Startseite Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization

  • Vedran Milosavljevic , Hoai Viet Nguyen , Petr Michalek , Amitava Moulick , Pavel Kopel , Rene Kizek und Vojtech Adam EMAIL logo
Veröffentlicht/Copyright: 28. November 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nanoparticles as a progressively developing branch offer a tool for studying the interaction of carbon quantum dots (CQDs) with DNA. In this study, fluorescent CQDs were synthesized using citric acid covered with polyethylene glycol (PEG) as the source of carbon precursors. Furthermore, interactions between CQDs and DNA (double-stranded DNA and single-stranded DNA) were investigated by spectral methods, gel electrophoresis, and electrochemical analysis. Primarily, the fluorescent behavior of CQDs in the presence of DNA was monitored and major differences in the interaction of CQDs with tested single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) were observed at different amounts of CQDs (μg mL−1: 25, 50, 100, 250, 500). It was found that the interaction of ssDNA with CQDs had no significant influence on the CQDs fluorescence intensity measured at the excitation wavelengths of 280 nm, 350 nm, and 400 nm. However, in the presence of dsDNA, the fluorescence intensity of CQDs was significantly increased. Our results provide basic understanding of the interaction between CQDs and DNA. Such fabricated CQDs-DNA might be of great benefit for the emerging nanomaterials based biosensing methods.

References

Bai, W. J., Zheng, H. Z., Long, Y. J., Mao, X. J., Gao, M., & Zhang, L. (2011). A carbon dots-based fluorescence turnon method for DNA determination. Analytical Sciences, 27, 243-246. DOI: 10.2116/analsci.27.243.10.2116/analsci.27.243Suche in Google Scholar PubMed

Bartošik, M., & Paleček, E. (2011). Square wave stripping voltammetry of unlabeled single- and double-stranded DNAs. Electroanalysis, 23, 1311-1319. DOI: 10.1002/elan.201100 079.Suche in Google Scholar

Bourlinos, A. B., Stassinopoulos, A., Anglos, D., Zboril, R., Karakassides, M., & Giannelis, E. P. (2008) Surface functionalized carbogenic quantum dots. Small, 4, 455-458. DOI: 10.1002/smll.200700578.10.1002/smll.200700578Suche in Google Scholar PubMed

Cao, L., Wang, X., Meziani, M. J., Lu, F., Wang, H., Luo, P. G., Lin, Y., Harruff, B. A., Veca, L. M., Murray, D., Xie, S. Y., & Sun, Y. P. (2007). Carbon dots for multiphoton bioimaging. Journal of the American Chemical Society, 129, 11318-11319. DOI: 10.1021/ja073527l.10.1021/ja073527lSuche in Google Scholar PubMed PubMed Central

Ding, C., Zhu, A., & Tian, Y. (2014). Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Accounts of Chemical Research, 47, 20-30. DOI: 10.1021/ar400023s.10.1021/ar400023sSuche in Google Scholar PubMed

Dong, Y., Zhou, N., Lin, X., Lin, J., Chi, Y., & Chen, G. (2010). Extraction of electrochemiluminescent oxidized cCarbon quantum dots from activated carbon. Chemistry of Materials, 22, 5895-5899. DOI: 10.1021/cm1018844.10.1021/cm1018844Suche in Google Scholar

Dong, Y., Wang, R., Li, H., Shao, J., Chi, Y., Lin, X., & Chen, G. (2012a). Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon, 50, 2810-2815. DOI: 10.1016/j.carbon.2012.02.046.10.1016/j.carbon.2012.02.046Suche in Google Scholar

Dong, Y., Wang, R., Li, G., Chen, C., Chi, Y., & Chen, G. (2012b). Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Analytical Chemistry, 84, 6220-6224. DOI: 10.1021/ac3012126.10.1021/ac3012126Suche in Google Scholar PubMed

Dong, Y., Chen, C., Lin, J., Zhou, N., Chi, Y., & Chen, G. (2013). Electrochemiluminescence emission from carbon quantum dot-sulfite coreactant system. Carbon, 56, 12-17. DOI: 10.1016/j.carbon.2012.12.086.10.1016/j.carbon.2012.12.086Suche in Google Scholar

Fu, A., Gu, W., Larabell, C., & Alivisatos, A. P. (2005). Semiconductor nanocrystals for biological imaging. Current Opinion in Neurobiology, 15, 568-575. DOI: 10.1016/j.conb.2005. 08.004.Suche in Google Scholar

Grimes, A. F., Call, S. E., Vicente, D. A., English, D. S., & Harbron, E. J. (2006). Toward efficient photomodulation of conjugated polymer emission: Optimizing differential energy transfer in azobenzene-substituted PPV derivatives. The Journal of Physical Chemistry B, 110, 19183-19190.DOI: 10.1021/jp0613236.10.1021/jp0613236Suche in Google Scholar PubMed

He, S., Huang, B. H., Tan, J., Luo, Q. Y., Lin, Y., Li, J., Hu, Y., Zhang, L., Yan, S., Zhang, Q., Pang, D. W., & Li, L. (2011). One-to-one quantum dot-labeled single long DNA probes. Biomaterials, 32, 5471-5477. DOI: 10.1016/j.biomaterials.2011.04.013.10.1016/j.biomaterials.2011.04.013Suche in Google Scholar PubMed

Huska, D., Fabrik, I., Baloun, J., Adam, V., Masarik, M., Hubalek, J., Vasku, A., Trnkova, L., Horna, A., Zeman, L., & Kizek, R. (2009). Study of interactions between metallothionein and cisplatin by using differential pulse voltammetry Brdicka’s reaction and quartz crystal microbalance. Sensors, 9, 1355-1369. DOI: 10.3390/s90301355.10.3390/s90301355Suche in Google Scholar PubMed PubMed Central

Jia, X., Li, J., &Wang, E. (2012). One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 4, 5572-5575. DOI: 10.1039/c2nr31319g.10.1039/c2nr31319gSuche in Google Scholar PubMed

Kim, J., Park, J., Kim, H., Singha, K., & Kim, W. J. (2013). Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA. Biomaterials, 34, 7168-7180. DOI: 10.1016/j.biomaterials.2013.05.072.10.1016/j.biomaterials.2013.05.072Suche in Google Scholar PubMed

Krejcova, L., Hynek, D., Kopel, P., Rodrigo, M. A. M., Tmejova, K., Trnkova, L., Adam, V., Hubalek, J., & Kizek, R. (2013). Quantum dots for electrochemical labelling of neuramidinase genes of H5N1, H1N1 and H3N2 influenza. International Journal of Electrochemical Science, 8, 4457-4471.Suche in Google Scholar

Kwon, W., Do, S., Won, D. C., & Rhee, S. W. (2013). Carbon quantum dot-based field-effect transistors and their ligand length-dependent carrier mobility. ACS Applied Materials & Interfaces, 5, 822-827. DOI: 10.1021/am3023898.10.1021/am3023898Suche in Google Scholar PubMed

Li, H., Ming, H., Liu, Y., Yu, H., He, X., Huang, H., Pan, K., Kang, Z., & Lee, S. T. (2011a). Fluorescent carbon nanoparticles: electrochemical synthesis and their pH sensitive photoluminescence properties. New Journal of Chemistry, 35, 2666-2670. DOI: 10.1039/c1nj20575g.10.1039/c1nj20575gSuche in Google Scholar

Li, H., He, X., Liu, Y., Huang, H., Lian, S., Lee, S. T., & Kang, Z. (2011b). One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon, 49, 605-609. DOI: 10.1016/j.carbon.2010.10. 004.Suche in Google Scholar

Li, Y., Zhang, B. P., Zhao, J. X., Ge, Z. H., Zhao, X. K., & Zou, L. (2013a). ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Applied Surface Science, 279, 367-373. DOI: 10.1016/j.apsusc.2013.04.114.10.1016/j.apsusc.2013.04.114Suche in Google Scholar

Li, K., Zhang, W., & Chen, Y. (2013b). Quantum dot binding to DNA: Single-molecule imaging with atomic force microscopy. Biotechnology Journal, 8, 110-116. DOI: 10.1002/biot.201200155.10.1002/biot.201200155Suche in Google Scholar PubMed

Liang, Q., Ma, W., Shi, Y., Li, Z., & Yang, X. (2013). Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon, 60, 421-428. DOI: 10.1016/j.carbon.2013.04.055.10.1016/j.carbon.2013.04.055Suche in Google Scholar

Linehan, K., & Doyle, H. (2014). Efficient one-pot synthesis of highly monodisperse carbon quantum dots. RSC Advances, 4, 18-21. DOI: 10.1039/c3ra45083j.10.1039/C3RA45083JSuche in Google Scholar

Liu, Y., Liu, C. Y., & Zhang, Z. Y. (2011). Synthesis and surface photochemistry of graphitized carbon quantum dots. Journal of Colloid and Interface Science, 356, 416-421. DOI: 10.1016/j.jcis.2011.01.065.10.1016/j.jcis.2011.01.065Suche in Google Scholar PubMed

Liu, S., Tian, J., Wang, L., Luo, Y., & Sun, X. (2012). A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. RSC Advances, 2, 411-413. DOI: 10.1039/c1ra00709b.10.1039/C1RA00709BSuche in Google Scholar

Long, Y. M., Zhou, C. H., Zhang, Z. L., Tian, Z. Q., Bao, L., Lin, Y., & Pang, D. W. (2012). Shifting and non-shifting fluorescence emitted by carbon nanodots. Journal of Materials Chemistry, 22, 5917-5920. DOI: 10.1039/c2jm30639e.10.1039/c2jm30639eSuche in Google Scholar

Ming, H., Ma, Z., Liu, Y., Pan, K., Yu, H.,Wang, F., & Kang, Z. (2012). Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Transactions, 41, 9526-9531. DOI: 10.1039/c2dt30985h.10.1039/c2dt30985hSuche in Google Scholar

Paleček, E. (1960). Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature, 188, 656-657. DOI: 10.1038/188656a0.10.1038/188656a0Suche in Google Scholar

Paleček, E. (1961). Oscillographic polarography of deoxyribonucleic acid degradation products. Biochimica et Biophysica Acta, 51, 1-8. DOI: 10.1016/0006-3002(61)91010-1.10.1016/0006-3002(61)91010-1Suche in Google Scholar

Paleček, E., & Fojta, M. (2001). Detecting DNA hybridization and damage. Analytical Chemistry, 73, 74A-83A. DOI: 10.1021/ac0123936.10.1021/ac0123936Suche in Google Scholar

Paleček, E. (2002). Past, present and future of nucleic acids electrochemistry. Talanta, 56, 809-819. DOI: 10.1016/s0039-9140(01)00649-x.10.1016/S0039-9140(01)00649-XSuche in Google Scholar

Pandey, A. P., Karande, K. P., More, M. P., Gattani, S. G., & Deshmukh, P. K. (2014). Graphene based nanomaterials: Diagnostic applications. Journal of Biomedical Nanotechnology, 10, 179-204. DOI: 10.1166/jbn.2014.1773.10.1166/jbn.2014.1773Suche in Google Scholar

Pohanka, M. (2014). Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chemical Papers, in press. DOI: 10.2478/s11696-014-0542-x.10.2478/s11696-014-0542-xSuche in Google Scholar

Ryvolova, M., Chomoucka, J., Drbohlavova, J., Kopel, P., Babula, P., Hynek, D., Adam, V., Eckschlager, T., Hubalek, J., Stiborova, M., Kaiser, J., & Kizek, R. (2012). Modern micro and nanoparticle-based imaging techniques. Sensors, 12, 14792-14820. DOI: 10.3390/s121114792.10.3390/s121114792Suche in Google Scholar PubMed PubMed Central

Sahu, S., Behera, B., Maiti, T. K., & Mohapatra, S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical Communications, 48, 8835-8837. DOI: 10.1039/c2cc33796g.10.1039/c2cc33796gSuche in Google Scholar PubMed

Song, Y., Feng, D., Shi, W., Li, X., & Ma, H. (2013). Parallel comparative studies on the toxic effects of unmodified CdTe quantum dots, gold nanoparticles, and carbon nanodots on live cells well as green gram sprouts. Talanta, 116, 237-244. DOI: 10.1016/j.talanta.2013.05.022.10.1016/j.talanta.2013.05.022Suche in Google Scholar PubMed

Su, Y., Xie, Y., Hou, X., & Lv, Y. (2014). Recent advances in analytical applications of nanomaterials in liquid-phase chemiluminescence. Applied Spectroscopy Reviews, 49, 201-232. DOI: 10.1080/05704928.2013.819514.10.1080/05704928.2013.819514Suche in Google Scholar

Vaishnavi, E., & Renganathan, R. (2014). “Turn-on-off-on” fluorescence switching of quantum dots-cationic porphyrin nanohybrid: a sensor for DNA. Analyst, 139, 225-234. DOI: 10.1039/c3an01871g.10.1039/C3AN01871GSuche in Google Scholar PubMed

Wang, F., Pang, S., Wang, L., Li, Q., Kreiter, M., & Liu, C. Y. (2010a). One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chemistry of Materials, 22, 4528-4530. DOI: 10.1021/cm101350u.10.1021/cm101350uSuche in Google Scholar

Wang, C., Gao, X., & Su, X. (2010b). Study the damage of DNA molecules induced by three kinds of aqueous nanoparticles. Talanta, 80, 1228-1233. DOI: 10.1016/j.talanta.2009.09.014.10.1016/j.talanta.2009.09.014Suche in Google Scholar PubMed

Wang, J., Shan, Y., Zhao, W. W., Xu, J. J., & Chen, H. Y. (2011). Gold nanoparticle enhanced electrochemiluminescence of CdS thin films for ultrasensitive thrombin detection. Analytical Chemistry, 83, 4004-4011. DOI: 10.1021/ac200616g.10.1021/ac200616gSuche in Google Scholar PubMed

Yang, T., Lu, M., Mao, X., Liu, W., Wan, L., Miao, S., & Xu, J. (2013). Synthesis of CdS quantum dots (QDs) via a hot-bubbling route and co-sensitized solar cells assembly. Chemical Engineering Journal, 225, 776-783. DOI: 10.1016/j.cej.2013.04.028.10.1016/j.cej.2013.04.028Suche in Google Scholar

Zhang, X., Ming, H., Liu, R., Han, X., Kang, Z., Liu, Y., & Zhang, Y. (2013). Highly sensitive humidity sensing properties of carbon quantum dots films. Materials Research Bulletin, 48, 790-794. DOI: 10.1016/j.materresbull.2012.11.056.10.1016/j.materresbull.2012.11.056Suche in Google Scholar

Zhao, D., Li, J., Yang, T., & He, Z. (2014). “Turn off-on” fluorescent sensor for platinum drugs-DNA interactions based on quantum dots. Biosensors and Bioelectronics, 52, 29-35. DOI: 10.1016/j.bios.2013.08.031. 10.1016/j.bios.2013.08.031Suche in Google Scholar PubMed

Received: 2014-1-7
Revised: 2014-3-17
Accepted: 2014-3-18
Published Online: 2014-11-28
Published in Print: 2015-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Biosensors – Topical issue
  2. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
  3. Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
  4. Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
  5. Application of nanomaterials in microbial-cell biosensor constructions
  6. Use of green fluorescent proteins for in vitro biosensing
  7. Biosensors based on molecular beacons
  8. DNA aptamer-based detection of prostate cancer
  9. Can glycoprofiling be helpful in detecting prostate cancer?
  10. Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
  11. Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
  12. Surface plasmon resonance application in prostate cancer biomarker research
  13. Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
  14. Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
  15. Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
  16. Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
  17. Whole-cell optical biosensor for mercury – operational conditions in saline water
  18. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
  19. Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
  20. Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
  21. Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
  22. Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
  23. Can voltammetry distinguish glycan isomers?
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0590-2/html
Button zum nach oben scrollen