Home Phases and phase equilibria in the Fe–Al–Zr system
Article
Licensed
Unlicensed Requires Authentication

Phases and phase equilibria in the Fe–Al–Zr system

  • F. Stein EMAIL logo , G. Sauthoff and M. Palm
Published/Copyright: February 14, 2022
Become an author with De Gruyter Brill

Abstract

Isothermal sections at 800, 1000, and 1150 °C as well as a tentative partial liquidus surface of the ternary Fe–Al–Zr system were established by means of electron-probe microanalysis, X-ray diffraction, differential thermal analysis, and light-optical as well as scanning electron microscopy. The most prominent features of the ternary phase diagram are the extended homogeneity ranges of the Laves phases. By continuous substitution of Fe by Al, the structure changes three times starting from the cubic C15 structure of Fe2Zr to hexagonal C14 (λ1) back to cubic C15 (λ2) and again to hexagonal C14 (Al2Zr). The various Laves phase fields are separated by very small two-phase fields. Besides the Laves phases λ1 and λ2, three more ternary intermetallic phases were found, whose homogeneity ranges have been determined for the first time. In addition, new results concerning the homogeneity ranges of intermetallic phases in the binary subsystems Fe–Al and Al–Zr are reported. The solubilities of the third components in the binary phases are found to be generally very low with the exception of the Laves phases. As a consequence, extended two-phase fields between the Fe(Al) solid solution and Laves phase or between Fe(Al) solid solution and the ternary ThMn12-type phase τ1 are formed.


Dr. Frank Stein Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Str. 1, D-40237 Düsseldorf, Germany Tel.: +49 211 6792 557 Fax: +49 211 6792 537

Dedicated to Professor Dr. Peter Neumann on the occasion of his 65th birthday


  1. The authors would like to thank Mrs. H. Bögershausen, Mr. R. Staegemann, Mr. G. Bialkowski, Mr. T. Schildheuer, and Mr. U. Wellms for their help in the metallographic investigations, preparation of alloys, specimen preparation and heat treatments, DTA measurements, and EPMA analyses, respectively. The financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

[1] G. Sauthoff: Intermetallics, VCH, Weinheim, Germany (1995).10.1002/9783527615414Search in Google Scholar

[2] L. Machon, G. Sauthoff: Intermetallics 4 (1996) 469.10.1016/0966-9795(96)00023-4Search in Google Scholar

[3] G. Sauthoff: Intermetallics 8 (2000) 1101.10.1016/S0966-9795(00)00045-5Search in Google Scholar

[4] M.P. Brady, B.A. Pint, P.F. Tortorelli, I.G. Wright, R.J. Hanrahan Jr., in: R.W. Cahn, P. Haasen, E.J. Kramer: Materials Science and Technology Vol. 2,Wiley-VCH,Weinheim, Germany (2000) 229.10.1002/9783527619306.ch15Search in Google Scholar

[5] K. Natesan: Mater. Sci. Eng. A 258 (1998) 126.10.1016/S0921-5093(98)00925-3Search in Google Scholar

[6] P.F. Tortorelli, K. Natesan: Mater. Sci. Eng. A 258 (1998) 115.10.1016/S0921-5093(98)00924-1Search in Google Scholar

[7] Z.M. Alekseeva, in: G. Petzow, G. Effenberg (Eds.), Ternary Alloys, Vol. 5, VCH, Weinheim, Germany (1992) 524.Search in Google Scholar

[8] P. Villars, A. Prince, H. Okamoto: Handbook of Ternary Alloy Phase Diagrams, ASM International, Materials Park, OH, USA (1995) 3672.Search in Google Scholar

[9] V. Raghavan: Phase Diagrams of Ternary Iron Alloys, Vol. 6A, Indian Intitute of Metals, Calcutta, India (1992) 224.Search in Google Scholar

[10] V. Raghavan: J. Phase Equilibria 24 (2003) 350.10.1361/105497103770330352Search in Google Scholar

[11] V.V. Burnashova, V.Ya. Markiv: Dopov. Akad. Nauk Ukr. RSR Ser. A 1969 (1969) 351.Search in Google Scholar

[12] V.Ya. Markiv, P.I. Kripyakevich: Sov. Phys. Crystallogr. 11 (1967) 733.Search in Google Scholar

[13] P.I. Kripyakevich, V.V. Burnashova, V.Ya. Markiv: Dopov. Akad. Nauk Ukr. RSR Ser. A 1970 (1970) 828.Search in Google Scholar

[14] T.I. Yanson, M.B. Manyako, O.I. Bodak, R. Cerny, J.V. Pacheco, K. Yvon: Z. Kristallogr. – New Cryst. Struct. 212 (1997) 504.10.1524/ncrs.1997.212.1.504Search in Google Scholar

[15] N.M. Gruzdeva, T.N. Zagorskaya, I.I. Raevskii: Fiz. Khim. Splavov Tsirkoniya, Nauka, Moscow (1968) 5.Search in Google Scholar

[16] J.H. Schneibel, W.D. Porter: Mater. Res. Soc. Symp. Proc. 133 (1989) 335.10.1557/PROC-133-335Search in Google Scholar

[17] K.S. Kumar: Int. Mater. Rev. 35 (1990) 293.10.1179/095066090790324037Search in Google Scholar

[18] C.J. Sparks, W.D. Porter, J.H. Schneibel, W.C. Oliver, C.G. Golec: Mater. Res. Soc. Symp. Proc. 186 (1991) 175.10.1557/PROC-186-175Search in Google Scholar

[19] A. Raman: Z. Metallkd. 57 (1966) 535.10.1515/ijmr-1966-570707Search in Google Scholar

[20] K.I. Moon, S.C. Kim, K.S. Lee: Intermetallics 10 (2002) 185.10.1016/S0966-9795(01)00126-1Search in Google Scholar

[21] I.S. Virk, R.A. Varin: Scr. Metall. Mater. 25 (1991) 85.10.1016/0956-716X(91)90358-8Search in Google Scholar

[22] P.B. Desch, R.B. Schwarz, P. Nash: J. Less-Common Met. 168 (1991) 69.10.1016/0022-5088(91)90035-3Search in Google Scholar

[23] G. Athanassiadis, M. Dirand, L. Rimlinger: C. R. Acad. Sci. Sér. C 277 (1973) 915.Search in Google Scholar

[24] C.C. Cheng, W.E. King, M.J. McNallan: Acta Metall. 37 (1989) 3399.10.1016/0001-6160(89)90212-5Search in Google Scholar

[25] F. Stein, M. Palm, G. Sauthoff, in: R. Kopp, K. Herfurth, D. Böhme, R. Bormann, E. Arzt, H. Riedel (Eds.), Werkstoffwoche ’98, Vol. VI, Wiley-VCH, Weinheim, Germany (1999) 515.Search in Google Scholar

[26] J.L. Pouchou, F. Pichoir: La Recherche Aerospatiale 1984-3 (1984) 13.Search in Google Scholar

[27] G.W.H. Höhne: J. Thermal Anal. 37 (1991) 1981.10.1007/BF01912232Search in Google Scholar

[28] G.W.H. Höhne, H.K. Cammenga, W. Eysel, E. Gmelin, W. Hemminger: Thermochim. Acta 160 (1990) 1.10.1016/0040-6031(90)80235-QSearch in Google Scholar

[29] E. Gmelin, S.M. Sarge: Pure Appl. Chem. 67 (1995) 1789.10.1351/pac199567111789Search in Google Scholar

[30] E.M. Sokolovskaya, E.F. Kazakova, E.V. Grigorovich, I.N. Matveev: Moscow Univ. Chem. Bull. 46 No. 5 (1991) 57.Search in Google Scholar

[31] U.R. Kattner, in: T. B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, USA (1990) 147.Search in Google Scholar

[32] O. Kubaschewski: Iron – Binary Phase Diagrams, Springer-Verlag, Berlin, Germany (1982) 5.Search in Google Scholar

[33] P. Villars, L.D. Calvert: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., ASM International, Materials Park, OH, USA (1991).Search in Google Scholar

[34] F. Stein, G. Sauthoff, M. Palm: J. Phase Equilibria 23 (2002) 480.10.1361/105497102770331172Search in Google Scholar

[35] T. Wang, Zh. Jin, J.-C. Zhao: J. Phase Equilibria 22 (2001) 544.10.1007/s12385-001-0072-4Search in Google Scholar

[36] H. Okamoto: J. Phase Equilibria 23 (2002) 455.10.1361/105497102770331497Search in Google Scholar

[37] R.J. Kematick, H.F. Franzen: J. Solid State Chem. 54 (1984) 226.10.1016/0022-4596(84)90150-6Search in Google Scholar

[38] S.-J. Kim, R.J. Kematick, S.S. Yi, H.F. Franzen: J. Less-Common Met. 137 (1988) 55.10.1016/0022-5088(88)90075-6Search in Google Scholar

[39] A. Peruzzi: J. Nucl. Mater. 186 (1992) 89.10.1016/0022-3115(92)90326-GSearch in Google Scholar

[40] A. Wasilkowska, M. Bartsch, F. Stein, M. Palm, K. Sztwiertnia, G. Sauthoff, U. Messerschmidt: submitted to Mater. Sci. Eng. A (2004)Search in Google Scholar

[41] R. Grössinger, G. Hilscher, G. Wiesinger: J. Magn. Magn. Mater. 23 (1981) 47.10.1016/0304-8853(81)90067-6Search in Google Scholar

[42] I. Jacob, D. Shaltiel: Solid State Commun. 27 (1978) 175.10.1016/0038-1098(78)90826-8Search in Google Scholar

[43] A. Grytsiv, J.J. Ding, P. Rogl, F.Weill, B. Chevalier, J. Etourneau, G. Andre, F. Bouree, H. Noel, P. Hundegger, G. Wiesinger: Intermetallics 11 (2003) 351.10.1016/S0966-9795(02)00267-4Search in Google Scholar

[44] J.J. Ding, P. Rogl, B. Chevalier, J. Etourneau: Intermetallics 8 (2000) 1377.10.1016/S0966-9795(00)00067-4Search in Google Scholar

[45] X.-A. Chen, W. Jeitschko, M.H. Gerdes: J. Alloys Compd. 234 (1996) 12.10.1016/0925-8388(95)01967-7Search in Google Scholar

[46] R. Meyer zu Reckendorf, P.C. Schmidt, A. Weiss: J. Less-Common Met. 159 (1990) 291.10.1016/0022-5088(90)90156-ESearch in Google Scholar

[47] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii: TYPIX – Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Vol. 1 and 2, Gmelin Handbook of Inorganic Chemistry, Springer-Verlag, Berlin, Germany (1993).10.1007/978-3-662-02909-1_1Search in Google Scholar

[48] P.M. De Wolff, N.V. Belov, E.F. Bertaut, M.J. Bürger, J.D.H. Donnay, W. Fischer, T. Hahn, V.A. Koptsik, A.L. Mackay, H. Wondratschek, A.J.C. Wilson, S.C. Abrahams: Acta Crystallogr. A 41 (1985) 278.10.1107/S0108767385000587Search in Google Scholar

[49] M. Palm: J. Alloys Compd. 252 (1997) 192.10.1016/S0925-8388(96)02719-3Search in Google Scholar

[50] M. Eumann: Phasengleichgewichte und mechanisches Verhalten im ternären Legierungssystem Fe–Al–Mo, Thesis, Shaker-Verlag, Aachen, Germany (2002).Search in Google Scholar

[51] R. Ducher, F. Stein, B. Viguier, M. Palm, J. Lacaze: Z. Metalkd. 94 (2003) 396.10.3139/146.030396Search in Google Scholar

[52] H. Thomas: Z. Metallkd. 41 (1950) 185.10.1515/ijmr-1950-410605Search in Google Scholar

[53] R.N. Corby, P.J. Black: Acta Crystallogr. B 29 (1973) 2669.10.1107/S056774087300734XSearch in Google Scholar

[54] K. Schubert, U. Rösler, M. Kluge, K. Anderko, L. Härle: Naturwissenschaften 40 (1953) 437.10.1007/BF00820424Search in Google Scholar

[55] P.J. Black: Acta Crystallogr. 8 (1955) 43.10.1107/S0365110X5500011XSearch in Google Scholar

[56] G. Brauer: Z. Anorg. Allg. Chem. 242 (1939) 1.10.1002/zaac.19392420101Search in Google Scholar

[57] C.G. Wilson: Acta Crystallogr. 12 (1959) 660.10.1107/S0365110X59001943Search in Google Scholar

[58] T.J. Renouf, C.A. Beevers: Acta Crystallogr. 14 (1961) 469.10.1107/S0365110X61001510Search in Google Scholar

[59] C.G. Wilson, D.K. Thomas, F.J. Spooner: Acta Crystallogr. 13 (1960) 56.10.1107/S0365110X60000121Search in Google Scholar

[60] C.G. Wilson, F.J. Spooner: Acta Crystallogr. 13 (1960) 358.10.1107/S0365110X60000844Search in Google Scholar

[61] H. Okamoto: J. Phase Equilibria 14 (1993) 652.10.1007/BF02669163Search in Google Scholar

Received: 2003-10-27
Accepted: 2004-02-24
Published Online: 2022-02-14
Published in Print: 2022-02-14

© 2004 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Thermally assisted motion of dislocations in solid solution-strengthened fcc alloys and the concept of “stress equivalence”
  6. From single to collective dislocation glide instabilities: A hierarchy of scales, embracing the Neumann strain bursts
  7. Geometry and surface state effects on the mechanical response of Au nanostructures
  8. Microstructural evolution and its effect on the mechanical properties of Cu–Ag microcomposites
  9. Deformation behaviour of strontium titanate between room temperature and 1800 K under ambient pressure
  10. The deformation response of ultra-thin polymer films on steel sheet in a tensile straining test: the role of slip bands emerging at the polymer/metal interface
  11. Influence of dissolved gas molecules on the size recovery kinetics of cold-rolled BPA-PC
  12. Comparison between Monte Carlo and Cluster Variation method calculations in the BCC Fe–Al system including tetrahedron interactions
  13. Experimental study and Cluster Variation modelling of the A2/B2 equilibria at the titanium-rich side of the Ti–Fe system
  14. Phases and phase equilibria in the Fe–Al–Zr system
  15. On the plate-like τ-phase formation in MnAl–C alloys
  16. Articles Applied
  17. The grain boundary hardness in austenitic stainless steels studied by nanoindentations
  18. The effect of grain size on the mechanical properties of nanonickel examined by nanoindentation
  19. Microstructures and mechanical properties of V–V3Si eutectic composites
  20. Grain boundary characterization and grain size measurement in an ultrafine-grained steel
  21. On the determination of the volume fraction of Ni4Ti3 precipitates in binary Ni-rich NiTi shape memory alloys
  22. Mechanical properties of NiAl–Cr alloys in relation to microstructure and atomic defects
  23. Characterization of the cyclic deformation behaviour and fatigue crack initiation on titanium in physiological media by electrochemical techniques
  24. Effect of prestraining on high-temperature fatigue behaviour of two Ni-base superalloys
  25. Influence of surface defects and edge geometry on the bending strength of slip-cast ZrO2 micro-specimens
  26. Tensile failure in a superplastic alumina
  27. Notifications/Mitteilungen
  28. Personal/Personelles
  29. Conferences/Konferenzen
Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2004-0096/html
Scroll to top button