Startseite The crystal structure of 2-(2-methyl-6-phenyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione, C21H14O3
Artikel Open Access

The crystal structure of 2-(2-methyl-6-phenyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione, C21H14O3

  • An-Na Sun , Xiao-Bo Huang und Deng-Ze Wu ORCID logo EMAIL logo
Veröffentlicht/Copyright: 4. Januar 2022

Abstract

C21H14O3, monoclinic, P21/c (no. 14), a = 4.8318(8) Å, b = 26.590(4) Å, c = 11.821(2) Å, β = 91.050(4)°, V = 1518.4(4) Å3, Z = 4, R gt (F) = 0.0401, wR ref (F) = 0.1038, T = 296(2) K.

CCDC no.: 2122345

The molecular structure is shown in the figure (H atoms are omitted for clarity). Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless prismatic
Size: 0.20 × 0.17 × 0.11 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.09 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 25.5°, >99%
N(hkl)measured, N(hkl)unique, R int: 10,546, 2827, 0.036
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 1906
N(param)refined: 219
Programs: Bruker [1], SHELX [2, 3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y Z U iso*/U eq
O1 0.3744 (3) 0.69856 (5) 0.28643 (11) 0.0586 (4)
O2 0.3799 (3) 0.58705 (5) −0.02697 (11) 0.0570 (4)
O3 1.0774 (3) 0.54301 (5) 0.30595 (10) 0.0456 (3)
C1 0.3227 (4) 0.67650 (7) 0.19703 (15) 0.0429 (4)
C2 0.1111 (4) 0.69327 (7) 0.11098 (15) 0.0431 (5)
C3 −0.0723 (4) 0.73308 (7) 0.11287 (18) 0.0541 (5)
H3 −0.0803 0.7543 0.1753 0.065*
C4 −0.2443 (4) 0.74058 (8) 0.0190 (2) 0.0618 (6)
H4 −0.3686 0.7673 0.0186 0.074*
C5 −0.2342 (4) 0.70904 (8) −0.07387 (19) 0.0611 (6)
H5 −0.3503 0.7150 −0.1360 0.073*
C6 −0.0529 (4) 0.66870 (8) −0.07529 (16) 0.0540 (5)
H6 −0.0465 0.6472 −0.1373 0.065*
C7 0.1183 (4) 0.66127 (7) 0.01821 (15) 0.0432 (5)
C8 0.3279 (4) 0.62090 (7) 0.04012 (15) 0.0423 (5)
C9 0.4515 (4) 0.63068 (7) 0.15223 (14) 0.0394 (4)
C10 0.6583 (4) 0.60203 (7) 0.20438 (14) 0.0384 (4)
C11 0.7664 (4) 0.55744 (7) 0.15314 (15) 0.0435 (5)
H11 0.6961 0.5475 0.0829 0.052*
C12 0.9650 (4) 0.52973 (7) 0.20296 (15) 0.0433 (5)
C13 0.9838 (4) 0.58547 (7) 0.35889 (14) 0.0403 (4)
C14 0.7813 (4) 0.61401 (7) 0.31254 (14) 0.0420 (4)
H14 0.7197 0.6421 0.3515 0.050*
C15 1.1289 (4) 0.59319 (7) 0.46811 (14) 0.0417 (4)
C16 1.2577 (4) 0.55315 (8) 0.52314 (16) 0.0553 (5)
H16 1.2550 0.5214 0.4900 0.066*
C17 1.3896 (5) 0.55996 (9) 0.62656 (17) 0.0668 (6)
H17 1.4735 0.5328 0.6628 0.080*
C18 1.3978 (5) 0.60674 (9) 0.67637 (17) 0.0647 (6)
H18 1.4854 0.6112 0.7464 0.078*
C19 1.2755 (5) 0.64668 (9) 0.62188 (17) 0.0659 (6)
H19 1.2823 0.6784 0.6549 0.079*
C20 1.1419 (5) 0.64027 (8) 0.51812 (16) 0.0563 (6)
H20 1.0606 0.6677 0.4819 0.068*
C21 1.0929 (5) 0.48308 (7) 0.15918 (17) 0.0571 (6)
H21A 0.9887 0.4714 0.0945 0.086*
H21B 1.0930 0.4577 0.2170 0.086*
H21C 1.2798 0.4899 0.1377 0.086*

Source of material

The title compound was prepared according to the synthetic method reported in the previous literature [5]. Crystals were obtained by slow evaporation from a mixture of ethyl acetate and ethanol.

Experimental details

H atoms were positioned geometrically and refined using a riding model, with U iso(H) = 1.5 U eq(C) for methyl H atoms and 1.2 U eq(C) for all other H atoms. All the non-hydrogen atoms were refined anisotropically.

Comment

The 4H-pyran unit has been demonstrated to be an excellent building block for constructing various organic fluorescent materials in the field of fluorescence sensors, security systems, and optical information storage [6, 7]. Furthermore, the researchers have also found that the intermolecular interactions and stacking arrangements often exhibit a very important influence on the photophysical properties of the materials [8]. Therefore, the investigation on the crystal structures of 4H-pyran derivatives has received wide attention [9], [10], [11].

In the title structure the 1H-indene-1,3(2H)-dione moiety and the 4H-pyran ring are almost in the same plane. The dihedral angle between the 4H-pyran ring and phenyl ring is determined to be 22.4°. This result indicates that the asymmetric molecule has a twisted molecular conformation, which causes that no obvious π···π interactions are observed. Similar results can be found in previously reported structures of related 4H-pyran derivatives [59, 11]. The molecules are linked by one kind of C20–H20···π (benzene ring) bond with a distance of 3.570 Å and one kind of C21–H21A···O2 hydrogen bond with a distance of 2.484 Å.


Corresponding author: Deng-Ze Wu, College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province 325035, People’s Republic of China, E-mail:

Funding source: Wenzhou University

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was financially supported by Wenzhou University for the publication fee.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SMART and SAINT; Bruker AXS Inc.: Madison, WI, USA, 2007.Suche in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System (ver. 4.0); Crystal Impact: Bonn, Germany, 2015.Suche in Google Scholar

5. Wang, Z., Li, Y., Yuan, D., Qian, L., Li, L., Wu, H., Liu, M., Ding, J., Huang, X. The effect of molecular symmetry on the mechanofluorochromic properties of 4H-pyran derivatives. Dyes Pigments 2019, 162, 203–213; https://doi.org/10.1016/j.dyepig.2018.10.026.Suche in Google Scholar

6. Huang, X., Qian, L., Zhou, Y., Liu, M., Cheng, Y., Wu, H. Effective structural modification of traditional fluorophores to obtain organic mechanofluorochromic molecules. J. Mater. Chem. C 2018, 6, 5075–5096; https://doi.org/10.1039/c8tc00043c.Suche in Google Scholar

7. Liu, Y., Lei, Y., Li, F., Chen, J., Liu, M., Huang, X., Gao, W., Wu, H., Ding, J., Cheng, Y. Indene-1,3-dionemethylene-4H-pyran derivatives containing alkoxy chains of various lengths: aggregation-induced emission enhancement, mechanofluorochromic properties and solvent-induced emission changes. J. Mater. Chem. C 2016, 4, 2862–2870; https://doi.org/10.1039/c5tc02932e.Suche in Google Scholar

8. Wang, C., Li, Z. Molecular conformation and packing: their critical roles in the emission performance of mechanochromic fluorescence materials. Mater. Chem. Front. 2017, 1, 2174–2194; https://doi.org/10.1039/c7qm00201g.Suche in Google Scholar

9. Qian, L., Zhou, Y., Liu, M., Huang, X., Wu, G., Gao, W., Ding, J., Wu, H. Mechanofluorochromic properties of fluorescent molecules based on a dicyanomethylene-4H-pyran and indole isomer containing different alkyl chains via an alkene module. RSC Adv. 2017, 7, 42180–42191; https://doi.org/10.1039/c7ra06951k.Suche in Google Scholar

10. Wang, W., Li, R., Xiao, S., Xing, Q., Yan, X., Zhang, J., Zhang, X., Lan, H., Yi, T. Design of high-contrast mechanochromic materials based on aggregation- induced emissive pyran derivatives guided by polymorph predictions. CCS Chem. 2021, 3, 1587–1597.10.31635/ccschem.021.202100885Suche in Google Scholar

11. Wang, Z., Wang, M., Peng, J., Xie, Y., Liu, M., Gao, W., Zhou, Y., Huang, X., Wu, H. Polymorphism and multicolor mechanofluorochromism of a D-π-A asymmetric 4H-pyran derivative with aggregation-induced emission property. J. Phys. Chem. C 2019, 123, 27742–27751; https://doi.org/10.1021/acs.jpcc.9b06912.Suche in Google Scholar

Received: 2021-11-19
Accepted: 2021-12-14
Published Online: 2022-01-04
Published in Print: 2022-04-26

© 2021 An-Na Sun et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of {2,2′-{cyclohexane-1,2-diylbis[(azanylylidene)methylylidene]}bis(2,4-dibromophenolato)-κ4 N,N′,O,O′}copper(II) ─ diethylformamide (1/1), C23H23Br4CuN3O3
  4. The crystal structure of 2-(2-methyl-6-phenyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione, C21H14O3
  5. Crystal structure of bis((1-methylbenzimidazol-2-yl)methyl)amine, C18H19N5
  6. Crystal structure of (E)-N′-(1-(2-hydroxy-4-methoxyphenyl)ethylidene) isonicotinohydrazide, C15H15N3O3
  7. Crystal structure of 2-((4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)thio)acetonitrile, C15H11N5S
  8. The crystal structure of 2,2′-((1E,1′E)-hydrazine-1,2-diylidenebis(methaneylylidene))bis(4-chlorophenol), C14H10Cl2N2O2
  9. Dichlorido-{2,6-bis(4,5-dihydro-1H-pyrazol-3-yl)pyridine-κ3 N,N′,N″}zinc(II), C11H9C12N5Zn
  10. The crystal structure of dichlorido-(2-((4-phenyl-2H-1,2,3-triazol-2-yl)methyl)pyridine-κ2N,N′)palladium(II), C14H12Cl2N4Pd
  11. The crystal structure of 1-(N1-benzyl-2-methyl-4-nitro-imidazol-5-yl)-4-(prop-2-yn-1-yl) piperazine, C18H21N5O2
  12. Crystal structure of (μ4-(1,2,4,5-tetra(1,2,4-triazol-1-ylmethyl)-benzene-κ4N:N1:N2:N3)disilver(I) diperchlorate
  13. The crystal structure of 1-(2-bromoethane)-4-amine-3,5-dinitropyrazole, C5H6Br1N5O4
  14. Crystal structure of (E)-1-(4-benzyl-3,5-dioxomorpholin-2-ylidene)ethyl acetate, C15H15N1O5
  15. The crystal structure of poly[diaqua-(μ2-1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ2N:N′)-bis(μ3-terephthalato-κ3O:O′:O′′)dicadmium(II)], C17H15N6O5Cd
  16. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)thiophene-2-carbohydrazide, C13H11ClN2O2S
  17. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylato-k2 N,O)cobalt(II)]-monohydrate, C36H26N4O5Co
  18. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-3-hydroxybenzo-hydrazide monohydrate, C14H13ClN2O4
  19. Crystal structure of 1,1′-(methylene)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C42H30N14Ni2S8
  20. Crystal structure of 1,1′-(1,2-ethanediyl)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S)nickel(II), C20H14N6NiS4
  21. The crystal structure of 1-methyl-1H-pyrazol-2-ium nitrate, C4H7O3N3
  22. The crystal structure of 4,4′-diselanediylbis(8-(hexyloxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile), C46H60N6O2Se2
  23. The crystal structure of tris(6-methylpyridin-2-yl)phosphine selenide, C18H18N3PSe
  24. The crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane ─ acetone (1/1), C11H12N8O9
  25. Crystal structure of [diaqua[2,2′-(1,2-phenylene)bis(1H-imidazole-4-carboxylato-5-carboxy)-κ4N,N′,O,O′]nickel(II)] tetrahydrate, C16H12N4NiO10·4H2O
  26. The crystal structure of tris(4-methyl-1H-pyrazol-1-yl)methane, C13H16N6
  27. The crystal structure of 5,6-dichloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H8Cl2N2O2
  28. Crystal structure of (E)-(2-methoxy-benzylidene)-(4-[1,2,4]triazol-1-yl-phenyl)-amine, C16H14N4O
  29. The crystal structure of (Z)-2-(4-(4-bromophenyl)thiazol-2-yl)-4-(3-hydroxybut-2-enoyl)-5-methyl -1,2-dihydro-3H-pyrazol-3-one – methanol (1/1), C18H18N3O4S
  30. Crystal structure of tetraaqua-tris(nitrato-κ2 O,O′) erbium(III) monohydrate, Er(NO3)3·5H2O, H10ErN3O14
  31. The crystal structure of 1-methyl-2-nitro-1H-imidazole 3-oxide, C4H5N3O3
  32. The crystal structure of 1-methyl-2-nitroimidazole, C4H5N3O2
  33. The crystal structure of 2-carboxyl-4-nitroimidazole monohydrate, C4H5N3O5
  34. Crystal structure of bis[hydrido-hexaphenylcarbodiphosphoran][tetra-trifluoromethyl-(μ-diiodo)-diplatinat]
  35. The crystal structure of poly[μ2-aqua- aqua-(μ3-(E)-2-(4-((2-carbamothioylhydrazineylidene)methyl)phenoxy)acetato-κ3 O:S:S)sodium(I)], C10H14N3O5SNa
  36. The twinned crystal structure of [4,4′-bipyridine]-1,1′-diium hexachloridostannate(IV), C10H10N2SnCl6
  37. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylate-k2 N,O)copper(II)], C34H24N4O4Cu
  38. Crystal structure of trans-1,2-bis(pyridinium-4-yl) ethylene bis(2-carboxy-4-bromobenzoate) – water (1/4), C14H14BrNO6
  39. Crystal structure of poly[diaqua-(μ3-fumarato)-(μ3-maleato)-(μ4-1,2,4,5-tetrakis((1H-1,2,4-triazol-1-yl)methyl)benzene)tetracadmium(II)] dihydrate, C34H32N12O9Cd4
  40. Crystal structure of a second modification of Pachypodol, C18H16O7
  41. Crystal structure of methyl 2-(4-(2-(cyclopentyl-amino)-1-(N-(4-methoxyphenyl)-1-methyl-5-phenyl-1-H-pyrazole-3-carboxamido)-2-oxoethyl)phenyl)acetate, C34H36N4O5
  42. The crystal structure of catena-poly[(m2-4,4′-bipyridine-κ2 N:N)-bis(6-phenylpyridine-2-carboxylato-κ2 N,O) zinc(II)], C34H24N4O4Zn
  43. The crystal structure of hexaquamagnesium(II) (2,4-bis(nitroimino)-6-oxo-1,3,5-triazinane-1,3-diide), C3H15MgN7O12
  44. The crystal structure of 7-Bromo-2-(4-chloro-phenyl)-quinoxaline, C14H9BrClN2
  45. Crystal structure of methyl 4-{[4-(4-cyanobenzamido)phenyl]amino}benzofuro[2,3-d]pyrimidine-6-carboxylate, C26H17N5O4
  46. The crystal structure of (4SR)-7-(3,4-dichlorobenzyl)-4,8,8-trimethyl-7,8-dihydroimidazo[5,1c][1,2,4]triazine-3,6(2H,4H)-dione, C15H16Cl2N4O2
  47. Crystal structure of catena-poly[{μ2-3-carboxy-2,3-bis((4-methylbenzoyl)oxy)propanoato-κ2 O:O′}tris(methanol-κ1 O)lanthanum(III)], C63H63LaO27
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0442/html
Button zum nach oben scrollen