Startseite Naturwissenschaften Crystal structure of tetraaqua-tris(nitrato-κ2 O,O′) erbium(III) monohydrate, Er(NO3)3·5H2O, H10ErN3O14
Artikel Open Access

Crystal structure of tetraaqua-tris(nitrato-κ2 O,O′) erbium(III) monohydrate, Er(NO3)3·5H2O, H10ErN3O14

  • Wilhelm Klein ORCID logo EMAIL logo
Veröffentlicht/Copyright: 31. Januar 2022

Abstract

H10ErN3O14, triclinic, P 1 (no. 2), a = 6.5913(4) Å, b = 9.5211(5) Å, c = 10.4936(6) Å, α = 63.742(4)°, β = 84.551(5)°, γ = 76.038(5)°, V = 573.09(6) Å3, Z = 2, R gt (F) = 0.0141, wR ref (F 2) = 0.0318, T = 223 K.

CCDC no.: 2109106

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Pink fragment
Size: 0.30 × 0.15 × 0.10 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 7.41 mm−1
Diffractometer, scan mode: STOE StadiVari, ω
θ max, completeness: 30.0°, >99%
N(hkl)measured, N(hkl)unique, R int: 21,486, 3337, 0.025
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 3078
N(param)refined: 204
Programs: Stoe [1], SHELX [2, 3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Er 0.24376 (2) 0.34916 (2) 0.29471 (2) 0.01301 (4)
N1 0.4680 (3) 0.2812 (2) 0.55523 (19) 0.0173 (3)
O1 0.2944 (3) 0.3817 (2) 0.50813 (18) 0.0233 (3)
O2 0.5523 (3) 0.21277 (19) 0.47857 (17) 0.0219 (3)
O3 0.5474 (3) 0.2555 (2) 0.6665 (2) 0.0319 (4)
N2 0.5196 (3) 0.2135 (2) 0.1248 (2) 0.0223 (4)
O4 0.5009 (3) 0.1406 (2) 0.25847 (18) 0.0275 (4)
O5 0.4057 (3) 0.35638 (19) 0.06676 (17) 0.0237 (3)
O6 0.6372 (4) 0.1552 (3) 0.0564 (2) 0.0393 (5)
N3 0.0243 (3) 0.6851 (2) 0.1465 (2) 0.0207 (4)
O7 0.0612 (3) 0.58090 (19) 0.09570 (18) 0.0232 (3)
O8 0.1048 (3) 0.6376 (2) 0.26695 (18) 0.0229 (3)
O9 −0.0811 (3) 0.8196 (2) 0.0812 (2) 0.0372 (5)
O10 −0.0912 (3) 0.3861 (2) 0.3939 (2) 0.0219 (3)
H1 −0.147 (6) 0.456 (5) 0.421 (4) 0.040 (10)*
H2 −0.178 (6) 0.387 (5) 0.352 (4) 0.042 (10)*
O11 0.1964 (3) 0.1000 (2) 0.46836 (18) 0.0220 (3)
H3 0.134 (6) 0.087 (4) 0.544 (4) 0.040 (10)*
H4 0.272 (6) 0.014 (4) 0.476 (4) 0.035 (9)*
O12 0.0252 (3) 0.2641 (2) 0.19424 (18) 0.0223 (3)
H5 0.027 (5) 0.162 (4) 0.221 (4) 0.036 (9)*
H6 0.008 (6) 0.312 (5) 0.112 (4) 0.047 (11)*
O13 0.5142 (3) 0.5014 (2) 0.22275 (18) 0.0203 (3)
H7 0.539 (6) 0.540 (5) 0.141 (4) 0.047 (11)*
H8 0.496 (5) 0.573 (4) 0.243 (4) 0.031 (9)*
O14 0.0041 (4) 0.9543 (2) 0.2792 (2) 0.0311 (4)
H9 0.097 (9) 0.890 (7) 0.290 (6) 0.083 (18)*
H10 −0.065 (7) 0.958 (5) 0.224 (5) 0.048 (12)*

Source of material

The title compound Er(NO3)3·5H2O was prepared by dissolving Er2O3 (Fluka, 99.9%) in hot aqueous nitric acid. From concentrated solutions pink single crystals up to 1 mm length were grown at room temperature within two weeks. For the X-ray data collection crystals have been immersed into perfluoroalkylether acts as glue on a glass tip during the measurement.

Experimental details

The H atoms have been located from the difference Fourier map and refined with unrestrained atomic coordinates and isotropic displacement parameters.

Comment

Anhydrous rare earth nitrates crystallize poorly because their thermal stability is usually too low to crystallize from melt. However, from aqueous solutions crystals of these compounds grow easily as hydrates, and there are numerous structural determinations of their hydrates [5]. While the highest amounts of water are found in hexahydrates which are structurally characterized for yttrium and the lanthanides La–Dy [5] as well as Tm [6], for some of the heavier rare earth elements, namely Ho [7] and Yb [8], at most the pentahydrates are known as maximally hydrated compounds so far [7, 8]. Also the structure of the pentahydrate of Er(NO3)3 has been investigated, but no structural data other than lattice parameters have been published [8].

The crystal structure of Er(NO3)3·5H2O was determined from single crystal data, the compound crystallizes in the Y(NO3)3(H2O)5 structure type [9, 10] and is composed of [Er(NO3)3(H2O)4] complexes and free water molecules. All crystallographically independent nitrate anions are planar and have significantly different N–O bond lengths. The O atoms coordinated to the Er atom form much longer N–O bonds (1.259(2)–1.286(2) Å) than the non-coordinating O atoms (1.210(3)–1.224(2) Å). The Er atom is coordinated by 10 O atoms from three nitrate anions and four water molecules. All nitrate anions in the complex act as bidentate ligands. They are circularly coordinated around the Er atom and divide the water ligands into two groups, so that three lie on one and one on the other side of the nitrate ligands. The nitrate ions are slightly inclined to the main axis of the complex as defined by the Er–O13 bond (18.2–24.3°) and to each other (28.7–39.9°), and are slightly asymmetrically coordinated with a shorter (2.4077(16)–2.4551(16) Å) and a longer bond (2.5043(17)–2.6076(16) Å) to the Er atom. The shortest Er–O bonds are formed to the O10–O12 molecules (2.3345(16)–2.3651(17) Å), while the isolated ligand O13 is a little further away (2.4230(17) Å). The positional and isotropic displacement parameters of the H atoms were refined freely, the O–H bond lengths were found to be between 0.73(6) und 0.88(4) Å and the H–O–H angles between 102(4)° and 110(4)°. The molecular units are interconnected via relatively strong hydrogen bonds, as shown in the figure (note: probability level for non-H atom ellipsoids is 80%). More precisely, nine of the 10 independent H atoms form hydrogen bonds shorter than 2.38 Å with O–H–O angles above 154°.


Corresponding author: Wilhelm Klein, Fakultät für Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany, E-mail:

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Stoe & Cie GmbH. X-Area (version 1.76); Stoe & Cie GmbH: Darmstadt, Germany, 2017.Suche in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System (version 3.2i); Crystal Impact: Bonn, Germany, 2012.Suche in Google Scholar

5. Wickleder, M. S. Inorganic lanthanide compounds with complex anions. Chem. Rev. 2002, 102, 2011–2087; https://doi.org/10.1021/cr010308o.Suche in Google Scholar PubMed

6. Klein, W. Crystal structures of the penta- and hexahydrate of thulium nitrate. Acta Crystallogr. 2020, E76, 1863–1867; https://doi.org/10.1107/s2056989020015388.Suche in Google Scholar

7. Rincke, C., Schmidt, H., Voigt, W. Rebuttal of the existence of solid rare earth bicarbonates and the crystal structure of holmium nitrate pentahydrate. Z. Anorg. Allg. Chem. 2017, 643, 437–442; https://doi.org/10.1002/zaac.201600436.Suche in Google Scholar

8. Junk, P. C., Kepert, D. L., Skelton, B. W., White, A. H. Structural systematics of rare earth complexes. XIII (‘maximally’) hydrated (heavy) rare earth nitrates. Aust. J. Chem. 1999, 52, 497–505.10.1071/CH98044Suche in Google Scholar

9. Eriksson, B. Crystal and molecular structure of tetraaquatrinitratoyttrium(III) hydrate. Acta Chem. Scand., Ser. A 1982, 36, 186–188.Suche in Google Scholar

10. Klein, W. Redetermination of the crystal structure of yttrium(III) nitrate(V) pentahydrate, Y(NO3)3·5 H2O, H10N3O14Y. Z. Kristallogr. NCS 2020, 235, 801–802; https://doi.org/10.1515/ncrs-2020-0018.Suche in Google Scholar

Received: 2021-12-22
Accepted: 2022-01-18
Published Online: 2022-01-31
Published in Print: 2022-04-26

© 2022 Wilhelm Klein, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of {2,2′-{cyclohexane-1,2-diylbis[(azanylylidene)methylylidene]}bis(2,4-dibromophenolato)-κ4 N,N′,O,O′}copper(II) ─ diethylformamide (1/1), C23H23Br4CuN3O3
  4. The crystal structure of 2-(2-methyl-6-phenyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione, C21H14O3
  5. Crystal structure of bis((1-methylbenzimidazol-2-yl)methyl)amine, C18H19N5
  6. Crystal structure of (E)-N′-(1-(2-hydroxy-4-methoxyphenyl)ethylidene) isonicotinohydrazide, C15H15N3O3
  7. Crystal structure of 2-((4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)thio)acetonitrile, C15H11N5S
  8. The crystal structure of 2,2′-((1E,1′E)-hydrazine-1,2-diylidenebis(methaneylylidene))bis(4-chlorophenol), C14H10Cl2N2O2
  9. Dichlorido-{2,6-bis(4,5-dihydro-1H-pyrazol-3-yl)pyridine-κ3 N,N′,N″}zinc(II), C11H9C12N5Zn
  10. The crystal structure of dichlorido-(2-((4-phenyl-2H-1,2,3-triazol-2-yl)methyl)pyridine-κ2N,N′)palladium(II), C14H12Cl2N4Pd
  11. The crystal structure of 1-(N1-benzyl-2-methyl-4-nitro-imidazol-5-yl)-4-(prop-2-yn-1-yl) piperazine, C18H21N5O2
  12. Crystal structure of (μ4-(1,2,4,5-tetra(1,2,4-triazol-1-ylmethyl)-benzene-κ4N:N1:N2:N3)disilver(I) diperchlorate
  13. The crystal structure of 1-(2-bromoethane)-4-amine-3,5-dinitropyrazole, C5H6Br1N5O4
  14. Crystal structure of (E)-1-(4-benzyl-3,5-dioxomorpholin-2-ylidene)ethyl acetate, C15H15N1O5
  15. The crystal structure of poly[diaqua-(μ2-1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ2N:N′)-bis(μ3-terephthalato-κ3O:O′:O′′)dicadmium(II)], C17H15N6O5Cd
  16. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)thiophene-2-carbohydrazide, C13H11ClN2O2S
  17. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylato-k2 N,O)cobalt(II)]-monohydrate, C36H26N4O5Co
  18. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-3-hydroxybenzo-hydrazide monohydrate, C14H13ClN2O4
  19. Crystal structure of 1,1′-(methylene)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C42H30N14Ni2S8
  20. Crystal structure of 1,1′-(1,2-ethanediyl)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S)nickel(II), C20H14N6NiS4
  21. The crystal structure of 1-methyl-1H-pyrazol-2-ium nitrate, C4H7O3N3
  22. The crystal structure of 4,4′-diselanediylbis(8-(hexyloxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile), C46H60N6O2Se2
  23. The crystal structure of tris(6-methylpyridin-2-yl)phosphine selenide, C18H18N3PSe
  24. The crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane ─ acetone (1/1), C11H12N8O9
  25. Crystal structure of [diaqua[2,2′-(1,2-phenylene)bis(1H-imidazole-4-carboxylato-5-carboxy)-κ4N,N′,O,O′]nickel(II)] tetrahydrate, C16H12N4NiO10·4H2O
  26. The crystal structure of tris(4-methyl-1H-pyrazol-1-yl)methane, C13H16N6
  27. The crystal structure of 5,6-dichloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H8Cl2N2O2
  28. Crystal structure of (E)-(2-methoxy-benzylidene)-(4-[1,2,4]triazol-1-yl-phenyl)-amine, C16H14N4O
  29. The crystal structure of (Z)-2-(4-(4-bromophenyl)thiazol-2-yl)-4-(3-hydroxybut-2-enoyl)-5-methyl -1,2-dihydro-3H-pyrazol-3-one – methanol (1/1), C18H18N3O4S
  30. Crystal structure of tetraaqua-tris(nitrato-κ2 O,O′) erbium(III) monohydrate, Er(NO3)3·5H2O, H10ErN3O14
  31. The crystal structure of 1-methyl-2-nitro-1H-imidazole 3-oxide, C4H5N3O3
  32. The crystal structure of 1-methyl-2-nitroimidazole, C4H5N3O2
  33. The crystal structure of 2-carboxyl-4-nitroimidazole monohydrate, C4H5N3O5
  34. Crystal structure of bis[hydrido-hexaphenylcarbodiphosphoran][tetra-trifluoromethyl-(μ-diiodo)-diplatinat]
  35. The crystal structure of poly[μ2-aqua- aqua-(μ3-(E)-2-(4-((2-carbamothioylhydrazineylidene)methyl)phenoxy)acetato-κ3 O:S:S)sodium(I)], C10H14N3O5SNa
  36. The twinned crystal structure of [4,4′-bipyridine]-1,1′-diium hexachloridostannate(IV), C10H10N2SnCl6
  37. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylate-k2 N,O)copper(II)], C34H24N4O4Cu
  38. Crystal structure of trans-1,2-bis(pyridinium-4-yl) ethylene bis(2-carboxy-4-bromobenzoate) – water (1/4), C14H14BrNO6
  39. Crystal structure of poly[diaqua-(μ3-fumarato)-(μ3-maleato)-(μ4-1,2,4,5-tetrakis((1H-1,2,4-triazol-1-yl)methyl)benzene)tetracadmium(II)] dihydrate, C34H32N12O9Cd4
  40. Crystal structure of a second modification of Pachypodol, C18H16O7
  41. Crystal structure of methyl 2-(4-(2-(cyclopentyl-amino)-1-(N-(4-methoxyphenyl)-1-methyl-5-phenyl-1-H-pyrazole-3-carboxamido)-2-oxoethyl)phenyl)acetate, C34H36N4O5
  42. The crystal structure of catena-poly[(m2-4,4′-bipyridine-κ2 N:N)-bis(6-phenylpyridine-2-carboxylato-κ2 N,O) zinc(II)], C34H24N4O4Zn
  43. The crystal structure of hexaquamagnesium(II) (2,4-bis(nitroimino)-6-oxo-1,3,5-triazinane-1,3-diide), C3H15MgN7O12
  44. The crystal structure of 7-Bromo-2-(4-chloro-phenyl)-quinoxaline, C14H9BrClN2
  45. Crystal structure of methyl 4-{[4-(4-cyanobenzamido)phenyl]amino}benzofuro[2,3-d]pyrimidine-6-carboxylate, C26H17N5O4
  46. The crystal structure of (4SR)-7-(3,4-dichlorobenzyl)-4,8,8-trimethyl-7,8-dihydroimidazo[5,1c][1,2,4]triazine-3,6(2H,4H)-dione, C15H16Cl2N4O2
  47. Crystal structure of catena-poly[{μ2-3-carboxy-2,3-bis((4-methylbenzoyl)oxy)propanoato-κ2 O:O′}tris(methanol-κ1 O)lanthanum(III)], C63H63LaO27
Heruntergeladen am 20.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0484/html
Button zum nach oben scrollen