crystal structure of tetraaqua-tris(nitrato-κ2 O,O′) erbium(III) monohydrate, Er(NO3)3·5H2O, H10ErN3O14
  31. The crystal structure of 1-methyl-2-nitro-1H-imidazole 3-oxide, C4H5N3O3
  32. The crystal structure of 1-methyl-2-nitroimidazole, C4H5N3O2
  33. The crystal structure of 2-carboxyl-4-nitroimidazole monohydrate, C4H5N3O5
  34. Crystal structure of bis[hydrido-hexaphenylcarbodiphosphoran][tetra-trifluoromethyl-(μ-diiodo)-diplatinat]
  35. The crystal structure of poly[μ2-aqua- aqua-(μ3-(E)-2-(4-((2-carbamothioylhydrazineylidene)methyl)phenoxy)acetato-κ3 O:S:S)sodium(I)], C10H14N3O5SNa
  36. The twinned crystal structure of [4,4′-bipyridine]-1,1′-diium hexachloridostannate(IV), C10H10N2SnCl6
  37. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylate-k2 N,O)copper(II)], C34H24N4O4Cu
  38. Crystal structure of trans-1,2-bis(pyridinium-4-yl) ethylene bis(2-carboxy-4-bromobenzoate) – water (1/4), C14H14BrNO6
  39. Crystal structure of poly[diaqua-(μ3-fumarato)-(μ3-maleato)-(μ4-1,2,4,5-tetrakis((1H-1,2,4-triazol-1-yl)methyl)benzene)tetracadmium(II)] dihydrate, C34H32N12O9Cd4
  40. Crystal structure of a second modification of Pachypodol, C18H16O7
  41. Crystal structure of methyl 2-(4-(2-(cyclopentyl-amino)-1-(N-(4-methoxyphenyl)-1-methyl-5-phenyl-1-H-pyrazole-3-carboxamido)-2-oxoethyl)phenyl)acetate, C34H36N4O5
  42. The crystal structure of catena-poly[(m2-4,4′-bipyridine-κ2 N:N)-bis(6-phenylpyridine-2-carboxylato-κ2 N,O) zinc(II)], C34H24N4O4Zn
  43. The crystal structure of hexaquamagnesium(II) (2,4-bis(nitroimino)-6-oxo-1,3,5-triazinane-1,3-diide), C3H15MgN7O12
  44. The crystal structure of 7-Bromo-2-(4-chloro-phenyl)-quinoxaline, C14H9BrClN2
  45. Crystal structure of methyl 4-{[4-(4-cyanobenzamido)phenyl]amino}benzofuro[2,3-d]pyrimidine-6-carboxylate, C26H17N5O4
  46. The crystal structure of (4SR)-7-(3,4-dichlorobenzyl)-4,8,8-trimethyl-7,8-dihydroimidazo[5,1c][1,2,4]triazine-3,6(2H,4H)-dione, C15H16Cl2N4O2
  47. Crystal structure of catena-poly[{μ2-3-carboxy-2,3-bis((4-methylbenzoyl)oxy)propanoato-κ2 O:O′}tris(methanol-κ1 O)lanthanum(III)], C63H63LaO27
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0475/html
Button zum nach oben scrollen