Home Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
Article
Licensed
Unlicensed Requires Authentication

Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor

  • Sophia Karastogianni and Stella Girousi EMAIL logo
Published/Copyright: November 28, 2014
Become an author with De Gruyter Brill

Abstract

A novel, sensitive and selective electrochemical hybridisation biosensor was developed for the detection of the hepatitis B virus (HBV) using a manganese(II) complex as electrochemical indicator and a DNA probe-modified carbon paste electrode as the biosensor (DNA/CPE). The results showed that this complex could be accumulated electrochemically the immobilised dsDNA layer rather than in the single-stranded DNA (ssDNA) layer. On the basis of this, the manganese complex was used as an electrochemical hybridisation indicator for the detection of oligonucleotides related to HBV. The hybridisation event was evaluated on the basis of the difference between the reduction signals of the manganese(II) complex with the probe DNA prior to and post hybridisation with a target sequence using a differential pulse mode. Several factors affecting the immobilisation and hybridisation of oligonucleotides as well as the indicator’s accumulation were investigated. Experiments with a noncomplementary and mismatch sequences demonstrated the good selectivity of the biosensor. Using this approach, the HBV target oligonucleotide’s sequence could be quantified over arange from 0.22 ng L−1 to 5.40 ng L−1, with a linear correlation coefficient of 0.9994 and the limit of detection of 0.07 ng L−1.

References

Azizi, S. N., Ranjbar, S., Raoof, J. B., & Hamidi-Asl, E. (2013). Preparation of Ag/NaA zeolite modified carbon paste electrode as a DNA biosensor. Sensors and Actuators B: Chemical, 181, 319-325. DOI: 10.1016/j.snb.2013.02.026.10.1016/j.snb.2013.02.026Search in Google Scholar

Caliskan, A., Erdem, A., & Karadeniz, H. (2009). Direct DNA Hybridization on the single-walled carbon nanotubes modified sensors detected by voltammetry and electrochemical impedance spectroscopy. Electroanalysis, 21, 2116-2124.DOI: 10.1002/elan.200904640.10.1002/elan.200904640Search in Google Scholar

Castañeda, M. T., Merko,ci, A., Pumera, M., & Alegret, S. (2007). Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosensors and Bioelectronics, 22, 1961-1967. DOI: 10.1016/j.bios.2006.08.031.10.1016/j.bios.2006.08.031Search in Google Scholar PubMed

Ding, C. F., Zhao, F., Zhang, M. L., & Zhang, S. (2008). Hybridization biosensor using 2,9-dimethyl-1,10-phenantroline cobalt as electrochemical indicator for detection of hepatitis B virus DNA. Bioelectrochemistry, 72, 28-33. DOI: 10.1016/j.bioelechem.2007.11.001.10.1016/j.bioelechem.2007.11.001Search in Google Scholar PubMed

Du, D. X., Guo, S., Tang, L., Ning, Y., Yao, Q. F., & Zhang, G. J. (2013). Graphene-modified electrode for DNA detection via PNA-DNA hybridization. Sensors and Actuators B: Chemical, 186, 563-570. DOI: 10.1016/j.snb.2013.06.045.10.1016/j.snb.2013.06.045Search in Google Scholar

Erdem, A., Muti, M., Karadeniz, H., Congur, G., & Canavar, E. (2012). Electrochemical monitoring of indicator-free DNA hybridization by carbon nanotubes-chitosan modified disposable graphite sensors. Colloids and Surfaces B: Biointerfaces, 95, 222-228. DOI: 10.1016/j.colsurfb.2012.02.042.10.1016/j.colsurfb.2012.02.042Search in Google Scholar PubMed

Fojta, M., Doffkova, R., & Paleček, E. (1996). Determination of traces of RNA in submicrogram amounts of single- or doublestranded DNAs by means of nucleic acid-modified electrodes. Electroanalysis, 8, 420-426. DOI: 10.1002/elan.1140080504.10.1002/elan.1140080504Search in Google Scholar

Girousi, S., & Kinigopoulou, V. (2010). Detection of short oligonucleotide sequences using an electrochemical DNA hybridization biosensor. Central European Journal of Chemistry, 8, 732-736. DOI: 10.2478/s11532-010-0056-5.10.2478/s11532-010-0056-5Search in Google Scholar

Girousi, S., Karastogianni, S., & Serpi, C. (2012). Electrochemical techniques as promising analytical tools in the DNA electrochemistry (A review). Sensing in Electroanalysis, 7, 107-140.Search in Google Scholar

Guo, M. D., Li, Y. Q., Guo, H. X., Wu, X. Q., & Fan, L. F. (2007). Electrochemical detection of short sequences re lated to the hepatitis B virus using MB on chitosan-modified CPE. Bioelectrochemistry, 70, 245-249. DOI: 10.1016/j. bioelechem.2006.09.002.Search in Google Scholar

Hanaee, H., Ghourchian, H., & Ziaee, A. A. (2007). Nanoparticle- based electrochemical detection of hepatitis B virus using stripping chronopotentiometry. Analytical Biochemistry, 370, 195-200. DOI: 10.1016/j.ab.2007.06.029.10.1016/j.ab.2007.06.029Search in Google Scholar PubMed

Hassen, W. M., Chaix, C., Abdelghani, A., Bessueille, F., Leonard, D., & Jaffrezic-Renault, N. (2008). An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sensors and Actuators B: Chemical, 134, 755-760. DOI: 10.1016/j.snb.2008.06.020.10.1016/j.snb.2008.06.020Search in Google Scholar

Jilbert, A. R. (2000). In situ hybridization protocols for detection of viral DNA using radioactive and nonradioactive DNA probes. Methods in Molecular Biology, 123, 177-193. DOI: 10.1385/1-59259-677-0:177.10.1385/1-59259-677-0:177Search in Google Scholar

Kara, P., Cavdar, S., Meric, B., Erensoy, S., & Ozsoz, M. (2007). Electrochemical probe DNA design in PCR amplicon sequence for the optimum detection of microbiological diseases. Bioelectrochemistry, 71, 204-210. DOI: 10.1016/j.bioelechem.2007.05.001.10.1016/j.bioelechem.2007.05.001Search in Google Scholar PubMed

Karadeniz, H., Erdem, A., & Caliskan, A. (2008). Electrochemical monitoring of DNA hybridization by multiwalled carbon nanotube based screen printed electrodes. Electroanalysis, 20, 1932-1938. DOI: 10.1002/elan.200804270.10.1002/elan.200804270Search in Google Scholar

Karastogianni, S., Dendrinou-Samara, C., Ioannou, E., Raptopoulou, C. P., Hadjipavlou-Litina, D., & Girousi, S. (2013). Synthesis, characterization, DNA binding properties and antioxidant activity of a manganese(II) complex with NO6 chromophore. Journal of Inorganic Biochemistry, 118, 48-58. DOI: 10.1016/j.jinorgbio.2012.09.015.10.1016/j.jinorgbio.2012.09.015Search in Google Scholar PubMed

Lee, W. M. (1997). Hepatitis B virus infection. New England Journal of Medicine, 337, 1733-1745. DOI: 10.1056/ nejm199712113372406.10.1056/NEJM199712113372406Search in Google Scholar PubMed

Li, X. M., Ju, H. Q., Ding, C. F., & Zhang, S. S. (2007a). Nucleic acid biosensor for detection of hepatitis B virus using 2,9-dimethyl-1,10-phenanthroline copper complex as electrochemical indicator. Analytica Chimica Acta, 582, 158-163. DOI: 10.1016/j.aca.2006.09.004.10.1016/j.aca.2006.09.004Search in Google Scholar PubMed

Li, X. M., Ju, H. Q., Du, L. P., & Zhang, S. S. (2007b). A nucleic acid biosensor for the detection of a short sequence related to the hepatitis B virus using bis(benzimidazole)cadmium(II) dinitrate as an electrochemical indicator. Journal of Inorganic Biochemistry, 101, 1165-1171. DOI: 10.1016/j. jinorgbio.2007.05.003.Search in Google Scholar

Li, G. J., Liu, N., Liu, S. F., & Zhang, S. H. (2008). Electrochemical biosensor based on the interaction between copper(II) complex with 4,5-diazafluorene-9-one and bromine ligands and deoxyribonucleic acid. Electrochimica Acta, 53, 2870-2876. DOI: 10.1016/j.electacta.2007.10.079.10.1016/j.electacta.2007.10.079Search in Google Scholar

Liu, N., Li, G. J., Liu, S. F., & Zhang, S. S. (2008). Electrochemical DNA biosensor for the detection of interaction between di[azino-di(5,6-azafluorene)-κ2-N,N_]dichlormanganous and DNA. Sensors and Actuators B: Chemical, 133, 582-587. DOI: 10.1016/j.snb.2008.03.026.10.1016/j.snb.2008.03.026Search in Google Scholar

Ly, S. Y., & Chob, N. S. (2009). Diagnosis of human hepatitis B virus in non-treated blood by the bovine IgG DNA-linked carbon nanotube biosensor. Journal of Clinical Virology, 44, 43-47. DOI: 10.1016/j.jcv.2008.09.005.10.1016/j.jcv.2008.09.005Search in Google Scholar PubMed

Moriya, T., Kuramoto, I. K., Yoshizawa, H., & Holland, P. V. (2002). Distribution of hepatitis B virus genotypes among American blood donors determined with a PreS2 epitope enzyme-linked immunosorbent assay kit. Journal of Clinical Microbiology, 40, 877-880. DOI: 10.1128/jcm.40.3.877-880.2002.10.1128/JCM.40.3.877-880.2002Search in Google Scholar PubMed PubMed Central

Muti, M., Sharma, S., Erdem, A., & Papakonstantinou, P. (2011). Electrochemical monitoring of nucleic acid hybridiza hybridization by single-use graphene oxide-based sensor. Electroanalysis, 23, 272-279. DOI: 10.1002/elan.201000425.10.1002/elan.201000425Search in Google Scholar

Niu, S. Y., Han, B., Cao, W., & Zhang, S. S. (2009). Sensitive DNA biosensor improved by luteolin copper(II) as indicator based on silver nanoparticles and carbon nanotubes modified electrode. Analytica Chimica Acta, 651, 42-47. DOI: 10.1016/j.aca.2009.08.002.10.1016/j.aca.2009.08.002Search in Google Scholar

Paleček, E., Tomschik, M., Staňkova, V., & Havran, L. (1997). Chronopotentiometric stripping of DNA at mercury electrodes. Electroanalysis, 9, 990-997. DOI: 10.1002/elan. 1140091305.Search in Google Scholar

Park, J. H.,Cho, E.W., Lee,D.G., Park, J.M., Lee, Y. J.,Choi, E. A., & Kim, K. L. (2000). Receptor - mediated endocytosis of hepatitis B virus PreS1 protein in EBV-transformed B-cell line. Journal of Microbiology and Biotechnology, 10, 844-850.Search in Google Scholar

Peterson, A.W., Heaton, R. J., & Georgiadis, R. M. (2001). The effect of surface probe density on DNA hybridization. Nucleic Acids Research, 29, 5163-5168. DOI: 10.1093/nar/29.24.5163.10.1093/nar/29.24.5163Search in Google Scholar

Rice, M. E., Galus, Z., & Adams, R. N. (1983). Graphite paste electrodes: Effects of paste composition and surface states on electron-transfer rates. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 143, 89-102. DOI: 10.1016/s0022-0728(83)80256-3.10.1016/S0022-0728(83)80256-3Search in Google Scholar

Siddiquee, S., Yusof, N. A., Salleh, A. B., Bakar, F. A., & Heng, L. Y. (2010a). Electrochemical DNA biosensor for the detection of specific gene related to Trichoderma harzianum species. Bioelectrochemistry, 79, 31-36. DOI: 10.1016/j.bioelechem.2009.10.004.10.1016/j.bioelechem.2009.10.004Search in Google Scholar

Siddiquee, S., Yusof, N. A., Salleh, A. B., Tan, S. G., Bakar, F. A., & Heng, L. U. (2010b). DNA hybridization based on Trichoderma harzianum gene probe immobilization on self-assembled monolayers on a modified gold electrode. Sensors and Actuators B: Chemical, 147, 198-205. DOI: 10.1016/j.snb.2010.02.014.10.1016/j.snb.2010.02.014Search in Google Scholar

Tabassum, S. Parveen, S., & Arjimand, F. (2005). New modulated metallic macrocycles: Electrochemistry and their interaction with calf thymus DNA. Acta Biomaterialia, 1, 677-689. DOI: 10.1016/j.actbio.2005.07.002.10.1016/j.actbio.2005.07.002Search in Google Scholar

Wright, T. L., & Lau, J. Y. N. (1993). Clinical aspects of hepatitis B virus infection. The Lancet, 342, 1340-1345. DOI: 10.1016/0140-6736(93)92250-w.10.1016/0140-6736(93)92250-WSearch in Google Scholar

Yola, M. L., Eren, T., & Atar, N. (2014). A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochimica Acta, 125, 38-47. DOI: 10.1016/j.electacta.2014.01.074.10.1016/j.electacta.2014.01.074Search in Google Scholar

Young, K. C., Chang, T. T., Hsiao,W. C., Cheng, P. N., Chen, S. H., & Jen, C. M. (2002). A reverse-transcription competitive PCR assay based on chemiluminescence hybridization for detection and quantification of hepatitis C virus RNA. Journal of Virological Methods, 103, 27-39. DOI: 10.1016/s0166-0934(01)00403-7.10.1016/S0166-0934(01)00403-7Search in Google Scholar

Zhang, S. S., Tan, Q. Q., Li, F., & Zhang, X. R. (2007). Hybridization biosensor using diaquabis[N-(2-pyridinylmethyl) benzamide-κ2N,O]-cadmium(II) dinitrate as a new electroactive indicator for detection of human hepatitis B virus DNA. Sensors Actuators B: Chemical, 124, 290-296. DOI: 10.1016/j.snb.2006.12.040.10.1016/j.snb.2006.12.040Search in Google Scholar

Zhao, H. T., & Ju, H. X. (2004). Biosensor for hepatitis B virus DNA PCR product and electrochemical study of the interaction of di(2,2’-bipyridine) osmium(III) with DNA. Electroanalysis, 16, 1642-1646. DOI: 10.1002/elan.200303013.10.1002/elan.200303013Search in Google Scholar

Ziółkowski, R., Olejniczak, A. B., Gorski, _L., Janusik, J., Le´snikowski, Z. J., & Malinowska, E. (2012). Electrochemical detection of DNA hybridization using metallacarborane unit. Bioelectrochemistry, 87, 78-83. DOI: 10.1016/j.bioelechem. 2011.10.005. Search in Google Scholar

Published Online: 2014-11-28
Published in Print: 2015-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Biosensors – Topical issue
  2. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
  3. Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
  4. Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
  5. Application of nanomaterials in microbial-cell biosensor constructions
  6. Use of green fluorescent proteins for in vitro biosensing
  7. Biosensors based on molecular beacons
  8. DNA aptamer-based detection of prostate cancer
  9. Can glycoprofiling be helpful in detecting prostate cancer?
  10. Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
  11. Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
  12. Surface plasmon resonance application in prostate cancer biomarker research
  13. Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
  14. Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
  15. Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
  16. Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
  17. Whole-cell optical biosensor for mercury – operational conditions in saline water
  18. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
  19. Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
  20. Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
  21. Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
  22. Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
  23. Can voltammetry distinguish glycan isomers?
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0599-6/html
Scroll to top button