Abstract
The quasi-binary eutectic NiAl–Cr of the ternary Ni–Al–Cr system is composed of B2 type NiAl(Cr) solid solutions and the b.c.c. transition metal chromium as second phase. This constitution enables a systematic alloy design in dependence on the Cr content for improving elastic stiffness, high temperature strength, creep resistance, and fracture toughness of intermetallic NiAl. Elasticity and mechanical properties of NiAl(Cr) reinforced by nano-sized Cr particles or quasi-continuous Cr fibres of several microns in diameter are presented and discussed in respect to single phase NiAl and literature data. The microstructural characterization and discussion of mechanical properties of NiAl–Cr alloys are supplemented by atom probe field ion microscopy analysis (APFIM). APFIM was used to determine the atomic defect structures, the Cr site preference and reveals Cr segregations at antiphase boundaries.
References
[1] W. Oelsen, W. Middel: Mitt. Kaiser Wilhelm Inst. Eisenforsch. Düsseldorf 19 (1937) 1.Search in Google Scholar
[2] H. Jacobi, B. Vassos, H.-J. Engell: J. Phys. Chem. Solids 30 (1969) 1261.10.1016/0022-3697(69)90384-9Search in Google Scholar
[3] H. Jacobi, H.-J. Engell: Acta Metall. 19 (1971) 701.10.1016/0001-6160(71)90025-3Search in Google Scholar
[4] M. Göken, H. Vehoff, P. Neumann: Scr. Metall. Mater. 33 (1995) 1187.10.1016/0956-716X(95)00347-XSearch in Google Scholar
[5] G. Bergmann, H. Vehoff: Mater. Sci. Eng. A 192 (1995) 309.10.1016/0921-5093(95)80018-2Search in Google Scholar
[6] G. Sauthoff: Intermetallics 7 (1999) 233.10.1016/S0966-9795(98)00104-6Search in Google Scholar
[7] H.J. Grabke, M. Schütze: Oxidation of Intermetallics, Wiley-VCH, Weinheim, Germany (1998).10.1002/9783527612413Search in Google Scholar
[8] G. Sauthoff: Z. Metallkd. 81 (1990) 855.10.1515/ijmr-1990-811201Search in Google Scholar
[9] G. Sauthoff: Mater. Sci. Tech. Ser. 8 (1992) 363.10.1179/mst.1992.8.4.363Search in Google Scholar
[10] B. Zeumer, W. Wunnike-Sanders, G. Sauthoff: Mater. Sci. Eng. A 192 (1995) 817.10.1016/0921-5093(95)03329-7Search in Google Scholar
[11] U.D. Hangen, G. Sauthoff: Intermetallics 7 (1999) 501.10.1016/S0966-9795(98)00101-0Search in Google Scholar
[12] V. Thien, G. Frommeyer, G. Sauthoff, R. Rablbauer, M. Palm, J. Grossmann, J. Preuss, W. Hermann, H. Meinhardt, F. Scheppe, Z. Li: BMBF-project 03N2009, Final report (2002).Search in Google Scholar
[13] M. Palm, J. Preuhs, G. Sauthoff: J. Mater. Proc. Techn. 136 (2003) 114.10.1016/S0924-0136(02)01104-4Search in Google Scholar
[14] M. Palm, J. Preuhs, G. Sauthoff: J. Mater. Proc. Techn. 136 (2003) 105.10.1016/S0924-0136(03)00130-4Search in Google Scholar
[15] Y. Terada, K. Ohkubo, K. Nakagawa, T. Mohri, T. Suzuki: Intermetallics 3 (1995) 347.10.1016/0966-9795(95)94253-BSearch in Google Scholar
[16] R.D. Noebe, R.R. Bowman, M.V. Nathal, in: N.S. Stoloff, V.K. Sikka (Eds.), Physical Metallurgy and Processing of Intermetallic Compounds, New York, NY, Chapman & Hall (1996) 212.10.1007/978-1-4613-1215-4_7Search in Google Scholar
[17] H.J. Grabke: Intermetallics 7 (1999) 1153.10.1016/S0966-9795(99)00037-0Search in Google Scholar
[18] R. Rablbauer, G. Frommeyer, F. Stein: Mater. Sci. Eng. A 343 (2003) 301.10.1016/S0921-5093(02)00388-XSearch in Google Scholar
[19] D.B. Miracle, R. Darolia, in: J.H.Westbrook, R.L. Fleischer (Eds.), Intermetallic Compounds: vol. 2. Practice, Baffins Lane, Chichester, West Sussex, John Wiley & Sons Ltd. (1994) 53.Search in Google Scholar
[20] F. Scheppe, P.R. Sahm, W. Hermann, U. Paul, J. Preuss: Mater. Sci. Eng. A 329 (2002) 596.10.1016/S0921-5093(01)01587-8Search in Google Scholar
[21] M.J. Cooper: Phil. Mag. A 8 (1963) 805.10.1080/14786436308213837Search in Google Scholar
[22] G. Frommeyer, C. Derder: J. de Physique 7 (1997) 2393.10.1051/jp3:1997104Search in Google Scholar
[23] R.R. Vandervoort, A.K. Mukherjee, J.E. Dorn: Trans. ASM 59 (1966) 930.Search in Google Scholar
[24] H.-J. Schäfer, Ph. D. thesis, RWTH Aachen, VDI Verlag, Düsseldorf (1997).Search in Google Scholar
[25] H.L. Fraser, M.H. Loretto, R.E. Smallman, R.J.Wasilewski: Philos. Mag. A 32 (1975) 873.10.1080/14786437508221627Search in Google Scholar
[26] T. Hong, A.J. Freeman: Phys. Rev. B 43 (1991) 6446.10.1103/PhysRevB.43.6446Search in Google Scholar
[27] C.L. Fu, M.H. Yoo: Acta Metall. Mater. 40 (1992) 703.10.1016/0956-7151(92)90012-4Search in Google Scholar
[28] R.D. Field, D.F. Lahrman, R. Darolia: Acta Metall. Mater. 39 (1991) 2961.10.1016/0956-7151(91)90028-YSearch in Google Scholar
[29] D.B. Miracle: Acta Metall. Mater. 41 (1993) 649.10.1016/0956-7151(93)90001-9Search in Google Scholar
[30] N.I. Medvedea, Y.N. Gornostyrev, D.L. Novikov, O.N. Mryasov, A.J. Freeman: Acta Mater. 46 (1998) 3433.10.1016/S1359-6454(98)00042-1Search in Google Scholar
[31] J.D. Cotton, M.J. Kaufman: Scr. Metall. Mater. 25 (1991) 1827.10.1016/0956-716X(91)90312-OSearch in Google Scholar
[32] Y.A. Bagaryatskiy, Z.M. Petrova, L.M. Utevskiy: Probl. Metall. Fiz. Met. Inst. 5 (1958) 235.Search in Google Scholar
[33] J.L. Walter, H.E. Cline: Metall. Trans. 4 (1973) 33.10.1007/BF02649602Search in Google Scholar
[34] P.B. Budberg: Zh. Neorg. Khim. 3 (1958) 694.Search in Google Scholar
[35] J.G. Webber, D.C. van Aken: Scripta Metall. 23 (1989) 193.10.1016/0036-9748(89)90409-2Search in Google Scholar
[36] J.L. Walter, H.E. Cline: Metall. Trans. 1 (1970) 1221.10.1007/BF02900234Search in Google Scholar
[37] M.W. Brumm: Ph. D. thesis, Dortmund Univ., VDI Verlag, Düsseldorf (1991).Search in Google Scholar
[38] R. Fischer, G. Frommeyer, A. Schneider: Phys. stat. sol. (a) 186 (2001) 115.10.1002/1521-396X(200107)186:1<115::AID-PSSA115>3.0.CO;2-3Search in Google Scholar
[39] T.E. Tietz, J.W. Wilson: Behaviour and Properties of Refractory Metals, Stanford University Press, Stanford, CA (1965).Search in Google Scholar
[40] N. Rusovic, H. Warlimont: Phys. stat. sol. (a) 44 (1977) 609.10.1002/pssa.2210440225Search in Google Scholar
[41] J.D. Cotton, R.D. Noebe, M.J. Kaufman: Intermetallics 1 (1993) 3.10.1016/0966-9795(93)90016-OSearch in Google Scholar
[42] P.H. Kitabjian, W.D. Nix: Acta Mater. 46 (1998) 701.10.1016/S1359-6454(97)00249-8Search in Google Scholar
[43] W.H. Tian, C.S. Han, M. Nemoto: Intermetallics 7 (1999) 59.10.1016/S0966-9795(98)00015-6Search in Google Scholar
[44] R. Fischer, G. Frommeyer, A. Schneider: Mater. Sci. Eng. A 353 (2003) 87.10.1016/S0921-5093(02)00672-XSearch in Google Scholar
[45] W. Huang, Y.A. Chang: Intermetallics 7 (1999) 863.10.1016/S0966-9795(98)00138-1Search in Google Scholar
[46] M. K. Miller, in: Atom Probe Field Ion Microscopy, Oxford, UK, Clarendon Press (1996).10.1093/oso/9780198513872.001.0001Search in Google Scholar
[47] J.D. Cotton, R.D. Noebe, M.J. Kaufman: Intermetallics 1 (1993) 117.10.1016/0966-9795(93)90029-USearch in Google Scholar
[48] N. Rusovic, H. Warlimont: phys. stat. sol. (a) 53 (1979) 283.10.1002/pssa.2210530132Search in Google Scholar
[49] A.G. Fox: Scripta Metall. Mater. 32 (1995) 343.10.1016/S0956-716X(99)80062-4Search in Google Scholar
[50] T. Paakkari: Acta Crystallogr. A 30 (1970) 83.10.1107/S0567739474000131Search in Google Scholar
[51] A. Wolfenden, in: S. Ochiai (Ed.), Mechanical Properties of Metallic Composites, New York, NY, Marcel Dekker, Inc. (1994) 41.Search in Google Scholar
[52] G. Frommeyer, in: P. Haasen, R.W. Cahn (Eds.), Physical Metallurgy, Amsterdam, the Netherlands, Elsevier Science Publishers BV (1983) 1854.Search in Google Scholar
[53] R. Rablbauer: unpublished work (2001).Search in Google Scholar
[54] B. Ghosh, M.A. Crimp: Mater. Sci. Eng. A 239 (1997) 142.10.1016/S0921-5093(97)00573-XSearch in Google Scholar
[55] R.J. Wasilewski, S.R. Butler, J.E. Hanlon: Trans. Metall. Soc. AIME 239 (1967) 1357.Search in Google Scholar
[56] A. Ball, R.E. Smallman: Acta Metall. 16 (1968) 233.10.1016/0001-6160(68)90119-3Search in Google Scholar
[57] P. Georgopoulos, J.B. Cohen: Acta Metall. 29 (1981) 1535.10.1016/0001-6160(81)90187-5Search in Google Scholar
[58] D.F. Lahrman, R.D. Field, R. Darolia, in: L.A. Johnson, D.P. Pope, J.O. Stiegler (Eds.), High-Temperature Ordered Intermetallic Alloys IV 213, Mater. Res. Soc., Pittsburgh, PA (1991) 603.Search in Google Scholar
[59] M.J. Mills, M.S. Daw, S.M. Foiles, D.B. Miracle, in: I. Baker, R. Darolia, J.D. Whittenberger, M.H. Yoo (Eds.), High-Temperature Ordered Intermetallic Alloys V 288, Mater. Res. Soc., Pittsburgh, PA (1993) 257.10.1557/PROC-288-257Search in Google Scholar
[60] D. Baither, F. Ernst, M. Rühle, M. Bartsch, U. Messerschmidt: Intermetallics 7 (1999) 479.10.1016/S0966-9795(98)00106-XSearch in Google Scholar
[61] F. Thome, M. Göken, H. Vehoff: Intermetallics 7 (1999) 491.10.1016/S0966-9795(98)00120-4Search in Google Scholar
[62] R.R. Bowman, R.D. Noebe, S.V. Raj, I.E. Locci: Metall. Trans. A 23 (1992) 1493.10.1007/BF02647332Search in Google Scholar
[63] M.H.A. Nawaz, B.L. Mordike: Phys. Stat. Sol. (a) 32 (1975) 449.10.1002/pssa.2210320213Search in Google Scholar
[64] B. Sesták, A. Seeger: Z. Metallkd. 58 (1967) 831.10.1515/ijmr-1967-581201Search in Google Scholar
[65] G. Frommeyer, R. Rablbauer, in: MRS Symp. Conf. Proc. 753 (2003) 193.10.1557/PROC-753-BB4.6Search in Google Scholar
[66] E. Pink, R. Eck, in: R.W. Cahn, P. Haasen, E.J. Kramer (Eds.), Materials Science and Technology, Weinheim, VCH Verlagsgesellschaft mbH (1996) 589.Search in Google Scholar
[67] R. Rablbauer, H.-J. Schäfer, G. Frommeyer, in: A. Kranzmann, U. Gramberg (Eds.), Proc. Werkstoffwoche 98, Vol. 3, Wiley-VCH Verlag GmbH, Weinheim, Deutschland (1999) 55.Search in Google Scholar
[68] X.F. Chen, D.R. Johnson, R.D. Noebe, B.F. Oliver: J. Mater. Res. 10 (1995) 1159.10.1557/JMR.1995.1159Search in Google Scholar
[69] D.R. Johnson, X.F. Chen, B.F. Oliver, R.D. Noebe, J.D. Whittenberger: Intermetallics 3 (1995) 99.10.1016/0966-9795(95)92674-OSearch in Google Scholar
[70] J.D. Whittenberger, R.D. Noebe, S.M. Joslin, B.F. Oliver: Intermetallics 7 (1999) 627.10.1016/S0966-9795(98)00077-6Search in Google Scholar
[71] J.D. Whittenberger, S.V. Raj, I.E. Locci, J.A. Salem: Metall. Mater. Trans. A 33 (2002) 1385.10.1007/s11661-002-0063-zSearch in Google Scholar
[72] K.M. Chang, in: D.B. Miracle, J. Graves, D.L. Anton (Eds.), Intermetallic-Metallic Polyphase In-Situ Composites 273, Mater. Res. Soc., Pittsburgh, PA (1992) 191.10.1557/PROC-273-87Search in Google Scholar
[73] A.K. Mukherjee, J.E. Bird, J.E. Dorn: Trans. ASM 62 (1969) 155.Search in Google Scholar
[74] E. Arzt, in: S. Ochiai (Ed.), Mechanical Properties of Metallic Composites, New York, NY, Marcel Dekker, Inc. (1994) 205.Search in Google Scholar
[75] L.A. Hocking, P.R. Strutt, R.A. Dodd: J. Inst. Metals 99 (1971) 98.Search in Google Scholar
[76] H.L. Fraser, R.E. Smallman, M.H. Loretto: Philos. Mag. A 28 (1973) 651.10.1080/14786437308221009Search in Google Scholar
[77] W.J. Yang, R.A. Dodd: J. Mater. Sci. 7 (1974) 41.Search in Google Scholar
[78] M. Rudy, G. Sauthoff, in: C.C. Koch (Ed.), High Temperature Ordered Intermetallic Alloys 39, Mater. Res. Soc., Pittsburgh, PA (1985) 327.10.1557/PROC-39-327Search in Google Scholar
[79] J.D. Whittenberger: J. Mater. Sci. 22 (1987) 394.10.1007/BF01160744Search in Google Scholar
[80] J.D. Whittenberger: Mater. Sci. Eng. A 23 (1988) 235.10.1180/claymin.1988.023.2.12Search in Google Scholar
[81] K.R. Forbes, U. Glatzel, R. Darolia, W.D. Nix: Metall. Mat. Trans. A 27 (1996) 1229.10.1007/BF02649860Search in Google Scholar
[82] G.F. Hancock, B.R. McDonnell: Phys. stat. sol. (a) 4 (1971) 143.10.1002/pssa.2210040115Search in Google Scholar
[83] S. Frank, S.V. Divinski, U. Sodervall, C. Herzig: Acta Mater. 49 (2001) 1399.10.1016/S1359-6454(01)00037-4Search in Google Scholar
[84] O.A. Ruano, O.D. Sherby: Revue Phys. Appl. 23 (1988) 625.10.1051/rphysap:01988002304062500Search in Google Scholar
[85] J.D. Whittenberger, E. Arzt, M.J. Luton, in: D.L. Anton, P.L. Martin, D.B. Miracle, R. McMeeking (Eds.), Intermetallic Matrix Composites 194, Mater. Res. Soc., Pittsburg, PA (1990) 211.Search in Google Scholar
[86] J.D. Whittenberger, R.K. Viswantham, S.K. Mannan, B. Sprissler: J. Mater. Sci. 25 (1990) 35.10.1007/BF00544181Search in Google Scholar
[87] L. Wang, R.J. Arsenault, in: L.A. Johnson, D.P. Pope, J.O. Stiegler (Eds.), High-Temperature Ordered Intermetallic Alloys IV 213, Mater. Res. Soc., Pittsburgh, PA (1991) 1063.Search in Google Scholar
[88] J.D. Whittenberger, P. Grahle, R. Behr, E. Arzt, M.G. Hebsur: Mater. Sci. Eng. A 291 (2000) 173.10.1016/S0921-5093(00)00938-2Search in Google Scholar
[89] S.V. Raj, in: S. Ochiai (Ed.), Mechanical Properties of Metallic Composites, New York, NY, Marcel Dekker, Inc. (1994) 97.Search in Google Scholar
[90] J.N. Mundy, C.W. Tse, W.D. McFall: Phys. Rev. B 13 (1976) 2349.10.1103/PhysRevB.13.2349Search in Google Scholar
[91] S. Merchant, M.R. Notis: Mater. Sci. Eng. A 66 (1984) 47.10.1016/0025-5416(84)90140-XSearch in Google Scholar
[92] H. Kowalski, Ph. D. thesis, Clausthal TU, VDI Verlag, Düsseldorf (1994).Search in Google Scholar
[93] J.W. Otto, J.K. Vassiliou, G. Frommeyer: J. Mater. Res. 12 (1997) 3106.10.1557/JMR.1997.0405Search in Google Scholar
© 2004 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Thermally assisted motion of dislocations in solid solution-strengthened fcc alloys and the concept of “stress equivalence”
- From single to collective dislocation glide instabilities: A hierarchy of scales, embracing the Neumann strain bursts
- Geometry and surface state effects on the mechanical response of Au nanostructures
- Microstructural evolution and its effect on the mechanical properties of Cu–Ag microcomposites
- Deformation behaviour of strontium titanate between room temperature and 1800 K under ambient pressure
- The deformation response of ultra-thin polymer films on steel sheet in a tensile straining test: the role of slip bands emerging at the polymer/metal interface
- Influence of dissolved gas molecules on the size recovery kinetics of cold-rolled BPA-PC
- Comparison between Monte Carlo and Cluster Variation method calculations in the BCC Fe–Al system including tetrahedron interactions
- Experimental study and Cluster Variation modelling of the A2/B2 equilibria at the titanium-rich side of the Ti–Fe system
- Phases and phase equilibria in the Fe–Al–Zr system
- On the plate-like τ-phase formation in MnAl–C alloys
- Articles Applied
- The grain boundary hardness in austenitic stainless steels studied by nanoindentations
- The effect of grain size on the mechanical properties of nanonickel examined by nanoindentation
- Microstructures and mechanical properties of V–V3Si eutectic composites
- Grain boundary characterization and grain size measurement in an ultrafine-grained steel
- On the determination of the volume fraction of Ni4Ti3 precipitates in binary Ni-rich NiTi shape memory alloys
- Mechanical properties of NiAl–Cr alloys in relation to microstructure and atomic defects
- Characterization of the cyclic deformation behaviour and fatigue crack initiation on titanium in physiological media by electrochemical techniques
- Effect of prestraining on high-temperature fatigue behaviour of two Ni-base superalloys
- Influence of surface defects and edge geometry on the bending strength of slip-cast ZrO2 micro-specimens
- Tensile failure in a superplastic alumina
- Notifications/Mitteilungen
- Personal/Personelles
- Conferences/Konferenzen
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Thermally assisted motion of dislocations in solid solution-strengthened fcc alloys and the concept of “stress equivalence”
- From single to collective dislocation glide instabilities: A hierarchy of scales, embracing the Neumann strain bursts
- Geometry and surface state effects on the mechanical response of Au nanostructures
- Microstructural evolution and its effect on the mechanical properties of Cu–Ag microcomposites
- Deformation behaviour of strontium titanate between room temperature and 1800 K under ambient pressure
- The deformation response of ultra-thin polymer films on steel sheet in a tensile straining test: the role of slip bands emerging at the polymer/metal interface
- Influence of dissolved gas molecules on the size recovery kinetics of cold-rolled BPA-PC
- Comparison between Monte Carlo and Cluster Variation method calculations in the BCC Fe–Al system including tetrahedron interactions
- Experimental study and Cluster Variation modelling of the A2/B2 equilibria at the titanium-rich side of the Ti–Fe system
- Phases and phase equilibria in the Fe–Al–Zr system
- On the plate-like τ-phase formation in MnAl–C alloys
- Articles Applied
- The grain boundary hardness in austenitic stainless steels studied by nanoindentations
- The effect of grain size on the mechanical properties of nanonickel examined by nanoindentation
- Microstructures and mechanical properties of V–V3Si eutectic composites
- Grain boundary characterization and grain size measurement in an ultrafine-grained steel
- On the determination of the volume fraction of Ni4Ti3 precipitates in binary Ni-rich NiTi shape memory alloys
- Mechanical properties of NiAl–Cr alloys in relation to microstructure and atomic defects
- Characterization of the cyclic deformation behaviour and fatigue crack initiation on titanium in physiological media by electrochemical techniques
- Effect of prestraining on high-temperature fatigue behaviour of two Ni-base superalloys
- Influence of surface defects and edge geometry on the bending strength of slip-cast ZrO2 micro-specimens
- Tensile failure in a superplastic alumina
- Notifications/Mitteilungen
- Personal/Personelles
- Conferences/Konferenzen