Home Technology On the determination of the volume fraction of Ni4Ti3 precipitates in binary Ni-rich NiTi shape memory alloys
Article
Licensed
Unlicensed Requires Authentication

On the determination of the volume fraction of Ni4Ti3 precipitates in binary Ni-rich NiTi shape memory alloys

  • Antonín Dlouhý EMAIL logo , Jafar Khalil-Allafi and Gunther Eggeler
Published/Copyright: February 14, 2022

Abstract

The size distributions and volume fractions of Ni4Ti3 precipitates in Ni-rich Ni –Ti shape memory alloys affect their mechanical and functional properties. In the present work precipitate sizes and volume fractions were measured after various thermo-mechanical treatments using transmission electron microscopy (TEM) in combination with quantitative metallography. TEM tilting experiments revealed that the Ni4Ti3 particles have a disk-like shape with a disk diameter D and a disk thickness t. These two parameters together with the number density of particles per unit volume were determined after stress-free and stress-assisted aging at 400, 500 and 530 °C. Volume fraction results are presented after different thermo-mechanical treatments and our quantitative metallographic procedure is documented.


Dedicated to Professor Dr. Peter Neumann on the occasion of his 65th birthday

Dr. Antonín Dlouhý Institute of Physics of Materials Academy of Sciences of the Czech Republic Žižkova 22 CZ-61662 Brno Czech Republic Tel.: +42 532 290 412 Fax: +42 541 218 657

  1. A. D. acknowledges the travelling support received from the Academy of Sciences of the Czech Republic under contract number S2041001. J. K.-A. and G. E. acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) through Sonderforschungsbereich 459 (Project A8).

References

[1] M. Fremond, S. Miyazaki: Shape Memory Alloys, CISM – Springer Verlag, New York (1996).10.1007/978-3-7091-4348-3Search in Google Scholar

[2] T. Saburi, in: K. Otsuka, C.M. Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge (1998) 49.Search in Google Scholar

[3] Y.S. Kim, S. Miyazaki, in: A. Pelton, D. Hodgson, T. Duering (Eds.), SMST-97 Proceedings, Pacific Grove CA (1997) 473.Search in Google Scholar

[4] S. Miyazaki, in: K. Otsuka, C.M.Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge (1998) 267.Search in Google Scholar

[5] T. Duerig, A. Pelton, D. Stöckel: Mat. Sci. Eng. A 273–275 (1999) 149.10.1016/S0921-5093(99)00294-4Search in Google Scholar

[6] J. Van Humbeeck: Mat. Sci. Eng. A 273–275 (1999) 134.10.1016/S0921-5093(99)00293-2Search in Google Scholar

[7] P. Sittner, D. Vokoun, G.N. Dayananda, R. Stalmans: Mat. Sci. Eng. A 286 (2000) 298.10.1016/S0921-5093(00)00816-9Search in Google Scholar

[8] K. Otsuka, C.M. Wayman, in: K. Otsuka, C.M. Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge (1998) 1.Search in Google Scholar

[9] T. Tadaki, Y. Nakata, K. Shimizu, K. Otsuka: Trans. JIM 27 (1986) 731.10.2320/matertrans1960.27.731Search in Google Scholar

[10] D.Y. Li, L.Q. Chen: Acta mater. 46 (1998) 639.10.1016/S1359-6454(97)00241-3Search in Google Scholar

[11] D.Y. Li, L.Q. Chen: Acta mater. 45 (1997) 471.10.1016/S1359-6454(96)00207-8Search in Google Scholar

[12] J. Khalil-Allafi, A. Dlouhy, G. Eggeler: Acta mater. 50 (2002) 4255.10.1016/S1359-6454(02)00257-4Search in Google Scholar

[13] J. Khalil-Allafi, X. Ren, G. Eggeler: Acta mater. 50 (2002) 793.10.1016/S1359-6454(01)00385-8Search in Google Scholar

[14] L. Bataillard, J.-E. Bidaux, R. Gotthardt: Phil. Mag. 78 (1998) 327.10.1080/01418619808241907Search in Google Scholar

[15] P. Filip, K. Mazanec: Scripta mater. 45 (2001) 701.10.1016/S1359-6462(01)01082-XSearch in Google Scholar

[16] A. Dlouhy, J. Khalil-Allafi, G. Eggeler: Phil. Mag. 83 (2003) 339.10.1080/0141861021000034531Search in Google Scholar

[17] K. Gall, H. Sehitoglu, Yu.I. Chumlyakov, I.V. Kireeva, H.J. Maier: Trans. ASME 121 (1999) 28.10.1115/1.2833805Search in Google Scholar

[18] A. Dlouhy, J. Pesicka: Czech J. Phys. B 40 (1990) 539.10.1007/BF01599778Search in Google Scholar

[19] A. Dlouhy, G. Eggeler: Prakt. Met. 33 (1996) 629.10.1515/pm-1996-331204Search in Google Scholar

[20] E.E. Underwood: Quantitative Stereology, Addison-Wesley, Reading Massachusetts (1970) 173.Search in Google Scholar

[21] J.E. Hilliard: Trans. AIME 224 (1962) 906.Search in Google Scholar

[22] J. Brož: Introduction to measurements in physics, SPN, Prague (1967) 43.Search in Google Scholar

[23] H. Sitepu, W.W. Schmahl, J. Khalil Allafi, G. Eggeler, A. Dlouhy, D.M. Többens, M. Tovar: Scripta mater. 46 (2002) 543.10.1016/S1359-6462(02)00032-5Search in Google Scholar

[24] W. Tang, B. Sundmann, R. Sandström, C. Qiu: Acta mater. 47 (1999) 3457.10.1016/S1359-6454(99)00193-7Search in Google Scholar

Received: 2004-01-12
Accepted: 2004-03-04
Published Online: 2022-02-14
Published in Print: 2022-02-14

© 2004 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Thermally assisted motion of dislocations in solid solution-strengthened fcc alloys and the concept of “stress equivalence”
  6. From single to collective dislocation glide instabilities: A hierarchy of scales, embracing the Neumann strain bursts
  7. Geometry and surface state effects on the mechanical response of Au nanostructures
  8. Microstructural evolution and its effect on the mechanical properties of Cu–Ag microcomposites
  9. Deformation behaviour of strontium titanate between room temperature and 1800 K under ambient pressure
  10. The deformation response of ultra-thin polymer films on steel sheet in a tensile straining test: the role of slip bands emerging at the polymer/metal interface
  11. Influence of dissolved gas molecules on the size recovery kinetics of cold-rolled BPA-PC
  12. Comparison between Monte Carlo and Cluster Variation method calculations in the BCC Fe–Al system including tetrahedron interactions
  13. Experimental study and Cluster Variation modelling of the A2/B2 equilibria at the titanium-rich side of the Ti–Fe system
  14. Phases and phase equilibria in the Fe–Al–Zr system
  15. On the plate-like τ-phase formation in MnAl–C alloys
  16. Articles Applied
  17. The grain boundary hardness in austenitic stainless steels studied by nanoindentations
  18. The effect of grain size on the mechanical properties of nanonickel examined by nanoindentation
  19. Microstructures and mechanical properties of V–V3Si eutectic composites
  20. Grain boundary characterization and grain size measurement in an ultrafine-grained steel
  21. On the determination of the volume fraction of Ni4Ti3 precipitates in binary Ni-rich NiTi shape memory alloys
  22. Mechanical properties of NiAl–Cr alloys in relation to microstructure and atomic defects
  23. Characterization of the cyclic deformation behaviour and fatigue crack initiation on titanium in physiological media by electrochemical techniques
  24. Effect of prestraining on high-temperature fatigue behaviour of two Ni-base superalloys
  25. Influence of surface defects and edge geometry on the bending strength of slip-cast ZrO2 micro-specimens
  26. Tensile failure in a superplastic alumina
  27. Notifications/Mitteilungen
  28. Personal/Personelles
  29. Conferences/Konferenzen
Downloaded on 30.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2004-0102/html
Scroll to top button