Abstract
Isothermal sections at 800, 1000, and 1150 °C as well as a tentative partial liquidus surface of the ternary Fe–Al–Zr system were established by means of electron-probe microanalysis, X-ray diffraction, differential thermal analysis, and light-optical as well as scanning electron microscopy. The most prominent features of the ternary phase diagram are the extended homogeneity ranges of the Laves phases. By continuous substitution of Fe by Al, the structure changes three times starting from the cubic C15 structure of Fe2Zr to hexagonal C14 (λ1) back to cubic C15 (λ2) and again to hexagonal C14 (Al2Zr). The various Laves phase fields are separated by very small two-phase fields. Besides the Laves phases λ1 and λ2, three more ternary intermetallic phases were found, whose homogeneity ranges have been determined for the first time. In addition, new results concerning the homogeneity ranges of intermetallic phases in the binary subsystems Fe–Al and Al–Zr are reported. The solubilities of the third components in the binary phases are found to be generally very low with the exception of the Laves phases. As a consequence, extended two-phase fields between the Fe(Al) solid solution and Laves phase or between Fe(Al) solid solution and the ternary ThMn12-type phase τ1 are formed.
-
The authors would like to thank Mrs. H. Bögershausen, Mr. R. Staegemann, Mr. G. Bialkowski, Mr. T. Schildheuer, and Mr. U. Wellms for their help in the metallographic investigations, preparation of alloys, specimen preparation and heat treatments, DTA measurements, and EPMA analyses, respectively. The financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.
References
[1] G. Sauthoff: Intermetallics, VCH, Weinheim, Germany (1995).10.1002/9783527615414Suche in Google Scholar
[2] L. Machon, G. Sauthoff: Intermetallics 4 (1996) 469.10.1016/0966-9795(96)00023-4Suche in Google Scholar
[3] G. Sauthoff: Intermetallics 8 (2000) 1101.10.1016/S0966-9795(00)00045-5Suche in Google Scholar
[4] M.P. Brady, B.A. Pint, P.F. Tortorelli, I.G. Wright, R.J. Hanrahan Jr., in: R.W. Cahn, P. Haasen, E.J. Kramer: Materials Science and Technology Vol. 2,Wiley-VCH,Weinheim, Germany (2000) 229.10.1002/9783527619306.ch15Suche in Google Scholar
[5] K. Natesan: Mater. Sci. Eng. A 258 (1998) 126.10.1016/S0921-5093(98)00925-3Suche in Google Scholar
[6] P.F. Tortorelli, K. Natesan: Mater. Sci. Eng. A 258 (1998) 115.10.1016/S0921-5093(98)00924-1Suche in Google Scholar
[7] Z.M. Alekseeva, in: G. Petzow, G. Effenberg (Eds.), Ternary Alloys, Vol. 5, VCH, Weinheim, Germany (1992) 524.Suche in Google Scholar
[8] P. Villars, A. Prince, H. Okamoto: Handbook of Ternary Alloy Phase Diagrams, ASM International, Materials Park, OH, USA (1995) 3672.Suche in Google Scholar
[9] V. Raghavan: Phase Diagrams of Ternary Iron Alloys, Vol. 6A, Indian Intitute of Metals, Calcutta, India (1992) 224.Suche in Google Scholar
[10] V. Raghavan: J. Phase Equilibria 24 (2003) 350.10.1361/105497103770330352Suche in Google Scholar
[11] V.V. Burnashova, V.Ya. Markiv: Dopov. Akad. Nauk Ukr. RSR Ser. A 1969 (1969) 351.Suche in Google Scholar
[12] V.Ya. Markiv, P.I. Kripyakevich: Sov. Phys. Crystallogr. 11 (1967) 733.Suche in Google Scholar
[13] P.I. Kripyakevich, V.V. Burnashova, V.Ya. Markiv: Dopov. Akad. Nauk Ukr. RSR Ser. A 1970 (1970) 828.Suche in Google Scholar
[14] T.I. Yanson, M.B. Manyako, O.I. Bodak, R. Cerny, J.V. Pacheco, K. Yvon: Z. Kristallogr. – New Cryst. Struct. 212 (1997) 504.10.1524/ncrs.1997.212.1.504Suche in Google Scholar
[15] N.M. Gruzdeva, T.N. Zagorskaya, I.I. Raevskii: Fiz. Khim. Splavov Tsirkoniya, Nauka, Moscow (1968) 5.Suche in Google Scholar
[16] J.H. Schneibel, W.D. Porter: Mater. Res. Soc. Symp. Proc. 133 (1989) 335.10.1557/PROC-133-335Suche in Google Scholar
[17] K.S. Kumar: Int. Mater. Rev. 35 (1990) 293.10.1179/095066090790324037Suche in Google Scholar
[18] C.J. Sparks, W.D. Porter, J.H. Schneibel, W.C. Oliver, C.G. Golec: Mater. Res. Soc. Symp. Proc. 186 (1991) 175.10.1557/PROC-186-175Suche in Google Scholar
[19] A. Raman: Z. Metallkd. 57 (1966) 535.10.1515/ijmr-1966-570707Suche in Google Scholar
[20] K.I. Moon, S.C. Kim, K.S. Lee: Intermetallics 10 (2002) 185.10.1016/S0966-9795(01)00126-1Suche in Google Scholar
[21] I.S. Virk, R.A. Varin: Scr. Metall. Mater. 25 (1991) 85.10.1016/0956-716X(91)90358-8Suche in Google Scholar
[22] P.B. Desch, R.B. Schwarz, P. Nash: J. Less-Common Met. 168 (1991) 69.10.1016/0022-5088(91)90035-3Suche in Google Scholar
[23] G. Athanassiadis, M. Dirand, L. Rimlinger: C. R. Acad. Sci. Sér. C 277 (1973) 915.Suche in Google Scholar
[24] C.C. Cheng, W.E. King, M.J. McNallan: Acta Metall. 37 (1989) 3399.10.1016/0001-6160(89)90212-5Suche in Google Scholar
[25] F. Stein, M. Palm, G. Sauthoff, in: R. Kopp, K. Herfurth, D. Böhme, R. Bormann, E. Arzt, H. Riedel (Eds.), Werkstoffwoche ’98, Vol. VI, Wiley-VCH, Weinheim, Germany (1999) 515.Suche in Google Scholar
[26] J.L. Pouchou, F. Pichoir: La Recherche Aerospatiale 1984-3 (1984) 13.Suche in Google Scholar
[27] G.W.H. Höhne: J. Thermal Anal. 37 (1991) 1981.10.1007/BF01912232Suche in Google Scholar
[28] G.W.H. Höhne, H.K. Cammenga, W. Eysel, E. Gmelin, W. Hemminger: Thermochim. Acta 160 (1990) 1.10.1016/0040-6031(90)80235-QSuche in Google Scholar
[29] E. Gmelin, S.M. Sarge: Pure Appl. Chem. 67 (1995) 1789.10.1351/pac199567111789Suche in Google Scholar
[30] E.M. Sokolovskaya, E.F. Kazakova, E.V. Grigorovich, I.N. Matveev: Moscow Univ. Chem. Bull. 46 No. 5 (1991) 57.Suche in Google Scholar
[31] U.R. Kattner, in: T. B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, USA (1990) 147.Suche in Google Scholar
[32] O. Kubaschewski: Iron – Binary Phase Diagrams, Springer-Verlag, Berlin, Germany (1982) 5.Suche in Google Scholar
[33] P. Villars, L.D. Calvert: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., ASM International, Materials Park, OH, USA (1991).Suche in Google Scholar
[34] F. Stein, G. Sauthoff, M. Palm: J. Phase Equilibria 23 (2002) 480.10.1361/105497102770331172Suche in Google Scholar
[35] T. Wang, Zh. Jin, J.-C. Zhao: J. Phase Equilibria 22 (2001) 544.10.1007/s12385-001-0072-4Suche in Google Scholar
[36] H. Okamoto: J. Phase Equilibria 23 (2002) 455.10.1361/105497102770331497Suche in Google Scholar
[37] R.J. Kematick, H.F. Franzen: J. Solid State Chem. 54 (1984) 226.10.1016/0022-4596(84)90150-6Suche in Google Scholar
[38] S.-J. Kim, R.J. Kematick, S.S. Yi, H.F. Franzen: J. Less-Common Met. 137 (1988) 55.10.1016/0022-5088(88)90075-6Suche in Google Scholar
[39] A. Peruzzi: J. Nucl. Mater. 186 (1992) 89.10.1016/0022-3115(92)90326-GSuche in Google Scholar
[40] A. Wasilkowska, M. Bartsch, F. Stein, M. Palm, K. Sztwiertnia, G. Sauthoff, U. Messerschmidt: submitted to Mater. Sci. Eng. A (2004)Suche in Google Scholar
[41] R. Grössinger, G. Hilscher, G. Wiesinger: J. Magn. Magn. Mater. 23 (1981) 47.10.1016/0304-8853(81)90067-6Suche in Google Scholar
[42] I. Jacob, D. Shaltiel: Solid State Commun. 27 (1978) 175.10.1016/0038-1098(78)90826-8Suche in Google Scholar
[43] A. Grytsiv, J.J. Ding, P. Rogl, F.Weill, B. Chevalier, J. Etourneau, G. Andre, F. Bouree, H. Noel, P. Hundegger, G. Wiesinger: Intermetallics 11 (2003) 351.10.1016/S0966-9795(02)00267-4Suche in Google Scholar
[44] J.J. Ding, P. Rogl, B. Chevalier, J. Etourneau: Intermetallics 8 (2000) 1377.10.1016/S0966-9795(00)00067-4Suche in Google Scholar
[45] X.-A. Chen, W. Jeitschko, M.H. Gerdes: J. Alloys Compd. 234 (1996) 12.10.1016/0925-8388(95)01967-7Suche in Google Scholar
[46] R. Meyer zu Reckendorf, P.C. Schmidt, A. Weiss: J. Less-Common Met. 159 (1990) 291.10.1016/0022-5088(90)90156-ESuche in Google Scholar
[47] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii: TYPIX – Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Vol. 1 and 2, Gmelin Handbook of Inorganic Chemistry, Springer-Verlag, Berlin, Germany (1993).10.1007/978-3-662-02909-1_1Suche in Google Scholar
[48] P.M. De Wolff, N.V. Belov, E.F. Bertaut, M.J. Bürger, J.D.H. Donnay, W. Fischer, T. Hahn, V.A. Koptsik, A.L. Mackay, H. Wondratschek, A.J.C. Wilson, S.C. Abrahams: Acta Crystallogr. A 41 (1985) 278.10.1107/S0108767385000587Suche in Google Scholar
[49] M. Palm: J. Alloys Compd. 252 (1997) 192.10.1016/S0925-8388(96)02719-3Suche in Google Scholar
[50] M. Eumann: Phasengleichgewichte und mechanisches Verhalten im ternären Legierungssystem Fe–Al–Mo, Thesis, Shaker-Verlag, Aachen, Germany (2002).Suche in Google Scholar
[51] R. Ducher, F. Stein, B. Viguier, M. Palm, J. Lacaze: Z. Metalkd. 94 (2003) 396.10.3139/146.030396Suche in Google Scholar
[52] H. Thomas: Z. Metallkd. 41 (1950) 185.10.1515/ijmr-1950-410605Suche in Google Scholar
[53] R.N. Corby, P.J. Black: Acta Crystallogr. B 29 (1973) 2669.10.1107/S056774087300734XSuche in Google Scholar
[54] K. Schubert, U. Rösler, M. Kluge, K. Anderko, L. Härle: Naturwissenschaften 40 (1953) 437.10.1007/BF00820424Suche in Google Scholar
[55] P.J. Black: Acta Crystallogr. 8 (1955) 43.10.1107/S0365110X5500011XSuche in Google Scholar
[56] G. Brauer: Z. Anorg. Allg. Chem. 242 (1939) 1.10.1002/zaac.19392420101Suche in Google Scholar
[57] C.G. Wilson: Acta Crystallogr. 12 (1959) 660.10.1107/S0365110X59001943Suche in Google Scholar
[58] T.J. Renouf, C.A. Beevers: Acta Crystallogr. 14 (1961) 469.10.1107/S0365110X61001510Suche in Google Scholar
[59] C.G. Wilson, D.K. Thomas, F.J. Spooner: Acta Crystallogr. 13 (1960) 56.10.1107/S0365110X60000121Suche in Google Scholar
[60] C.G. Wilson, F.J. Spooner: Acta Crystallogr. 13 (1960) 358.10.1107/S0365110X60000844Suche in Google Scholar
[61] H. Okamoto: J. Phase Equilibria 14 (1993) 652.10.1007/BF02669163Suche in Google Scholar
© 2004 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Thermally assisted motion of dislocations in solid solution-strengthened fcc alloys and the concept of “stress equivalence”
- From single to collective dislocation glide instabilities: A hierarchy of scales, embracing the Neumann strain bursts
- Geometry and surface state effects on the mechanical response of Au nanostructures
- Microstructural evolution and its effect on the mechanical properties of Cu–Ag microcomposites
- Deformation behaviour of strontium titanate between room temperature and 1800 K under ambient pressure
- The deformation response of ultra-thin polymer films on steel sheet in a tensile straining test: the role of slip bands emerging at the polymer/metal interface
- Influence of dissolved gas molecules on the size recovery kinetics of cold-rolled BPA-PC
- Comparison between Monte Carlo and Cluster Variation method calculations in the BCC Fe–Al system including tetrahedron interactions
- Experimental study and Cluster Variation modelling of the A2/B2 equilibria at the titanium-rich side of the Ti–Fe system
- Phases and phase equilibria in the Fe–Al–Zr system
- On the plate-like τ-phase formation in MnAl–C alloys
- Articles Applied
- The grain boundary hardness in austenitic stainless steels studied by nanoindentations
- The effect of grain size on the mechanical properties of nanonickel examined by nanoindentation
- Microstructures and mechanical properties of V–V3Si eutectic composites
- Grain boundary characterization and grain size measurement in an ultrafine-grained steel
- On the determination of the volume fraction of Ni4Ti3 precipitates in binary Ni-rich NiTi shape memory alloys
- Mechanical properties of NiAl–Cr alloys in relation to microstructure and atomic defects
- Characterization of the cyclic deformation behaviour and fatigue crack initiation on titanium in physiological media by electrochemical techniques
- Effect of prestraining on high-temperature fatigue behaviour of two Ni-base superalloys
- Influence of surface defects and edge geometry on the bending strength of slip-cast ZrO2 micro-specimens
- Tensile failure in a superplastic alumina
- Notifications/Mitteilungen
- Personal/Personelles
- Conferences/Konferenzen
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Thermally assisted motion of dislocations in solid solution-strengthened fcc alloys and the concept of “stress equivalence”
- From single to collective dislocation glide instabilities: A hierarchy of scales, embracing the Neumann strain bursts
- Geometry and surface state effects on the mechanical response of Au nanostructures
- Microstructural evolution and its effect on the mechanical properties of Cu–Ag microcomposites
- Deformation behaviour of strontium titanate between room temperature and 1800 K under ambient pressure
- The deformation response of ultra-thin polymer films on steel sheet in a tensile straining test: the role of slip bands emerging at the polymer/metal interface
- Influence of dissolved gas molecules on the size recovery kinetics of cold-rolled BPA-PC
- Comparison between Monte Carlo and Cluster Variation method calculations in the BCC Fe–Al system including tetrahedron interactions
- Experimental study and Cluster Variation modelling of the A2/B2 equilibria at the titanium-rich side of the Ti–Fe system
- Phases and phase equilibria in the Fe–Al–Zr system
- On the plate-like τ-phase formation in MnAl–C alloys
- Articles Applied
- The grain boundary hardness in austenitic stainless steels studied by nanoindentations
- The effect of grain size on the mechanical properties of nanonickel examined by nanoindentation
- Microstructures and mechanical properties of V–V3Si eutectic composites
- Grain boundary characterization and grain size measurement in an ultrafine-grained steel
- On the determination of the volume fraction of Ni4Ti3 precipitates in binary Ni-rich NiTi shape memory alloys
- Mechanical properties of NiAl–Cr alloys in relation to microstructure and atomic defects
- Characterization of the cyclic deformation behaviour and fatigue crack initiation on titanium in physiological media by electrochemical techniques
- Effect of prestraining on high-temperature fatigue behaviour of two Ni-base superalloys
- Influence of surface defects and edge geometry on the bending strength of slip-cast ZrO2 micro-specimens
- Tensile failure in a superplastic alumina
- Notifications/Mitteilungen
- Personal/Personelles
- Conferences/Konferenzen