Startseite Biosensors based on molecular beacons
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Biosensors based on molecular beacons

  • Magdalena Stobiecka EMAIL logo und Agata Chałupa
Veröffentlicht/Copyright: 28. November 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A fundamental molecular beacon (MB) consists of a special short nucleic acid strand with a fluorophore-quencher pair attached to its ends. It provides a unique framework that is susceptible to conformational transitions between a hairpin (closed) conformation and an extended (open) conformation. These two conformations are readily discernible because of their differing fluorescence emission characteristics. The broad applicability of the robust MB sensing platform has attracted widespread interest, resulting in extensive research studies ranging from theoretical and bioanalytical chemistry to molecular biology and biomedical applications. In this paper, the principles of MB design and the modes and mechanisms of MB operation are reviewed, including MB modifications based on the utilisation of a thymidine-thymidine mismatch in hybridised MB stem, aptamers, peptides and locked nucleic acid strands in an MB loop, as well as plasmonic quenchers, quantum dots and interactions with graphene and graphene oxide. Specific applications of MBs in the analysis of enzymes, DNA mutation, phosphorylation, methylation and ligation, followed by the detection of pathogens and applications in cancer and other disease diagnostics and therapeutics are also reviewed. Molecular beacon-based sensing platforms are expanding rapidly and offer a promising bioanalytical tool for inexpensive and reliable analysis for research and field diagnostics.

References

Antony, T., Thomas, T., Sigal, L. H., Shirahata, A., & Thomas, T. J. (2001). A molecular beacon strategy for the thermodynamic characterization of triplex DNA: Triplex formation at the promoter region of cyclin D1. Biochemistry, 40, 9387-9395. DOI: 10.1021/bi010397z.10.1021/bi010397zSuche in Google Scholar PubMed

Bi, S., Ji, B., Zhang, Z. P., & Zhu, J. J. (2013). Metal ions triggered ligase activity for rolling circle amplification and its application in molecular logic gate operations. Chemical Science, 4, 1858-1863. DOI: 10.1039/c3sc00043e.10.1039/c3sc00043eSuche in Google Scholar

Buranachai, C., Thavarungkul, P., & Kanatharana, P. (2012). A novel reconfigurable optical biosensor based on DNA aptamers and a DNA molecular beacon. Journal of Fluorescence, 22, 1617-1625. DOI: 10.1007/s10895-012-1105-6.10.1007/s10895-012-1105-6Suche in Google Scholar PubMed

Campbell, M. A., & Wengel, J. (2011). Locked vs. unlocked nucleic acids (LNA vs. UNA): contrasting structures work towards common therapeutic goals. Chemical Society Reviews, 40, 5680-5689. DOI: 10.1039/c1cs15048k.10.1039/c1cs15048kSuche in Google Scholar PubMed

Chang, H. X., Tang, L. H., Wang, Y., Jiang, J. H., & Li, J. H. (2010). Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Analytical Chemistry, 82, 2341-2346. DOI: 10.1021/ac9025384.10.1021/ac9025384Suche in Google Scholar PubMed

Chen, W., Martinez, G., & Mulchandani, A. (2000). Molecular beacons: a real-time polymerase chain reaction assay for de tecting Salmonella. Analytical Biochemistry, 280, 166-172. DOI: 10.1006/abio.2000.4518.10.1006/abio.2000.4518Suche in Google Scholar PubMed

Chen, A. K., Behlke, M. A., & Tsourkas, A. (2008). Efficient cytosolic delivery of molecular beacon conjugates and flow cytometric analysis of target RNA. Nucleic Acids Research, 36, e69. DOI: 10.1093/nar/gkn331.10.1093/nar/gkn331Suche in Google Scholar PubMed PubMed Central

Chen, J., Huang, Y., Shi, M., Zhao, S. L., & Zhao, Y. C. (2013). Highly sensitive multiplexed DNA detection using multi-walled carbon nanotube-based multicolor nanobeacon. Talanta, 109, 160-166. DOI: 10.1016/j.talanta.2013.02.003.10.1016/j.talanta.2013.02.003Suche in Google Scholar PubMed

Cissell, K. A., Hunt, E. A., & Deo, S. K. (2009). Resonance energy transfer methods of RNA detection. Analytical and Bioanalytical Chemistry, 393, 125-135. DOI: 10.1007/s00216-008-2336-x.10.1007/s00216-008-2336-xSuche in Google Scholar PubMed

Culha, M., Stokes, D. L., Griffin, G. D., & Vo-Dinh, T. (2004). Application of a miniature biochip using the molecular beacon probe in breast cancer gene BRCA1 detection. Biosensors and Bioelectronics, 19, 1007-1012. DOI: 10.1016/j.bios.2003.09.006.10.1016/j.bios.2003.09.006Suche in Google Scholar PubMed

Deng, D., Zhang, D. Y., Li, Y., Achilefu, S., & Gu, Y. Q. (2013). Gold nanoparticles based molecular beacons for in vitro and in vivo detection of the matriptase expression on tumor. Biosensors and Bioelectronics, 49, 216-221. DOI: 10.1016/j.bios.2013.05.018.10.1016/j.bios.2013.05.018Suche in Google Scholar PubMed

Dong, H. F., Ding, L., Yan, F., Ji, H. X., & Ju, H. X. (2011). The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials, 32, 3875-3882. DOI: 10.1016/j.biomaterials.2011.02.001.10.1016/j.biomaterials.2011.02.001Suche in Google Scholar PubMed

Dong, H. F., Hao, K. H., Tian, Y. P., Jin, S., Lu, H. T., Zhou, S. F., & Zhang, X. J. (2014). Label-free and ultra sensitive microRNA detection based on novel molecular beacon binding readout and target recycling amplification. Biosensors and Bioelectronics, 53, 377-383. DOI: 10.1016/j.bios.2013.09.061.10.1016/j.bios.2013.09.061Suche in Google Scholar PubMed

Fang, X. H., Li, J. W. J., & Tan, W. H. (2000). Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA. Analytical Chemistry, 72, 3280-3285. DOI: 10.1021/ac991434j.10.1021/ac991434jSuche in Google Scholar PubMed

Fang, X. H., Jiang, W., Han, X. W., & Zhang, Y. Z. (2013). Molecular beacon based biosensor for the sequence-specific detection of DNA using DNA-capped gold nanoparticlesstreptavidin conjugates for signal amplification. Microchimica Acta, 180, 1271-1277. DOI: 10.1007/s00604-013-1044-1.10.1007/s00604-013-1044-1Suche in Google Scholar

Foudeh, A. M., Daoud, J. T., Faucher, S. P., Veres, T., & Tabrizian, M. (2014). Sub-femtomole detection of 16s rRNA from Legionella pneumophila using surface plasmon resonance imaging. Biosensors and Bioelectronics, 52, 129-135. DOI: 10.1016/j.bios.2013.08.032.10.1016/j.bios.2013.08.032Suche in Google Scholar PubMed

Gao, Y., Li, Y., Zou, X., Huang, H., & Su, X. G. (2012). Highly sensitive and selective detection of biothiols using graphene oxide-based ”molecular beacon”-like fluorescent probe. Analytica Chimica Acta, 731, 68-74. DOI: 10.1016/j.aca.2012.04.020.10.1016/j.aca.2012.04.020Suche in Google Scholar PubMed

Gormally, E., Vineis, P., Matullo, G., Veglia, F., Carboux, E., Le Roux, E., Peluso, M., Garte, S., Guarrera, S., Munnia, A., Airoldi, L., Autrup, H., Malaveille, C., Dunning, A., Overvad, K., Tjønneland, A., Lund, E., Clavel-Chapelon, F., Boeing, H., Trichopoulou, A., Palli, D., Krogh, V., Tumino, R., Panico, S., Bueno-de-Mesquita, H. B., Peeters, P. H., Pera, G., Martinez, C., Dorronsoro, M., Barricarte, A., Navarro, C., Ramón Quirós, J., Hallmans, G., Day, N. E., Key, T. J., Saracci, R., Kaaks, R., Riboli, E., & Hainaut, P. (2006). TP53 and KRAS2 mutations in plasma DNA of healthy subjects and subsequent cancer occurrence: a prospective study. Cancer Research, 66, 6871-6876. DOI: 10.1158/0008-5472.can-05-4556. 10.1158/0008-5472.CAN-05-4556Suche in Google Scholar PubMed

Han, H. J., Zylstra, J., & Maye, M. M. (2011). Direct attachment of oligonucleotides to quantum dot interfaces. Chemistry of Materials, 23, 4975-4981. DOI: 10.1021/cm2021593.10.1021/cm2021593Suche in Google Scholar

He, J. L., Wu, Z. S., Zhang, S. B., Shen, G. L., & Yu, R. Q. (2010). Fluorescence aptasensor based on competitivebinding for human neutrophil elastase detection. Talanta, 80, 1264-1268. DOI: 10.1016/j.talanta.2009.09.019.10.1016/j.talanta.2009.09.019Suche in Google Scholar PubMed

He, X. X., Ni, X. Q., Wang, Y. H., Wang, K. M., & Jian, L. X. (2011). Electrochemical detection of nicotinamide adenine dinucleotide based on molecular beacon-like DNA and E. coli DNA ligase. Talanta, 83, 937-942. DOI: 10.1016/j.talanta.2010.10.051.10.1016/j.talanta.2010.10.051Suche in Google Scholar

Hepel, M., & Stobiecka, M. (2011). Comparative kinetic model of fluorescence enhancement in selective binding of monochlorobimane to glutathione. Journal of Photochemistry and Photobiology A: Chemistry, 225, 72-80. DOI: 10.1016/j.jphotochem.2011.09.028.10.1016/j.jphotochem.2011.09.028Suche in Google Scholar

Hepel, M., Stobiecka, M., Peachey, J., & Miller, J. (2012). Intervention of glutathione in pre-mutagenic catechol-mediated DNA damage in the presence of copper(II) ions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 735, 1-11. DOI: 10.1016/j.mrfmmm.2012.05.005.10.1016/j.mrfmmm.2012.05.005Suche in Google Scholar

Huang, J. H., Zheng, Q. B., Kim, J. K., & Li, Z. G. (2013). A molecular beacon and graphene oxide-based fluorescent biosensor for Cu2+ detection. Biosensors and Bioelectronics, 43, 379-383. DOI: 10.1016/j.bios.2012.12.056.10.1016/j.bios.2012.12.056Suche in Google Scholar

Jo, S. M., Kim, Y.W., Jeong, Y. S., Oh, Y. H., Park, K. C., & Kim, H. S. (2013). Rapid detection of exon 2-deleted AIMP2 mutation as a potential biomarker for lung cancer by molecular beacons. Biosensors and Bioelectronics, 46, 142-149. DOI: 10.1016/j.bios.2013.02.037.10.1016/j.bios.2013.02.037Suche in Google Scholar

Khandelwal, G., & Bhyravabhotla, J. (2010). A phenomenological model for predicting melting temperatures of DNA sequences. PLoS ONE, 5, e12433: 12431-12439. DOI: 10.1371/ journal.pone.0012433.Suche in Google Scholar

Kihara, T., Yoshida, N., Kitagawa, T., Nakamura, C., Nakamura, N., & Miyake, J. (2010). Development of a novel method to detect intrinsic mRNA in a living cell by using a molecular beacon-immobilized nanoneedle. Biosensors and Bioelectronics, 26, 1449-1454. DOI: 10.1016/j.bios.2010.07. 079.Suche in Google Scholar

Kim, M. Y., Kim, J., & Hah, S. S. (2012). Poly(A)-targeting molecular beacons: Fluorescence resonance energy transferbased in vitro quantitation and time-dependent imaging in live cells. Analytical Biochemistry, 429, 92-98. DOI: 10.1016/j.ab.2012.07.010.10.1016/j.ab.2012.07.010Suche in Google Scholar

Kostrikis, L. G., Tyagi, S., Mhlanga, M. M., Ho, D. D., & Kramer, F. R. (1998). Molecular beacons. Spectral genotyping of human alleles. Science, 279, 1228-1229. DOI: 10.1126/science.279.5354.1228.10.1126/science.279.5354.1228Suche in Google Scholar

Li, J. J., Fang, X. H., Schuster, S. M., & Tan, W. H. (2000a). Molecular beacons: A novel approach to detect protein-DNA interactions. Angewandte Chemie International Edition, 39, 1049-1052. DOI: 10.1002/(sici)1521-3773(20000317)39:6<1049::aid-anie1049>3.0.co;2-2.10.1002/(SICI)1521-3773(20000317)39:6<1049::AID-ANIE1049>3.0.CO;2-2Suche in Google Scholar

Li, J. J., Geyer, R., & Tan, W. (2000b). Using molcular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Research, 28, E52.10.1093/nar/28.11.e52Suche in Google Scholar

Li, J., Yan, H. F., Wang, K., Tan, W. H., & Zhou, X. W. (2007). Hairpin fluorescence DNA probe for real-time monitoring of DNA methylation. Analytical Chemistry, 79, 1050-1056. DOI: 10.1021/ac061694i.10.1021/ac061694iSuche in Google Scholar

Li, J., Cao, Z. C., Tang, Z.W.,Wang, K., & Tan, W. H. (2008a). Molecular beacons for protein-DNA interaction studies. In A. Marx, & O. Seitz (Eds.), Molecular beacons: Signalling nucleic acid probes, methods, and protocols (Vol. 429, pp. 209-224). Totowa, NJ, USA: Humana Press. DOI: 10.1007/978-1-60327-040-3 15. Li, X. M., Song, C., Zhao, M. P., & Li, Y. Z. (2008b). Continuous monitoring of restriction endonuclease cleavage activity by universal molecular beacon light quenching coupled with real-time polymerase chain reaction. Analytical Biochemistry, 381, 1-7. DOI: 10.1016/j.ab.2008.06.027.10.1016/j.ab.2008.06.027Suche in Google Scholar PubMed

Li, N., & Wong, P. K. (2010). Transfection of molecular beacons in microchannels for single cell gene expression analysis. Bioanalysis, 2, 1689-1699. DOI: 10.4155/bio.10.116.10.4155/bio.10.116Suche in Google Scholar PubMed

Li, D., Song, S., & Fan, C. H. (2010). Target-responsive structural switching for nucleic acid-based sensors. Accounts of Chemical Research, 43, 631-641. DOI: 10.1021/ar900245u.10.1021/ar900245uSuche in Google Scholar PubMed

Li, F., Du, Z. F., Yang, L. M., & Tang, B. (2013a). Selective and sensitive turn-on detection of adenosine triphosphate and thrombin based on bifunctional fluorescent oligonucleotide probe. Biosensors and Bioelectronics, 41, 907-910. DOI: 10.1016/j.bios.2012.10.007.10.1016/j.bios.2012.10.007Suche in Google Scholar PubMed

Li, M., Zhou, X. J., Guo, S. W., & Wu, N. Q. (2013b). Detection of lead (II) with a ”turn on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosensors and Bioelectronics, 43, 69-74. DOI: 10.1016/j.bios.2012.11.039.10.1016/j.bios.2012.11.039Suche in Google Scholar PubMed

Li, Z., Wang, Y. J., Liu, Y., Zeng, Y. Y., Huang, A. M., Peng, N. C., Liu, X. L., & Liu, J. F. (2013c). A novel aptasensor for the ultra-sensitive detection of adenosine triphosphate via aptamer/quantum dot based resonance energy transfer. Analyst, 138, 4732-4736. DOI: 10.1039/c3an00449j.10.1039/c3an00449jSuche in Google Scholar PubMed

Li, B., Li, Z. L., Situ, B., Dai, Z., Liu, Q. L., Wang, Q., Gu, D., & Zheng, L. (2014). Sensitive HIV-1 detection in ahomogeneous solution based on an electrochemical molecular beacon coupled with a nafion-graphene composite film modified screen-printed carbon electrode. Biosensors and Bioelectronics, 52, 330-336. DOI: 10.1016/j.bios.2013.09.016.10.1016/j.bios.2013.09.016Suche in Google Scholar PubMed

Liang, Y., Zhang, Z. P., Wei, H. P., Hu, Q. X., Deng, J. Y., Guo, D., Cui, Z. Q., & Zhang, X. E. (2011). Aptamer beacons for visualization of endogenous protein HIV-1 reverse transcriptase in living cells. Biosensors and Bioelectronics, 28, 270-276. DOI: 10.1016/j.bios.2011.07.031.10.1016/j.bios.2011.07.031Suche in Google Scholar PubMed

Liu, L. F., Tang, Z. W., Wang, K. M., Tan, W. H., Li, J., Guo, Q. P., Meng, X. X., & Ma, C. B. (2005). Using molecular beacon to monitor activity of E. coli DNA ligase. Analyst, 130, 350-357. DOI: 10.1039/b413959c.10.1039/b413959cSuche in Google Scholar PubMed

Liu, C., Zeng, G. M., Tang, L., Zhang, Y., Li, Y. P., Liu, Y. Y., Li, Z., Wu, M. S., & Luo, J. (2011). Electrochemical detection of Pseudomonas aeruginosa 16S rRNA using a biosensor based on immobilized stem-loop structured probe. Enzyme and Microbial Technology, 49, 266-271. DOI: 10.1016/j.enzmictec.2011.06.011.10.1016/j.enzmictec.2011.06.011Suche in Google Scholar PubMed

Liu, X. J., Chen, M. Q., Hou, T., Wang, X. Z., Liu, S. F., & Li, F. (2013). A novel electrochemical biosensor for label-free detection of uracil DNA glycosylase activity based on enzyme-catalyzed removal of uracil bases inducing strand release. Electrochimica Acta, 113, 514-518. DOI: 10.1016/j.electacta.2013.09.131.10.1016/j.electacta.2013.09.131Suche in Google Scholar

Liu, J. C., Guan, Z., Lv, Z. Z., Jiang, X. L., Yang, S. M., & Chen, A. L. (2014). Improving sensitivity of gold nanoparticle based fluorescence quenching and colorimetric aptasensor by using water resuspended gold nanoparticle. Biosensors and Bioelectronics, 52, 265-270. DOI: 10.1016/j.bios.2013.08.059.10.1016/j.bios.2013.08.059Suche in Google Scholar PubMed

Lo, P. C., Chen, J., Stefflova, K., Warren, M. S., Navab, R., Bandarchi, B., Mullins, S., Tsao, M., Cheng, J. D., & Zheng, G. (2009). Photodynamic molecular beacon triggered by fibroblast activation protein on cancer-associated fibroblasts for diagnosis and treatment of epithelial cancers. Journal of Medicinal Chemistry, 52, 358-368. DOI: 10.1021/jm801052f.10.1021/jm801052fSuche in Google Scholar PubMed PubMed Central

Lu, Y., Li, X. C., Zhang, L., Yu, P., Su, L., & Mao, L. Q. (2008). Aptamer-based electrochemical sensors with aptamer-complementary DNA oigonucleotides as probe. Analytical Chemistry, 80, 1883-1890. DOI: 10.1021/ac7018014. 10.1021/ac7018014Suche in Google Scholar PubMed

Lubin, A. A., & Plaxco, K. W. (2010). Folding-based electrochemical biosensors: The case for responsive nucleic acid architectures. Accounts of Chemical Research, 43, 496-505. DOI: 10.1021/ar900165x.10.1021/ar900165xSuche in Google Scholar PubMed PubMed Central

Ma, C. B., Tang, Z. W., Huo, X. Q., Yang, X. H., Li, W., & Tan, W. H. (2008). Real-time monitoring of double-stranded DNA cleavage using molecular beacons. Talanta, 76, 458-461. DOI: 10.1016/j.talanta.2008.03.038.10.1016/j.talanta.2008.03.038Suche in Google Scholar PubMed

Ma, C. B., & Yeung, E. S. (2010). Highly sensitive detection of DNA phosphorylation by counting single nanoparticles. Analytical and Bioanalytical Chemistry, 397, 2279-2284. DOI: 10.1007/s00216-010-3801-x.10.1007/s00216-010-3801-xSuche in Google Scholar PubMed

Ma, C. B. (2012). Highly sensitive detection of alkaline phosphatase using molecular beacon probes based on enzymatic polymerization. Molecular and Cellular Probes, 26, 113-115. DOI: 10.1016/j.mcp.2012.03.005.10.1016/j.mcp.2012.03.005Suche in Google Scholar PubMed

Majlessi, M., Nelson, N. C., & Becker, M. M. (1998). Advantages of 2’-O-methyl oligoribonucleotide probes for detecting RNA targets. Nucleic Acids Research, 26, 2224-2229. DOI: 10.1093/nar/26.9.2224.10.1093/nar/26.9.2224Suche in Google Scholar PubMed PubMed Central

Maxwell, D. J., Taylor, J. R., & Nie, S. (2002). Self-assembled nanoparticle probes for recognition and detection of biomolecules. Journal of the American Chemical Society, 124, 9606-9612. DOI: 10.1021/ja025814p.10.1021/ja025814pSuche in Google Scholar PubMed

Medley, C. D., Drake, T. J., Tomasini, J. M., Rogers, R. J., & Tan, W. H. (2005). Simultaneous monitoring of the expression of multiple genes inside of single breast carcinoma cells. Analytical Chemistry, 77, 4713-4718. DOI: 10.1021/ac050881y.10.1021/ac050881ySuche in Google Scholar PubMed

Nguyen, B., & Wilson, W. D. (2009). The effects of hairpin loops on ligand-DNA interactions. The Journal of Physical Chemistry B, 113, 14329-14335. DOI: 10.1021/jp904830m.10.1021/jp904830mSuche in Google Scholar PubMed PubMed Central

Pande, V., & Nilsson, L. (2008). Insights into structure, dynamics and hydration of locked nucleic acid (LNA) strand-based duplexes from molecular dynamics simulations. Nucleic Acids Research, 36, 1508-1516. DOI: 10.1093/nar/gkm1182.10.1093/nar/gkm1182Suche in Google Scholar PubMed PubMed Central

Peng, X. H., Cao, Z. H., Xia, J. T., Carlson, G. W., Lewis, M. M., Wood, W. C., & Yang, L. (2005). Real-time detection of gene expression in cancer cells using molecular beacon imaging: New strategies for cancer research. Cancer Research, 65, 1909-1917. DOI: 10.1158/0008-5472.can-04-3196.10.1158/0008-5472.CAN-04-3196Suche in Google Scholar PubMed

Petersen, K., Vogel, U., Rockenbauer, E., Nielsen, K. V., Kølvraa, S., Bolund, L., & Nexø, B. (2004). Short PNA molecular beacons for real-time PCR allelic discrimination of single nucleotide polymorphisms. Molecular and Cellular Probes, 18, 117-122. DOI: 10.1016/j.mcp.2003.10.003.10.1016/j.mcp.2003.10.003Suche in Google Scholar PubMed

Piao, Y. X., Liu, F., & Seo, T. S. (2012). A novel molecular beacon bearing a graphite nanoparticle as a nanoquencher for in situ mRNA detection in cancer cells. ACS Applied Materials & Interfaces, 4, 6785-6789. DOI: 10.1021/am301976r.10.1021/am301976rSuche in Google Scholar PubMed

Piatek, A. S., Tyagi, S., Pol, A. C., Telenti, A., Miller, L. P., Kramer, F. R., & Alland, D. (1998). Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nature Biotechnology, 16, 359-363. DOI: 10.1038/nbt0498-359.10.1038/nbt0498-359Suche in Google Scholar PubMed

Rai, V., Nyine, Y. T., Hapuarachchi, H. C., Yap, H., Ng, L. C., & Toh, C. S. (2012). Electrochemically amplified molecular beacon biosensor for ultrasensitive DNA sequence-specific detection of Legionella sp. Biosensors and Bioelectronics, 32, 133-140. DOI: 10.1016/j.bios.2011.11.046.10.1016/j.bios.2011.11.046Suche in Google Scholar PubMed

Riccelli, P. V., Mandell, K. E., & Benight, A. S. (2002). Melting studies of dangling-ended DNA hairpins: Effects of end length, loop sequence and biotinylation of loop bases. Nucleic Acids Research, 30, 4088-4093. DOI: 10.1093/nar/gkf514.10.1093/nar/gkf514Suche in Google Scholar PubMed PubMed Central

Rosa, J., Conde, J., de la Fuente, J., Lima, J. C., & Baptista, P. V. (2012). Gold-nanobeacons for real-time monitoring of RNA synthesis. Biosensors and Bioelectronics, 36, 161-167. DOI: 10.1016/j.bios.2012.04.006. 10.1016/j.bios.2012.04.006Suche in Google Scholar PubMed

SantaLucia, J., Jr. (1998). A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Sciences of the United States of America, 95, 1460-1465. DOI: 10.1073/pnas.95.4.1460.10.1073/pnas.95.4.1460Suche in Google Scholar PubMed PubMed Central

Seitz, O. (2000). Solid-phase synthesis of doubly labeled peptide nucleic acids as probes for the real-time detection of hybridization. Angewandte Chemie International Edition, 39, 3249-3252. DOI: 10.1002/1521-3773(20000915)39:18<3249:: aid-anie3249>3.0.co;2-m.Suche in Google Scholar

Sokol, D. L., Zhang, X. L., Lu, P. Z., & Gewitz, A. M. (1998). Real time detection of DNA RNA hybridization in living cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 11538-11543. DOI: 10.1073/pnas.95.20.11538.10.1073/pnas.95.20.11538Suche in Google Scholar PubMed PubMed Central

Stobiecka, M., Deeb, J., & Hepel, M. (2009). Molecularlytemplated polymer matrix films for biorecognition processes: sensors for evaluating oxidative stress and redox buffering capacity. ECS Transactions, 19, 15-32. DOI: 10.1149/1.3253474.10.1149/1.3253474Suche in Google Scholar

Stobiecka, M., Coopersmith, K., & Hepel, M. (2010a). Resonance elastic light scattering (RELS) spectroscopy of fast non-langmuirian ligand-exchange in glutathione-induced gold nanoparticle assembly. Journal of Colloid and Interface Science, 350, 168-177. DOI: 10.1016/j.jcis.2010.06.010.10.1016/j.jcis.2010.06.010Suche in Google Scholar PubMed

Stobiecka, M., Deeb, J., & Hepel, M. (2010b). Ligand exchange effects in gold nanoparticle assembly induced by oxidative stress biomarkers: Homocysteine and cysteine. Biophysical Chemistry, 146, 98-107. DOI: 10.1016/j.bpc.2009.11.001.10.1016/j.bpc.2009.11.001Suche in Google Scholar PubMed

Stobiecka, M., & Hepel, M. (2011a). Effect of buried potential barrier in label-less electrochemical immunodetection of glutathione and glutathione-capped gold nanoparticles. Biosensors and Bioelectronics, 26, 3524-3530. DOI: 10.1016/j.bios.2011.01.038.10.1016/j.bios.2011.01.038Suche in Google Scholar PubMed

Stobiecka, M., & Hepel, M. (2011b). Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles. Physical Chemistry Chemical Physics, 13, 1131-1139. DOI: 10.1039/c0cp00553c.10.1039/C0CP00553CSuche in Google Scholar

Stobiecka, M., Molinero, A. A., ChałlTyagi, S., & Kramer, F. R. (1996). Molecular beacons: Probes that fluoresce upon hybridization. Nature Biotechnology, 14, 303-308. DOI: 10.1038/nbt0396-303.10.1038/nbt0396-303Suche in Google Scholar PubMed

Stobiecka, M. (2014). Novel plasmonic field-enhanced nanoassay for trace detection of proteins. Biosensors and Bioelectronics, 55, 379-385. DOI: 10.1016/j.bios.2013.11.073.10.1016/j.bios.2013.11.073Suche in Google Scholar PubMed

Swathi, R. S., & Sebastian, K. L. (2008). Resonance energy transfer from a dye molecule to graphene. Journal of Chemical Physics, 129, 054703. DOI: 10.1063/1.2956498.10.1063/1.2956498Suche in Google Scholar PubMed

Swathi, R. S., & Sebastian, K. L. (2009). Long range resonance energy transfer from a dye molecule to graphene has (distance)−4 dependence. Journal of Chemical Physics, 130, 086101. DOI: 10.1063/1.3077292.10.1063/1.3077292Suche in Google Scholar PubMed

Tan, W. B., Wang, K., & Drake, T. J. (2004). Molecular beacons. Current Opinion in Chemical Biology, 8, 547-553.10.1016/j.cbpa.2004.08.010Suche in Google Scholar PubMed

Tang, Z.W.,Wang, K. M.,Tan,W.H., Li, J., Liu, L. F.,Guo,Q. P., Meng, X. X., Ma, C. B., & Huang, S. S. (2003). Real-time monitoring of nucleic acid ligation in homogenous solutions using molecular beacons. Nucleic Acids Research, 31, e148. DOI: 10.1093/nar/gng146.10.1093/nar/gng146Suche in Google Scholar PubMed PubMed Central

Tang, Z. W., Wang, K., Tan, W. H., Ma, C. B., Li, J., Liu, L. F., Guo, Q. P., & Meng, X. X. (2005). Real-time investigation of nucleic acids phosphorylation process using molecular beacons. Nucleic Acids Research, 33, e97. DOI: 10.1093/nar/gni096. 10.1093/nar/gni096Suche in Google Scholar PubMed PubMed Central

Vicens, M. C., Sen, A., Vanderlaan, A., Drake, T. J., & Tan, W. H. (2005). Investigation of molecular beacon aptamerbased bioassay for platelet-derived growth factor detection. Chembiochem, 6, 900-907. DOI: 10.1002/cbic.200400308.10.1002/cbic.200400308Suche in Google Scholar PubMed

Vogelstein, B., & Kinzler, K. W. (1999). Digital PCR. Proceedings of the National Academy of Sciences of the United States of America, 96, 9236-9241. DOI: 10.1073/pnas.96.16. 9236.Suche in Google Scholar

Wang, K. M., Tang, Z. W., Yang, C. Y. J., Kim, Y. M., Fang, X. H., Li,W., Wu, Y.R.,Medley, C.D.,Cao, Z.H., Li, J., Colon, P., Lin, H., & Tan, W. H. (2009). Molecular engineering of DNA: Molecular beacons. Angewandte Chemie International Edition, 48, 856-870. DOI: 10.1002/anie.200800370.10.1002/anie.200800370Suche in Google Scholar PubMed PubMed Central

Wang, X. Y., He, P. G., & Fang, Y. Z. (2010). A solidstate electrochemiluminescence biosensing switch for detection of DNA hybridization based on ferrocene-labeled molecular beacon. Journal of Luminescence, 130, 1481-1484. DOI: 10.1016/j.jlumin.2010.03.016.10.1016/j.jlumin.2010.03.016Suche in Google Scholar

Wang, D. Z., Chen, G. J.,Wang, H. M., Tang, W., Pan,W., Li, N., & Liu, F. (2013a). A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation. Biosensors and Bioelectronics, 48, 276-280. DOI: 10.1016/j.bios.2013.04.035.10.1016/j.bios.2013.04.035Suche in Google Scholar PubMed

Wang, D. C., Hu, L. H., Zhou, H. M., Abdel-Halim, E. S., Zhu, J. J. (2013b). Molecular beacon structure mediated rolling circle amplification for ultrasensitive electrochemical detection of microRNA based on quantum dots tagging. Electrochemistry Communications, 33, 80-83. DOI: 10.1016/j.elecom.2013.04.030.10.1016/j.elecom.2013.04.030Suche in Google Scholar

Wood, R. J., McKelvie, J. C., Maynard-Smith, M. D., & Roach, P. L. (2010). A real-time assay for CpG-specific cytosine-C5 methyltransferase activity. Nucleic Acids Research, 38, e107. DOI: 10.1093/nar/gkq047.10.1093/nar/gkq047Suche in Google Scholar PubMed PubMed Central

Wu, Y. R., Yang, C. Y. J., Moroz, L. L., & Tan, W. H. (2008). Nucleic acid beacons for long-term real-time intracellular monitoring. Analytical Chemistry, 80, 3025-3028. DOI: 10.1021/ac702637w.10.1021/ac702637wSuche in Google Scholar PubMed PubMed Central

Xiao, Y., Rowe, A. A., & Plaxco, K. W. (2007). Electrochemical detection of parts-per-billion Lead via an electrode-bound DNAzyme assembly. Journal of the American Chemical Society, 129, 262-263. DOI: 10.1021/ja067278x.10.1021/ja067278xSuche in Google Scholar PubMed

Xu, H., & Hepel, M. (2011). “Molecular beacon”-based fluorescent assay for selective detection of glutathione and cysteine. Analytical Chemistry, 83, 813-819. DOI: 10.1021/ac102850y.10.1021/ac102850ySuche in Google Scholar PubMed

Xue, J. P., Shan, L. L., Chen, H. Y., Li, Y., Zhu, H. Y., Deng, D. W., Qian, Z. Y., Achilefu, S., & Gu, Y. Q. (2013). Visual detection of STAT5B gene expression in living cell using the hairpin DNA modified gold nanoparticle beacon. Biosensors and Bioelectronics, 41, 71-77. DOI: 10.1016/j.bios.2012.06.062.10.1016/j.bios.2012.06.062Suche in Google Scholar PubMed

Ye, Y., & Stivers, J. T. (2010). Fluorescence-based highthroughput assay for human DNA (cytosine-5)-methyltransferase 1. Analytical Biochemistry, 401, 168-172. DOI: 10.1016/j.ab.2010.02.032.10.1016/j.ab.2010.02.032Suche in Google Scholar PubMed PubMed Central

Yi, J. W., Park, J. S., Singh, N. J., Lee, J., II., Kim, K. S., & Kim, B. H. (2011). Quencher-free molecular beacon: Enhancement of the signal-to-background ratio with graphene oxide. Bioorganic & Medicinal Chemistry Letters, 21, 704-706. DOI: 10.1016/j.bmcl.2010.12.004.10.1016/j.bmcl.2010.12.004Suche in Google Scholar PubMed

Yin, H. S., Zhou, Y. L., Zhang, H. X., Meng, X. M., & Ai, S. Y. (2012). Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. Biosensors and Bioelectronics, 33, 247-253. DOI: 10.1016/j.bios.2012.01.014. 10.1016/j.bios.2012.01.014Suche in Google Scholar PubMed

Zeng, X. D., Zhang, X. L., Yang, W., Jia, H. Y., & Li, Y. M. (2012). Fluorescence detection of adenosine triphosphate through an aptamer-molecular beacon multiple probe. Analytical Biochemistry, 424, 8-11. DOI: 10.1016/j.ab.2012.01. 021.Suche in Google Scholar

Zhang, M., Yin, B. C., Tan, W. H., & Ye, B. C. (2011). A versatile graphene-based fluorescence “on/off” switch for multiplex detection of various targets. Biosensors and Bioelectronics, 26, 3260-3265. DOI: 10.1016/j.bios.2010.12.037.10.1016/j.bios.2010.12.037Suche in Google Scholar PubMed

Zhang, J. Q., Wang, Y. S., Xue, J. H., He, Y., Yang, H. X., Liang, J., Shi, L. F., & Xiao, X. L. (2012). A gold nanoparticles-modified aptamer beacon for urinary adenosine detection based on structure-switching/fluorescence- “turning on” mechanism. Journal of Pharmaceutical and Biomedical Analysis, 70, 362-368. DOI: 10.1016/j.jpba.2012. 05.032.Suche in Google Scholar

Zhang, D. W., Zhao, M. M., He, H. Q., & Guo, S. X. (2013a). Real-time monitoring of disintegration activity of catalytic core domain of HIV-1 integrase using molecular beacon. Analytical Biochemistry, 440, 120-122. DOI: 10.1016/j.ab.2013.05.032.10.1016/j.ab.2013.05.032Suche in Google Scholar PubMed

Zhang, J., Sun, Y., Xu, B., Zhang, H., Gao, Y., Zhang, H. Q., & Song, D. Q. (2013b). A novel surface plasmon resonance biosensor based on graphene oxide decorated with gold nanorod-antibody conjugates for determination of transferrin. Biosensors and Bioelectronics, 45, 230-236. DOI: 10.1016/j.bios.2013.02.008.upa, A., & Hepel, M. (2012). Mercury/homocysteine ligation-induced ON/OFFswitching of a T-T mismatch-based oligonucleotide molecular beacon. Analytical Chemistry, 84, 4970-4978. DOI: 10.1021/ac300632u.10.1021/ac300632uSuche in Google Scholar PubMed

Zhang, K., Wang, K., Xie, M. H., Zhu, X., Xu, L., Yang, R. L., Huang, B., & Zhu, X. L. (2014). DNA-templated silver nanoclusters based label-free fluorescent molecular beacon for the detection of adenosine deaminase. Biosensors and Bioelectronics, 52, 124-128. DOI: 10.1016/j.bios.2013.08.049.10.1016/j.bios.2013.08.049Suche in Google Scholar PubMed

Zheng, Y. J., Huang, Z. J., Chen, J., Wang, K., Liu, A. L., Lin, X. H., & Zheng, W. (2013). Enzyme-based E-RNA sensor array with a hairpin probe: Specific detection of gene mutation. Sensors and Actuators B: Chemical, 181, 227-233. DOI: 10.1016/j.snb.2013.01.051.10.1016/j.snb.2013.01.051Suche in Google Scholar

Zhou, Z. X., Du, Y., Zhang, L. B., & Dong, S. J. (2012a). A label-free, G-quadruplex DNAzyme-based fluorescent probe for signal-amplified DNA detection and turn-on assay of endonuclease. Biosensors and Bioelectronics, 34, 100-105. DOI: 10.1016/j.bios.2012.01.024.10.1016/j.bios.2012.01.024Suche in Google Scholar PubMed

Zhou, J., Lu, Q., Tong, Y., Wei, W., & Liu, S. Q. (2012b). Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide. Talanta, 99, 625-630. DOI: 10.1016/j.talanta.2012.06.049. DOI: 10.1016/j.cbpa.2004.08.010.10.1016/j.talanta.2012.06.049Suche in Google Scholar PubMed

Suche in Google Scholar

Received: 2014-4-6
Revised: 2014-5-14
Accepted: 2014-5-16
Published Online: 2014-11-28
Published in Print: 2015-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Biosensors – Topical issue
  2. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
  3. Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
  4. Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
  5. Application of nanomaterials in microbial-cell biosensor constructions
  6. Use of green fluorescent proteins for in vitro biosensing
  7. Biosensors based on molecular beacons
  8. DNA aptamer-based detection of prostate cancer
  9. Can glycoprofiling be helpful in detecting prostate cancer?
  10. Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
  11. Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
  12. Surface plasmon resonance application in prostate cancer biomarker research
  13. Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
  14. Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
  15. Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
  16. Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
  17. Whole-cell optical biosensor for mercury – operational conditions in saline water
  18. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
  19. Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
  20. Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
  21. Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
  22. Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
  23. Can voltammetry distinguish glycan isomers?
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0026/html
Button zum nach oben scrollen