Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
-
Nima Aliakbarinodehi
, Irene Taurino
, Jagdale Pravin , Alberto Tagliaferro , Gianluca Piccinini , Giovanni De Micheli and Sandro Carrara
Abstract
The aim of this work was to demonstrate that various types of nanostructures provide different gains in terms of sensitivity or detection limit albeit providing the same gain in terms of increased area. Commercial screen printed electrodes (SPEs) were functionalized with 100 μg of bismuth oxide nanoparticles (Bi2O3 NPs), 13.5 μg of gold nanoparticles (Au NPs), and 4.8 μg of multi-wall carbon nanotubes (MWCNTs) to sense hydrogen peroxide (H2O2). The amount of nanomaterials to deposit was calculated using specific surface area (SSA) in order to equalize the additional electroactive surface area. Cyclic voltammetry (CV) experiments revealed oxidation peaks of Bi2O3 NPs, Au NPs, and MWCNTs based electrodes at (790 ± 1) mV, (386 ± 1) mV, and (589 ± 1) mV, respectively, and sensitivities evaluated by chronoamperometry (CA) were (74 ± 12) μA mM−1 cm−2, (129 ± 15) μA mM−1 cm−2, and (54 ± 2) μA mM−1 cm−2, respectively. Electrodes functionalized with Au NPs showed better sensing performance and lower redox potential (oxidative peak position) compared with the other two types of nanostructured SPEs. Interestingly, the average size of the tested Au NPs was 4 nm, under the limit of 10 nm where the quantum effects are dominant. The limit of detection (LOD) was (11.1 ± 2.8) μM, (8.0 ± 2.4) μM, and (3.4 ± 0.1) μM for Bi2O3 NPs, Au NPs, and for MWCNTs based electrodes, respectively.
References
Alivisatos, A. P. (1996). Perspectives on the physical chemistry of semiconductor nanocrystals. The Journal of Physical Chemistry, 100, 13226-13239. DOI: 10.1021/jp9535506.10.1021/jp9535506Search in Google Scholar
Banks, C. E., Davies, T. J., Wildgoose, G. G., & Compton, R. G. (2005). Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chemical Communications, 2005, 829-841. DOI: 10.1039/b413177k.10.1039/b413177kSearch in Google Scholar
Boccaccini, A. R., Cho, J., Roether, J. A., Thomas, B. J. C., Minay, E. J., & Shaffer, M. S. P. (2006). Electrophoretic deposition of carbon nanotubes. Carbon, 44, 3149-3160. DOI: 10.1016/j.carbon.2006.06.021.10.1016/j.carbon.2006.06.021Search in Google Scholar
Boero, C., Carrara, S., Del Vecchio, G., Calz`a, L., & De Micheli, G. (2011). Highly sensitive carbon nanotube-based sensing for lactate and glucose monitoring in cell culture. IEEE Transactions on Nanobioscience, 10, 59-67. DOI: 10.1109/tnb.2011.2138157.10.1109/TNB.2011.2138157Search in Google Scholar
Bolotin, K. I., Kuemmeth, F., Pasupathy, A. N., & Ralph, D. C. (2004). Metal-nanoparticle single-electron transistors fabricated using electromigration. Applied Physics Letters, 84, 3154-3156. DOI: 10.1063/1.1695203.10.1063/1.1695203Search in Google Scholar
Bredol, M., & Kaczmarek, M. (2010). Potential of nano-ZnS as electrocatalyst. The Journal of Physical Chemistry A, 114, 3950-3955. DOI: 10.1021/jp907369f.10.1021/jp907369fSearch in Google Scholar
Cadek, M., Murphy, R., McCarthy, B., Drury, A., Lahr, B., Barklie, R. C., In het Panhuis, M., Coleman, J. N., & Blau, W. J. (2002). Optimisation of the arc-discharge production of multi-walled carbon nanotubes. Carbon, 40, 923-928. DOI: 10.1016/s0008-6223(01)00221-4.10.1016/S0008-6223(01)00221-4Search in Google Scholar
Carrara, S., Shumyantseva, V. V., Archakov, A. I., & Samor`ı, B. (2008). Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors. Biosensors & Bioelectronics, 24, 148-150. DOI: 10.1016/j.bios.2008.03.008.10.1016/j.bios.2008.03.008Search in Google Scholar PubMed
Carrara, S., Boero, C., & De Micheli, G. (2009). Quantum dots and wires to improve enzymes-based electrochemical biosensing. In A. Schmid, S. Goel, W. Wang, V. Beiu, & S.Search in Google Scholar
Carrara (Eds.), Nano-net: Lecture notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Vol. 20, pp. 189-199). Berlin, Germany: Springer. DOI: 10.1007/978-3-642-04850-0 26.10.1007/978-3-642-04850-0Search in Google Scholar
Carrara, S., Baj-Rossi, C., Boero, C., & De Micheli, G. (2014). Do carbon nanotubes contribute to electrochemical biosensing? Electrochimica Acta, 128, 102-112. DOI: 10.1016/j.electacta.2013.12.123.10.1016/j.electacta.2013.12.123Search in Google Scholar
Ding, Y., Dong, Y., Bapat, A., Nowak, J. D., Carter, C. B., Kortshagen, U. R., & Campbell, S. A. (2006). Single nanoparticle semiconductor devices. IEEE Transactions on Electron Devices, 53, 2525-2531. DOI: 10.1109/ted.2006.882047.10.1109/TED.2006.882047Search in Google Scholar
Facci, P., Erokhin, V., Carrara, S., & Nicolini, C. (1996). Roomtemperature single-electron junction. Proceedings of the National Academy of Sciences of the United States of America, 93, 10556-10559. DOI: 10.1073/pnas.93.20.10556.10.1073/pnas.93.20.10556Search in Google Scholar PubMed PubMed Central
Feil, W. A., Wessels, B. W., Tonge, L. M., & Marks, T. J. (1990). Organometallic chemical vapor deposition of strontium titanate. Journal of Applied Physics, 67, 3858-3861. DOI: 10.1063/1.345034.10.1063/1.345034Search in Google Scholar
Ge, M., Li, Y., Liu, L., Zhou, Z., & Chen, W. (2011). Bi2O3- Bi2WO6 composite microspheres: Hydrothermal synthesis and photocatalytic performances. The Journal of Physical Chemistry C, 115, 5220-5225. DOI: 10.1021/jp108414e. 10.1021/jp108414eSearch in Google Scholar
German, N., Ramanavicius, A., Voronovic, J., & Ramanaviciene, A. (2012). Glucose biosensor based on glucose oxidase and gold nanoparticles of different sizes covered by polypyrrole layer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 413, 224-230. DOI: 10.1016/j.colsurfa.2012.02.012.10.1016/j.colsurfa.2012.02.012Search in Google Scholar
Ghosh, S. K., & Pal, T. (2007). Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chemical Reviews, 107, 4797-4862. DOI: 10.1021/cr0680282.10.1021/cr0680282Search in Google Scholar PubMed
Guascito, M. R., Chirizzi, D., Picca, R. A., Mazzotta, E., & Malitesta, C. (2011). Ag nanoparticles capped by a nontoxic polymer: Electrochemical and spectroscopic characterization of a novel nanomaterial for glucose detection. Materials Science and Engineering C, 31, 606-611. DOI: 10.1016/j.msec.2010.11.022.10.1016/j.msec.2010.11.022Search in Google Scholar
Guo, F., He, J., Li, J.,Wu, W., Hang, Y., & Hua, J. (2013). Photovoltaic performance of bithiazole-bridged dyes-sensitized solar cells employing semiconducting quantum dot CuInS2 as barrier layer material. Journal of Colloid and Interface Science, 408, 59-65. DOI: 10.1016/j.jcis.2013.06.069.10.1016/j.jcis.2013.06.069Search in Google Scholar PubMed
Habibi, B., & Pournaghi-Azar, M. H. (2010). Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry. Electrochimica Acta, 55, 5492-5498. DOI: 10.1016/j.electacta.2010.04.052.10.1016/j.electacta.2010.04.052Search in Google Scholar
Haruehanroengra, S., & Wang, W. (2007). Analyzing conductance of mixed carbon-nanotube bundles for interconnect applications. IEEE Electron Device Letters, 28, 756-759. DOI: 10.1109/led.2007.901584.10.1109/LED.2007.901584Search in Google Scholar
Hernández-Santos, D., González-García, M. B., & García, A. C. (2002). Metal-nanoparticles based electroanalysis. Electroanalysis, 14, 1225-1235. DOI: 10.1002/1521-4109(200210) 14:18<1225::AID-ELAN1225>3.0.CO;2-Z.Search in Google Scholar
Hu, G., Ma, Y., Guo, Y., & Shao, S. (2008). Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode. Electrochimica Acta, 53, 6610-6615. DOI: 10.1016/j.electacta.2008.04.054.10.1016/j.electacta.2008.04.054Search in Google Scholar
Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2, 681-693. DOI: 10.2217/17435889.2.5.681.10.2217/17435889.2.5.681Search in Google Scholar
Hubbard, A. T. (1969). Study of the kinetics of electrochemical reactions by thin-layer voltammetry: I. theory. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 22, 165-174. DOI: 10.1016/s0022-0728(69)80247-0.10.1016/S0022-0728(69)80247-0Search in Google Scholar
Jiang, L., You, T., & Deng, W. Q. (2013). Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode. Nanotechnology, 24, 415401. DOI: 10.1088/0957-4484/24/41/415401.10.1088/0957-4484/24/41/415401Search in Google Scholar PubMed
Journet, C., & Bernier, P. (1998). Production of carbon nanotubes. Applied Physics A: Materials Science & Processing, 67, 1-9. DOI: 10.1007/s003390050731.10.1007/s003390050731Search in Google Scholar
Junno, T., Carlsson, S. B., Xu, H., Montelius, L., & Samuelson, L. (1998). Fabrication of quantum devices by ˚Angstr¨om-level manipulation of nanoparticles with an atomic force microscope. Applied Physics Letters, 72, 548-550. DOI: 10.1063/1. 120754.Search in Google Scholar
Kairdolf, B. A., Smith, A. M., Stokes, T. H., Wang, M. D., Young, A. N., & Nie, S. (2013). Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annual Review of Analytical Chemistry, 6, 143-162. DOI: 10.1146/annurev-anchem-060908-155136.10.1146/annurev-anchem-060908-155136Search in Google Scholar PubMed PubMed Central
Kharissova, O. V., Osorio, M., Kharisov, B. I., Yacamán, M. J., & Méndez, U. O. (2010). A comparison of bismuth nanoforms obtained in vacuum and air by microwave heating of bis muth powder. Materials Chemistry and Physics, 121, 489-496. DOI: 10.1016/j.matchemphys.2010.02.013.10.1016/j.matchemphys.2010.02.013Search in Google Scholar
Li, N. B., Park, J. H., Park, K., Kwon, S. J., Shin, H., & Kwak, J. (2008). Characterization and electrocatalytic properties of Prussian blue electrochemically deposited on nano- Au/PAMAM dendrimer-modified gold electrode. Biosensors & Bioelectronics, 23, 1519-1526. DOI: 10.1016/j.bios.2008. 01.009.Search in Google Scholar
Lin, J. Y., Liao, J. H., & Hung, T. Y. (2011). A composite counter electrode of CoS/MWCNT with high electrocatalytic activity for dye-sensitized solar cells. Electrochemistry Communications, 13, 977-980. DOI: 10.1016/j.elecom.2011.06. 016.Search in Google Scholar
Liu, G., & Lin, Y. (2005). A renewable electrochemical magnetic immunosensor based on gold nanoparticle labels. Journal of Nanoscience and Nanotechnology, 5, 1060-1065. DOI: 10.1166/jnn.2005.178.10.1166/jnn.2005.178Search in Google Scholar PubMed
Liu, B., Wang, Z., Dong, Y., Zhu, Y., Gong, Y., Ran, S., Liu, Z., Xu, J., Xie, Z., Chen, D., & Shen, G. (2012). ZnOnanoparticle- assembled cloth for flexible photodetectors and recyclable photocatalysts. Journal of Materials Chemistry, 22, 9379-9384. DOI: 10.1039/c2jm16781f.10.1039/c2jm16781fSearch in Google Scholar
Lowell, S., & Shields, J. E. (1991). Powder surface area and porosity (3rd ed.). London, UK: Chapman and Hall.Search in Google Scholar
Mocak, J., Bond, A. M., Mitchell, S., & Scollary, G. (1997). A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques. Pure and Applied Chemistry, 69, 297-328. DOI: 10.1351/pac199769020297.10.1351/pac199769020297Search in Google Scholar
Nie, Z., Petukhova, A., & Kumacheva, E. (2010). Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotechnology, 5, 15-25. DOI: 10.1038/nnano.2009.453.10.1038/nnano.2009.453Search in Google Scholar
Nihei, M., Kondo, D., Kawabata, A., Sato, S., Shioya, H., Sakaue, M., Iwai, T., Ohfuti, M., & Awano, Y. (2005). Lowresistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells. Proceedings of the IEEE 2005 International Interconnect Technology Conference, June 6-8, 2005 (pp. 234-236). Burlingame, CA, USA: IEEE Xplore. DOI: 10.1109/iitc.2005.1499995.10.1109/IITC.2005.1499995Search in Google Scholar
Paddeu, S., Ram, M. K., Carrara, S., & Nicolini, C. (1998). Langmuir-Schaefer films of a poly(o-anisidine) conducting polymer for sensors and displays. Nanotechnology, 9, 228-236. DOI: 10.1088/0957-4484/9/3/014.10.1088/0957-4484/9/3/014Search in Google Scholar
Paradise, M., & Goswami, T. (2007). Carbon nanotubes - Production and industrial applications. Materials & Design, 28, 1477-1489. DOI: 10.1016/j.matdes.2006.03.008.10.1016/j.matdes.2006.03.008Search in Google Scholar
Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R., & Rousset, A. (2001). Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 39, 507-514. DOI: 10.1016/s0008-6223(00)00155-x.10.1016/S0008-6223(00)00155-XSearch in Google Scholar
Periasamy, A. P., Yang, S., & Chen, S. M. (2011). Preparation and characterization of bismuth oxide nanoparticlesmultiwalled carbon nanotube composite for the development of horseradish peroxidase based H2O2 biosensor. Talanta, 87, 15-23. DOI: 10.1016/j.talanta.2011.09.021.10.1016/j.talanta.2011.09.021Search in Google Scholar PubMed
Pingarrón, J. M., Yá˜nez-Sede˜no, P., & González-Cortés, A. (2008). Gold nanoparticle-based electrochemical biosensors. Electrochimica Acta, 53, 5848-5866. DOI: 10.1016/j. electacta.2008.03.005.Search in Google Scholar
Prabhuram, J., Zhao, T. S., Tang, Z. K., Chen, R., & Liang, Z. X. (2006). Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells. The Journal of Physical Chemistry B, 110, 5245-5252. DOI: 10.1021/jp0567063.10.1021/jp0567063Search in Google Scholar PubMed
Pumera, M., Sánchez, S., Ichinose, I., & Tang, J. (2007). Electrochemical nanobiosensors. Sensors and Actuators B: Chemical, 123, 1195-1205. DOI: 10.1016/j.snb.2006.11.016.10.1016/j.snb.2006.11.016Search in Google Scholar
Roschier, L., Penttilä, J., Martin, M., Hakonen, P., Paalanen, M., Tapper, U., Kauppinen, E. I., Journet, C., & Bernier, P. (1999). Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation. Applied Physics Letters, 75, 728-730. DOI: 10.1063/1.124495.10.1063/1.124495Search in Google Scholar
Rosi, N. L., & Mirkin, C. A. (2005). Nanostructures in biodiagnostics. Chemical Reviews, 105, 1547-1562. DOI: 10.1021/cr030067f.10.1021/cr030067fSearch in Google Scholar PubMed
Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., & P¨oschl, U. (2005). Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43, 1731-1742. DOI: 10.1016/j. carbon.2005.02.018.Search in Google Scholar
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671-675. DOI: 10.1038/nmeth.2089.10.1038/nmeth.2089Search in Google Scholar
Shipway, A. N., & Willner, I. (2001). Nanoparticles as structural and functional units in surface-confined architectures. Chemical Communications, 2001, 2035-2045. DOI: 10.1039/b105164b.10.1039/b105164bSearch in Google Scholar
Shumyantseva, V. V., Carrara, S., Bavastrello, V., Riley, D. J., Bulko, T. V., Skryabin, K. G., Archakov, A. I., & Nicolini, C. (2005). Direct electron transfer between cytochrome P450scc and gold nanoparticles on screen-printed rhodium-graphite electrodes. Biosensors & Bioelectronics, 21, 217-222. DOI: 10.1016/j.bios.2004.10.008.10.1016/j.bios.2004.10.008Search in Google Scholar
Singh, C., Shaffer, M. S. P., & Windle, A. H. (2003). Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method. Carbon, 41, 359-368. DOI: 10.1016/s0008-6223(02)00314-7.10.1016/S0008-6223(02)00314-7Search in Google Scholar
Sorgenfrei, S., Chiu, C. Y., Gonzalez, R. L., Jr., Yu, Y. J., Kim, P., Nuckolls, C., & Shepard, K. L. (2011). Label-free singlemolecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nature Nanotechnology, 6, 126-132. DOI: 10.1038/nnano.2010.275.10.1038/nnano.2010.275Search in Google Scholar PubMed PubMed Central
Streeter, I., Wildgoose, G. G., Shao, L., & Compton, R. G. (2008). Cyclic voltammetry on electrode surfaces covered with porous layers: An analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes.10.1016/j.snb.2008.03.015Search in Google Scholar
Sensors and Actuators B: Chemical, 133, 462-466. DOI: 10.1016/j.snb.2008.03.015.10.1016/j.snb.2008.03.015Search in Google Scholar
Sun, S. (2006). Recent advances in chemical synthesis, selfassembly, and applications of FePt nanoparticles. Advanced Materials, 18, 393-403. DOI: 10.1002/adma.200501464.10.1002/adma.200501464Search in Google Scholar
Taufik, S., Yusof, N. A., Tee, T.W., & Ramli, I. (2011). Bismuth oxide nanoparticles/chitosan/modified electrode as biosensor for DNA hybridization. International Journal of Electrochemical Science, 6, 1880-1891.Search in Google Scholar
Taurino, I., Magrez, A., Matteini, F., Forró, L., De Micheli, G., & Carrara, S. (2013). Direct growth of nanotubes and graphene nanoflowers on electrochemical platinum electrodes. Nanoscale, 5, 12448-12455. DOI: 10.1039/c3nr032 83c.Search in Google Scholar
Tian, Y., & Tatsuma, T. (2005). Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society, 127, 7632-7637. DOI: 10.1021/ja042192u.10.1021/ja042192uSearch in Google Scholar PubMed
Trindade, T., O’Brien, P., & Pickett, N. L. (2001). Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chemistry of Materials, 13, 3843-3858. DOI: 10.1021/ cm000843p.10.1021/cm000843pSearch in Google Scholar
Wang, F., & Hu, S. (2009). Electrochemical sensors based on metal and semiconductor nanoparticles. Microchimica Acta, 165, 1-22. DOI: 10.1007/s00604-009-0136-4.10.1007/s00604-009-0136-4Search in Google Scholar
Wang, Q., & Zheng, J. (2010). Electrodeposition of silver nanoparticles on a zinc oxide film: improvement of amperometric sensing sensitivity and stability for hydrogen perox ide determination. Microchimica Acta, 169, 361-365. DOI: 10.1007/s00604-010-0356-7.10.1007/s00604-010-0356-7Search in Google Scholar
Willner, I., & Willner, B. (2001). Molecular and biomolecular optoelectronics. Pure and Applied Chemistry, 73, 535-542.10.1351/pac200173030535Search in Google Scholar
Willner, I., Baron, R., & Willner, B. (2007). Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosensors & Bioelectronics, 22, 1841-1852. DOI: 10.1016/j.bios.2006.09.018.10.1016/j.bios.2006.09.018Search in Google Scholar PubMed
Woo, S., Kim, Y. R., Chung, T. D., Piao, Y., & Kim, H. (2012). Synthesis of a graphene-carbon nanotube composite and its electrochemical sensing of hydrogen peroxide. Electrochimica Acta, 59, 509-514. DOI: 10.1016/j.electacta.2011.11.012.10.1016/j.electacta.2011.11.012Search in Google Scholar
Yang, G., Yuan, R., & Chai, Y. Q. (2008). A high-sensitive amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on gold colloid/L-cysteine/gold colloid/ nanoparticles Pt-chitosan composite film-modified platinum disk electrode. Colloids and Surfaces B: Biointerfaces, 61, 93-100. DOI: 10.1016/j.colsurfb.2007.07.014.10.1016/j.colsurfb.2007.07.014Search in Google Scholar PubMed
Yin, H., Ai, S., Shi, W., & Zhu, L. (2009). A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase. Sensors and Actuators B: Chemical, 137, 747-753. DOI: 10.1016/j.snb.2008.12.046.10.1016/j.snb.2008.12.046Search in Google Scholar
Yin, G., Xing, L., Ma, X. J., & Wan, J. (2014). Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles. Chemical Papers, 68, 435-441. DOI: 10.2478/s11696-013-0473-y.10.2478/s11696-013-0473-ySearch in Google Scholar
Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X., & Cai, W. (2010). Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls. Advanced Functional Materials, 20, 561-572. DOI: 10.1002/adfm.200901884.10.1002/adfm.200901884Search in Google Scholar
Zhang, J. Z. (1997). Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: Effects of size and surface. Accounts of Chemical Research, 30, 423-429. DOI: 10.1021/ar960178j.10.1021/ar960178jSearch in Google Scholar
Zhang, H.,Wu, P., Li, Y., Liao, L., Fang, Z., & Zhong, X. (2010). Preparation of bismuth oxide quantum dots and their photocatalytic activity in a homogeneous system. ChemCatChem, 2, 1115-1121. DOI: 10.1002/cctc.201000090.10.1002/cctc.201000090Search in Google Scholar
Zhao, Y., Zhang, Z., & Dang, H. (2004). A simple way to prepare bismuth nanoparticles. Materials Letters, 58, 790-793. DOI: 10.1016/j.matlet.2003.07.013. 10.1016/j.matlet.2003.07.013Search in Google Scholar
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Biosensors – Topical issue
- Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
- Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
- Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
- Application of nanomaterials in microbial-cell biosensor constructions
- Use of green fluorescent proteins for in vitro biosensing
- Biosensors based on molecular beacons
- DNA aptamer-based detection of prostate cancer
- Can glycoprofiling be helpful in detecting prostate cancer?
- Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
- Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
- Surface plasmon resonance application in prostate cancer biomarker research
- Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
- Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
- Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
- Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
- Whole-cell optical biosensor for mercury – operational conditions in saline water
- Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
- Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
- Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
- Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
- Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
- Can voltammetry distinguish glycan isomers?
Articles in the same Issue
- Biosensors – Topical issue
- Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
- Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
- Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
- Application of nanomaterials in microbial-cell biosensor constructions
- Use of green fluorescent proteins for in vitro biosensing
- Biosensors based on molecular beacons
- DNA aptamer-based detection of prostate cancer
- Can glycoprofiling be helpful in detecting prostate cancer?
- Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
- Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
- Surface plasmon resonance application in prostate cancer biomarker research
- Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
- Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
- Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
- Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
- Whole-cell optical biosensor for mercury – operational conditions in saline water
- Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
- Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
- Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
- Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
- Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
- Can voltammetry distinguish glycan isomers?