Home Deformation behaviour of strontium titanate between room temperature and 1800 K under ambient pressure
Article
Licensed
Unlicensed Requires Authentication

Deformation behaviour of strontium titanate between room temperature and 1800 K under ambient pressure

  • S. Taeri , D. Brunner , W. Sigle EMAIL logo and M. Rühle
Published/Copyright: February 14, 2022
Become an author with De Gruyter Brill

Abstract

SrTiO3 was plastically deformed in compression along different crystal axes between room temperature and 1800 K. Data obtained from deformation experiments as well as from light optical and electron optical studies are presented. Irrespective of the compression axis orientation, the material exhibits a strongly pronounced ductile-to-brittle-to-ductile behaviour. For the <100> compression axis the slip system <110>{110} is active both at low and high temperatures. For compression axes other than <100> the <110>{110} system is active only at low temperatures whereas at high temperatures the <100>{110} system dominates. This behaviour is discussed in terms of dislocation core structures.


Dedicated to Professor Dr. Peter Neumann on the occasion of his 65th birthday

Dr. Wilfried Sigle Max-Planck-Institut für Metallforschung Heisenbergstraße 3 D-70569 Stuttgart Tel.: +49 711 689 3525 Fax: +49 711 689 3522

  1. We would like to thank M. Sycha and U. Salzberger for their help in TEM specimen preparation, Dr. E. Bischoff, H. Opielka, G. Kiessler and S. Kühnemann for the support of the light microscopy studies, and H. Wendel and A. Zechmeister for specimen preparation for deformation tests.

References

[1] W.D. Kingery, H.K. Bowen, D.R. Uhlmann, in: Introduction to Ceramics, 2nd edition, John Wiley & Sons, New York (1975).Search in Google Scholar

[2] T. Bretheau, J. Castaing, J. Rabier , P. Veyssière: Advances in Physics 28 (1979) 835.10.1080/00018737900101465Search in Google Scholar

[3] T.E. Mitchell, A.H. Heuer: submitted to Dislocations in Solids.Search in Google Scholar

[4] F. Appel, M. Bartsch, U. Messerschmidt, E.M. Nadgorny, S.N. Valkovskii: Phys. stat. sol. (a) 3 (1984) 179.10.1002/pssa.2210830120Search in Google Scholar

[5] C.O. Hulse, S.M. Copley, J.A. Pask: J. Am. Ceram. Soc. 46 (1963) 317.10.1111/j.1151-2916.1963.tb11738.xSearch in Google Scholar

[6] J.-P. Poirier, S. Beauchesne, F. Guyot, in: A. Navrotsky, D.J. Weidner (Eds.), Geophysical Monograph No. 45, American Geophysical Union (1989) 119.Search in Google Scholar

[7] W. Heywang: J. Am. Ceram. Soc. 47 (1964) 484.10.1111/j.1151-2916.1964.tb13795.xSearch in Google Scholar

[8] A. Kingon, E.R. Myers, B. Tuttle: Ferroelectric Thin Films II, MRS Symposia Proceedings No. 243, Materials Research Society, Pittsburgh (1991).Search in Google Scholar

[9] Y.-M. Chiang, D.P. Birnie, W.D. Kingery: Electro Ceramics, Wiley, New York (1997).Search in Google Scholar

[10] F.W. Lytle: J.Appl. Phys. 35 (1964) 2212.10.1063/1.1702820Search in Google Scholar

[11] E.K.H. Salje, M.C. Gallardo, J. Jimenez, F.J. Romero, J. del Cerro: J. Phys. Cond. Matter 10 (1998) 5535.10.1088/0953-8984/10/25/006Search in Google Scholar

[12] H. Koizumi, S. Katakura, T. Suzuki, T. Yamamoto, T. Sakuma, in: H. Oikawa, K. Maruyama, S. Takeuchi, M. Yamaguchi (Eds.), Proc. 10th Intern. Conf. Strength of Materials (ICSMA-10), Sendai, The Japan Institute of Metals (1994) 737.Search in Google Scholar

[13] D. Brunner, S. Taeri-Baghbadrani, W. Sigle, M. Rühle: J. Am. Ceram. Soc. 84 (2001) 1161.10.1111/j.1151-2916.2001.tb00805.xSearch in Google Scholar

[14] P. Gumbsch, S. Taeri-Baghbadrani, D. Brunner, W. Sigle, M. Rühle: Phys. Rev. Lett. 87 (2001) 085505–1.10.1103/PhysRevLett.87.085505Search in Google Scholar PubMed

[15] S. Takeuchi, K. Suzuki, M. Ichihara, T. Suzuki, in: S. Takeuchi & T. Suzuki (Eds.), Lattice Defects in Ceramics, Tokyo, Jap. J. Appl. Phys. 2 (1989) 17.Search in Google Scholar

[16] J. Nishigaki, K. Kuroda, H. Saka: Phys. stat. sol. (a) 128 (1991) 319.10.1002/pssa.2211280207Search in Google Scholar

[17] Z. Mao, K.M. Knowles: Phil. Mag. A 73 (1996) 699.10.1080/01418619608242991Search in Google Scholar

[18] S. Taeri-Baghbadrani: Ph. D. Thesis, University Stuttgart (2002).Search in Google Scholar

[19] G. Schoeck: Phys. stat. sol. 8 (1965) 499.10.1002/pssb.19650080209Search in Google Scholar

[20] W. Skrotzki: Ph. D. Thesis, University of Göttingen (1980).Search in Google Scholar

[21] W. Skrotzki, P. Haasen: Journal de Physique, Colloque C3, Suppl. No. 6, C3 (1981) 119.10.1051/jphyscol:1981312Search in Google Scholar

[22] A. Seeger: Phil. Mag. 45 (1954) 771.10.1080/14786440708520489Search in Google Scholar

[23] D. Brunner, J. Diehl: Phys.stat.sol. (a) 124 (1991) 155.10.1002/pssa.2211240114Search in Google Scholar

[24] L. Hollang, in: Y. Waseda, M. Isshiki (Eds.), Purification Process and Characterization of Ultra High Purity Metals, Springer, Heidelberg (2001) 305.10.1007/978-3-642-56255-6_11Search in Google Scholar

[25] D. Brunner, D. Plachke, H.-D. Carstanjen: Phys. stat. sol. (a) 177 (2000) 203.10.1002/(SICI)1521-396X(200001)177:1<203::AID-PSSA203>3.0.CO;2-KSearch in Google Scholar

[26] D. Brunner, P. Gumbsch: Z. Metallkd.93 (2002) 672.10.3139/146.020672Search in Google Scholar

[27] F. Giu, P.L. Pratt: Phys. stat. sol. 6 (1964) 111.10.1002/pssb.19640060108Search in Google Scholar

[28] J.W. Steeds: Proc. Roy. Soc. A 292 (1966) 343.10.1098/rspa.1966.0139Search in Google Scholar

[29] D. Brunner: to be submitted.Search in Google Scholar

[30] M. Bartsch: Private communication.Search in Google Scholar

[30] A.H. Cottrell: Dislocations and plastic flow in Crystals. Oxford: Clarendon Press 1953Search in Google Scholar

[31] Z. Zhang, W. Sigle, M. Rühle: Phys. Rev. B 66 (2002) 214112.10.1103/PhysRevB.66.214112Search in Google Scholar

[32] Z. Zhang, W. Sigle, M. Rühle: Phys. Rev. B 66 (2002) 094108.10.1103/PhysRevB.66.094108Search in Google Scholar

[33] F.R.N. Nabarro: Proc. Phys. Soc. 59 (1947) 256.10.1088/0959-5309/59/2/309Search in Google Scholar

[34] R.A. De Souza, J. Fleig, J. Maier, O. Kienzle, Z. Zhang, W. Sigle, M. Rühle: J. Am. Ceram. Soc. 86 (2003) 922.10.1111/j.1151-2916.2003.tb03398.xSearch in Google Scholar

Received: 2004-02-03
Accepted: 2004-03-04
Published Online: 2022-02-14

© 2004 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Thermally assisted motion of dislocations in solid solution-strengthened fcc alloys and the concept of “stress equivalence”
  6. From single to collective dislocation glide instabilities: A hierarchy of scales, embracing the Neumann strain bursts
  7. Geometry and surface state effects on the mechanical response of Au nanostructures
  8. Microstructural evolution and its effect on the mechanical properties of Cu–Ag microcomposites
  9. Deformation behaviour of strontium titanate between room temperature and 1800 K under ambient pressure
  10. The deformation response of ultra-thin polymer films on steel sheet in a tensile straining test: the role of slip bands emerging at the polymer/metal interface
  11. Influence of dissolved gas molecules on the size recovery kinetics of cold-rolled BPA-PC
  12. Comparison between Monte Carlo and Cluster Variation method calculations in the BCC Fe–Al system including tetrahedron interactions
  13. Experimental study and Cluster Variation modelling of the A2/B2 equilibria at the titanium-rich side of the Ti–Fe system
  14. Phases and phase equilibria in the Fe–Al–Zr system
  15. On the plate-like τ-phase formation in MnAl–C alloys
  16. Articles Applied
  17. The grain boundary hardness in austenitic stainless steels studied by nanoindentations
  18. The effect of grain size on the mechanical properties of nanonickel examined by nanoindentation
  19. Microstructures and mechanical properties of V–V3Si eutectic composites
  20. Grain boundary characterization and grain size measurement in an ultrafine-grained steel
  21. On the determination of the volume fraction of Ni4Ti3 precipitates in binary Ni-rich NiTi shape memory alloys
  22. Mechanical properties of NiAl–Cr alloys in relation to microstructure and atomic defects
  23. Characterization of the cyclic deformation behaviour and fatigue crack initiation on titanium in physiological media by electrochemical techniques
  24. Effect of prestraining on high-temperature fatigue behaviour of two Ni-base superalloys
  25. Influence of surface defects and edge geometry on the bending strength of slip-cast ZrO2 micro-specimens
  26. Tensile failure in a superplastic alumina
  27. Notifications/Mitteilungen
  28. Personal/Personelles
  29. Conferences/Konferenzen
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2004-0091/html
Scroll to top button