Startseite From single to collective dislocation glide instabilities: A hierarchy of scales, embracing the Neumann strain bursts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

From single to collective dislocation glide instabilities: A hierarchy of scales, embracing the Neumann strain bursts

  • Haël Mughrabi EMAIL logo
Veröffentlicht/Copyright: 14. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Instabilities of dislocation glide in monotonic and in cyclic deformation, ranging in scale from ca. 10 nm to millimetres and from single dislocation to collective dislocation events, are reviewed briefly. Interest is focussed on collective dislocation instabilities, correlated in time and space, which manifest themselves in specific features of the macroscopic stress– strain behaviour. An outstanding example of such collective correlated dislocation behaviour, namely the Neumann strain bursts which occur in cyclically deformed single crystals, when the stress amplitude is increased slowly, is then considered in more detail. All glide instabilities discussed can be ranked in a hierarchy of scales, reflecting the transition from microscopic small-scale single dislocation events to mesoscopic and to macroscopic large-scale collective dislocation events. While most collective large-scale glide instabilities in cyclic deformation are confined to sites of cyclic strain localization, the Neumann strain bursts are singular in the sense that, once triggered, they propagate throughout the whole volume in a strictly correlated synchronized fashion.


Dedicated to Professor Dr. Peter Neumann on the occasion of his 65th birthday

Prof. i. R. Dr. Hael Mughrabi Institut für Werkstoffwissenschaften, LS I Universität Erlangen –Nürnberg, Martensstr. 5, D-91058 Germany Tel.: +49 9131 852 7482 Fax: +49 9131 852 7504

References

[1] A. Seeger, in: J.C. Fisher, W.G. Johnston, R. Thomson, T. Vreeland (Eds.), Dislocations and Mechanical Properties of Crystals, John Wiley, New York (1957) 243.Suche in Google Scholar

[2] U. Essmann: Phys. Stat. Sol. 12 (1965) 707.10.1002/pssb.19650120218Suche in Google Scholar

[3] J.W. Steeds: Proc. Roy. Soc. A 292 (1966) 343.10.1098/rspa.1966.0139Suche in Google Scholar

[4] S. Mader: Z. Phys. 149 (1957) 73.10.1007/BF01325693Suche in Google Scholar

[5] A. Seeger, J. Diehl, S. Mader, H. Rebstock: Phil. Mag. 2 (1957) 323.10.1080/14786435708243823Suche in Google Scholar

[6] H. Mughrabi, in: A.S. Argon (Ed.), Constitutive Equations in Plasticity, The MIT Press, Cambridge, Massachusetts, and London, England (1975) 199.Suche in Google Scholar

[7] U.F. Kocks: Phil. Mag. 13 (1966) 541.10.1080/14786436608212647Suche in Google Scholar

[8] S.J. Basinski, Z.S. Basinski, A. Howie: Phil. Mag. 19 (1969) 899.10.1080/14786436908225856Suche in Google Scholar

[9] P.J. Woods: Phil. Mag. 28 (1973) 155.10.1080/14786437308217440Suche in Google Scholar

[10] J.C. Grosskreutz, H. Mughrabi, in: A.S. Argon (Ed.), Constitutive Equations in Plasticity, The MIT Press, Cambridge, Massachusetts, and London, England (1975) 251.Suche in Google Scholar

[11] H. Mughrabi, F. Ackermann, K. Herz, in: J.T. Fong (Ed.), Fatigue Mechanisms, Proceedings of an ASTM-NBS-NSF Symposium, ASTM STP 675, American Society for Testing and Materials, Philadelphia (1979) 69.Suche in Google Scholar

[12] K. Mecke, C. Blochwitz: Crystal Res. & Technol. 17 (1982) 743.10.1002/crat.2170170610Suche in Google Scholar

[13] J. Bretschneider, C. Holste, B. Tippelt: Acta mater. 45 (1997) 3775.10.1016/S1359-6454(97)00030-XSuche in Google Scholar

[14] P. Neumann: Z. Metallkd. 59 (1968) 927.10.1515/ijmr-1968-591208Suche in Google Scholar

[15] R. Neumann, P. Neumann: Scripta metall. 4 (1970) 645.10.1016/0036-9748(70)90164-XSuche in Google Scholar

[16] A.T. Winter, O.B. Pedersen, K.V. Rasmussen: Acta metall. 29 (1981) 735.10.1016/0001-6160(81)90117-6Suche in Google Scholar

[17] S.R. Agnew, J.R. Weertman: Mater. Sci. Eng. A 244 (1998) 145.10.1016/S0921-5093(97)00689-8Suche in Google Scholar

[18] A. Vinogradov, Y. Kaneko, K. Kitagawa, S. Hashimoto, R.Z. Valiev: Materials Science Forum 269–272 (1998) 987.10.4028/www.scientific.net/MSF.269-272.987Suche in Google Scholar

[19] H. Mughrabi, in: T.C. Lowe, R.Z. Valiev (Eds.), Investigations and Applications of Severe Plastic Deformation, Kluwer Academic Publishers, Dordrecht/Boston/London (2000) 241.10.1007/978-94-011-4062-1_31Suche in Google Scholar

[20] P. Neumann, in: A.S. Argon (Ed.), Constitutive Equations in Plasticity, The MIT Press, Cambridge, Massachusetts, and London, England (1975) 449.Suche in Google Scholar

[21] G. Kralik, H. Mughrabi, in: Proceedings of Third International Conference on the Strength of Metals and Alloys (ICSMA 3), Vol. 1, Cambridge, England (1973) 410.Suche in Google Scholar

[22] P. Neumann: Acta metall. 19 (1971) 1233.10.1016/0001-6160(71)90057-5Suche in Google Scholar

[23] P.M. Hazzledine: Scripta metall. 5 (1971) 847.10.1016/0036-9748(71)90056-1Suche in Google Scholar

Received: 2004-01-05
Accepted: 2004-02-16
Published Online: 2022-02-14

© 2004 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Thermally assisted motion of dislocations in solid solution-strengthened fcc alloys and the concept of “stress equivalence”
  6. From single to collective dislocation glide instabilities: A hierarchy of scales, embracing the Neumann strain bursts
  7. Geometry and surface state effects on the mechanical response of Au nanostructures
  8. Microstructural evolution and its effect on the mechanical properties of Cu–Ag microcomposites
  9. Deformation behaviour of strontium titanate between room temperature and 1800 K under ambient pressure
  10. The deformation response of ultra-thin polymer films on steel sheet in a tensile straining test: the role of slip bands emerging at the polymer/metal interface
  11. Influence of dissolved gas molecules on the size recovery kinetics of cold-rolled BPA-PC
  12. Comparison between Monte Carlo and Cluster Variation method calculations in the BCC Fe–Al system including tetrahedron interactions
  13. Experimental study and Cluster Variation modelling of the A2/B2 equilibria at the titanium-rich side of the Ti–Fe system
  14. Phases and phase equilibria in the Fe–Al–Zr system
  15. On the plate-like τ-phase formation in MnAl–C alloys
  16. Articles Applied
  17. The grain boundary hardness in austenitic stainless steels studied by nanoindentations
  18. The effect of grain size on the mechanical properties of nanonickel examined by nanoindentation
  19. Microstructures and mechanical properties of V–V3Si eutectic composites
  20. Grain boundary characterization and grain size measurement in an ultrafine-grained steel
  21. On the determination of the volume fraction of Ni4Ti3 precipitates in binary Ni-rich NiTi shape memory alloys
  22. Mechanical properties of NiAl–Cr alloys in relation to microstructure and atomic defects
  23. Characterization of the cyclic deformation behaviour and fatigue crack initiation on titanium in physiological media by electrochemical techniques
  24. Effect of prestraining on high-temperature fatigue behaviour of two Ni-base superalloys
  25. Influence of surface defects and edge geometry on the bending strength of slip-cast ZrO2 micro-specimens
  26. Tensile failure in a superplastic alumina
  27. Notifications/Mitteilungen
  28. Personal/Personelles
  29. Conferences/Konferenzen
Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2004-0088/html
Button zum nach oben scrollen