Home Technology Comparison between Monte Carlo and Cluster Variation method calculations in the BCC Fe–Al system including tetrahedron interactions
Article
Licensed
Unlicensed Requires Authentication

Comparison between Monte Carlo and Cluster Variation method calculations in the BCC Fe–Al system including tetrahedron interactions

  • Cláudio G. Schön , Gerhard Inden EMAIL logo and Luiz T. F. Eleno
Published/Copyright: February 14, 2022

Abstract

The BCC Fe –Al system has been modeled with the Monte Carlo (MC) method in the grand-canonical ensemble calculation using the Ising model. The present calculation was performed in isothermal conditions with a computer crystal with 483 atoms at 1000 K. The interaction parameters for this calculation were taken from a previous Cluster Variation Method (CVM), which included tetrahedron interactions. The comparison of the integral thermodynamic properties (internal energy and equilibrium alloy composition) obtained in both calculations shows good agreement. Small deviations are observed only in the neighborhood of the second-order B2/A2 critical composition.


Dedicated to Professor Dr. Peter Neumann on the occasion of his 65th birthday

Prof. Gerhard Inden Max-Planck-Institut für Eisenforschung GmbH Postfach 14 04 44, D-40074 Düsseldorf, Germany Fax: +49 211 6792 537

  1. The authors gratefully acknowledge the financial support of this work by the German Academic Exchange Office (DAAD) under grant A/93/17173 and by the São Paulo State Research Funding Agency (FAPESP, Brazil) under grants 1997/13761-5, 1999/07570-8 and 2001/04881-4.

References

[1] C.G. Schön: Ph.D. thesis, Universität Dortmund, Germany (1998).Search in Google Scholar

[2] I. Ohnuma, C.G. Schön, R. Kainuma, G. Inden, K. Ishida: Acta Mater. 46 (1998) 2083.10.1016/S1359-6454(97)00376-5Search in Google Scholar

[3] C.G. Schön, G. Inden: Acta Mater. 46 (1998) 4219.10.1016/S1359-6454(98)00096-2Search in Google Scholar

[4] C. Colinet: Calphad 25 (2001) 607.10.1016/S0364-5916(02)00011-1Search in Google Scholar

[5] L.T.F. Eleno, C.G. Schön, J. Balun, G. Inden: Intermetallics 11 (2003) 1245.10.1016/S0966-9795(03)00165-1Search in Google Scholar

[6] L.T.F. Eleno, C.G. Schön: Calphad 27 (2003) 335.10.1016/j.calphad.2003.11.003Search in Google Scholar

[7] W.A. Oates, H. Wenzl, T. Mohri: Calphad 20 (1996) 37.10.1016/0364-5916(96)00011-9Search in Google Scholar

[8] P.G. Gonzales-Ormeño, H.M. Petrilli, C.G. Schön: Calphad 26 (2002) 573.10.1016/S0364-5916(02)80009-8Search in Google Scholar

[9] W.A. Oates, H. Wenzl: Scripta Mater. 35 (1996) 623.10.1016/1359-6462(96)00198-4Search in Google Scholar

[10] A. Kusoffsky, B. Sundman: Z. Metallkd. 89 (1998) 836.Search in Google Scholar

[11] W.A. Oates, F. Zhang, S.L. Chen, Y.A. Chang: Phys. Rev. B 59 (1999) 11221.10.1103/PhysRevB.59.11221Search in Google Scholar

[12] S.K. Aggarval, T. Tanaka: Phys. Rev. B 16 (1977) 3963.10.1103/PhysRevB.16.3963Search in Google Scholar

[13] D. De Fontaine: Solid State Phys. 47 (1994) 33.10.1016/S0081-1947(08)60639-6Search in Google Scholar

[14] K. Huang: Statistical Mechanics, John Wiley and Sons, New York, USA, 2nd Ed. (1987).Search in Google Scholar

[15] H. Ackermann, S. Crusius, G. Inden: Acta Metall. Mater. 34 (1986) 2311.10.1016/0001-6160(86)90134-3Search in Google Scholar

[16] G. Inden, W. Pepperhoff: Z. Metallkd. 81 (1990) 770.10.1515/ijmr-1990-811011Search in Google Scholar

[17] H. Kleykamp, H. Glasbrenner: Z. Metallkd. 88 (1997) 230.Search in Google Scholar

[18] C.G. Schön, G. Inden: J. Chim. Phys. PCB 94 (1997) 1143.10.1051/jcp/1997941143Search in Google Scholar

[19] D. De Fontaine, A. Finel, T. Mohri: Scripta Metall. Mater. 20 (1986) 1045.10.1016/0036-9748(86)90433-3Search in Google Scholar

[20] R. Tetot, A. Finel, F. Ducastelle: J. Stat. Phys. 61 (1990) 121.10.1007/BF01013956Search in Google Scholar

[21] P.E.A. Turchi, A. Finel: Phys. Rev. B 46 (1992) 702.10.1103/PhysRevB.46.702Search in Google Scholar

[22] C. Bichara, G. Inden: Prog. Theor. Phys. Supp. 115 (1994) 171.10.1143/PTPS.115.171Search in Google Scholar

[23] L.G. Ferreira, C. Wolverton, A. Zunger: J. Chem. Phys. 108 (1998) 2912.10.1063/1.475695Search in Google Scholar

[24] K. Hack: The SGTE casebook: Thermodynamics at work, Materials Modelling Series, The Institute of Metals, London, UK (1996).Search in Google Scholar

[25] G. Inden, W. Pitsch: Atomic Ordering, Vol. 5 of Materials Science and Technology, Chap. 9, VCH, Weinheim, Germany (1991) 497.Search in Google Scholar

[26] O. Kubaschewsky: Iron-binary phase diagrams, Springer Verlag, Berlin (1982).Search in Google Scholar

[27] C. Bichara, G. Inden: Scripta Metall. Mater. 25 (1991) 2607.10.1016/0956-716X(91)90077-ESearch in Google Scholar

[28] O. Ikeda, I. Ohnuma, R. Kainuma, K. Ishida: Intermetallics 9 (2001) 755.10.1016/S0966-9795(01)00058-9Search in Google Scholar

[29] K. Binder, D. Staufer, in: Applications of Monte Carlo Method in Statistical Physics, Topics in current physics, Chap. 1, Springer Verlag, Berlin, Germany (1984).10.1007/978-3-642-96788-7Search in Google Scholar

[30] C.G. Schön, G. Inden: Comp. Mat. Sci. 20 (2001) 98.10.1016/S0927-0256(00)00131-2Search in Google Scholar

[31] J. Andersson, A.F. Guillermet, M. Hillert, B. Jansson, B. Sundman: Acta Metall. Mater. 34 (1986) 437.10.1016/0001-6160(86)90079-9Search in Google Scholar

[32] J. Wolff, M. Franz, A. Broska, R. Kerl, M. Weinhagen, B. Köhler, M. Brauer, F. Faupel, T. Hehenkamp: Intermetallics 7 (1999) 289.10.1016/S0966-9795(98)00105-8Search in Google Scholar

[33] C. Colinet, G. Inden, R. Kikuchi: Acta Metall. Mater. 41 (1993) 1109.10.1016/0956-7151(93)90159-PSearch in Google Scholar

[34] W. Schweika: Materials Research Society Symposium Proceedings 166 (1990) 249.10.1557/PROC-166-249Search in Google Scholar

[35] A. Pelizzola: Phys. Rev. E 61 (2000) 4915.10.1103/PhysRevE.61.4915Search in Google Scholar

[36] A. Lipowski, M. Suzuki: J. Phys. Soc. Jpn. 61 (1992) 4356.10.1143/JPSJ.61.4356Search in Google Scholar

[37] A. Pelizzola: Phys. Rev. E 49 (1994) R2503.10.1103/PhysRevE.49.R2503Search in Google Scholar PubMed

[38] A. Pelizzola: Phys. Rev. E 53 (1996) 5825.10.1103/PhysRevE.53.5825Search in Google Scholar

[39] C.G. Schön, G. Inden: J. Magn. Magn. Mater. 234 (2001) 520.10.1016/S0304-8853(01)00420-6Search in Google Scholar

[40] W. Köster, T. Gödecke: Z. Metallkd. 71 (1980) 765.10.1515/ijmr-1980-711201Search in Google Scholar

[41] O. Ikeda, I. Ohnuma, R. Kainuma, K. Ishida: Intermetallics 9 (2001) 755.10.1016/S0966-9795(01)00058-9Search in Google Scholar

Received: 2004-01-06
Accepted: 2004-02-19
Published Online: 2022-02-14

© 2004 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Thermally assisted motion of dislocations in solid solution-strengthened fcc alloys and the concept of “stress equivalence”
  6. From single to collective dislocation glide instabilities: A hierarchy of scales, embracing the Neumann strain bursts
  7. Geometry and surface state effects on the mechanical response of Au nanostructures
  8. Microstructural evolution and its effect on the mechanical properties of Cu–Ag microcomposites
  9. Deformation behaviour of strontium titanate between room temperature and 1800 K under ambient pressure
  10. The deformation response of ultra-thin polymer films on steel sheet in a tensile straining test: the role of slip bands emerging at the polymer/metal interface
  11. Influence of dissolved gas molecules on the size recovery kinetics of cold-rolled BPA-PC
  12. Comparison between Monte Carlo and Cluster Variation method calculations in the BCC Fe–Al system including tetrahedron interactions
  13. Experimental study and Cluster Variation modelling of the A2/B2 equilibria at the titanium-rich side of the Ti–Fe system
  14. Phases and phase equilibria in the Fe–Al–Zr system
  15. On the plate-like τ-phase formation in MnAl–C alloys
  16. Articles Applied
  17. The grain boundary hardness in austenitic stainless steels studied by nanoindentations
  18. The effect of grain size on the mechanical properties of nanonickel examined by nanoindentation
  19. Microstructures and mechanical properties of V–V3Si eutectic composites
  20. Grain boundary characterization and grain size measurement in an ultrafine-grained steel
  21. On the determination of the volume fraction of Ni4Ti3 precipitates in binary Ni-rich NiTi shape memory alloys
  22. Mechanical properties of NiAl–Cr alloys in relation to microstructure and atomic defects
  23. Characterization of the cyclic deformation behaviour and fatigue crack initiation on titanium in physiological media by electrochemical techniques
  24. Effect of prestraining on high-temperature fatigue behaviour of two Ni-base superalloys
  25. Influence of surface defects and edge geometry on the bending strength of slip-cast ZrO2 micro-specimens
  26. Tensile failure in a superplastic alumina
  27. Notifications/Mitteilungen
  28. Personal/Personelles
  29. Conferences/Konferenzen
Downloaded on 30.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2004-0094/html
Scroll to top button