Home Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
Article
Licensed
Unlicensed Requires Authentication

Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface

  • Tomáš Juřík and Petr Skládal EMAIL logo
Published/Copyright: November 28, 2014
Become an author with De Gruyter Brill

Abstract

Biocatalysed precipitation of an insoluble product accumulated on the enzyme-modified electrode surface was applied as the amplification path for low concentration sensing of hydrogen peroxide and glucose. Sensitive electrochemical and quartz-crystal microbalance (QCM) biosensors based on biocatalytic precipitation were developed. A horseradish peroxidase (HRP) monolayer-modified electrode was used to sense H2O2 via the oxidation of 4-chloro-1-naphthol (4CN) forming insoluble benzo-4-chlorocyclohexadienone. Additionally, the bienzyme system employed glucose oxidase (GOx) linked to HRP/4CN. The amount of the precipitate assembled on the sensing surface corresponded to the concentration of analytes and to the length of the incubation interval. The precipitated deposits were followed as a change of impedance using cyclic voltammetry (CV), mass change was determined continuously using a microgravimetric quartz-crystal microbalance, and optical microscopy enabled the visualisation of the precipitate. Regeneration of the enzyme-modified electrode was performed using cathodic reduction of the insoluble product. Thus, a simple biosensor for multiple analyses with low detection limits and of low cost can be developed.

References

Abad, J. M., Pariente, F., Hernandez, L., & Lorenzo, E. (1998). A quartz crystal microbalance assay for detection of antibodies against the recombinant African swine fever virus attachment protein p12 in swine serum. Analytica Chimica Acta, 368, 183-189. DOI: 10.1016/s0003-2670(98)00205-0.10.1016/S0003-2670(98)00205-0Search in Google Scholar

Akter, R., Rahman, M. A., & Rhee, C. K. (2012). Amplified electrochemical detection of a cancer biomarker by enhanced precipitation using horseradish peroxidase attached on carbon nanotubes. Analytical Chemistry, 84, 6407-6415. DOI: 10.1021/ac300110n.10.1021/ac300110nSearch in Google Scholar

Alfonta, L., Katz, E., & Willner, I. (2000). Sensing of acetylcholine by a tricomponent-enzyme layered electrode using Faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance transduction methods. Analytical Chemistry, 72, 927-935. DOI: 10.1021/ac990439d.10.1021/ac990439dSearch in Google Scholar

Alfonta, L., Bardea, A., Khersonsky, O., Katz, E., & Willner, I. (2001). Chronopotentiometry and Faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: routes for enzyme sensors, immunosensors and DNA sensors. Biosensors & Bioelectronics, 16, 675-687. DOI: 10.1016/s0956-5663(01)00231-7.10.1016/S0956-5663(01)00231-7Search in Google Scholar

Azevedo, A. M., Prazeres, D. M. F., Cabral, J. M. S., & Fonseca, L. P. (2005). Ethanol biosensors based on alcohol oxidase. Biosensors & Bioelectronics, 21, 235-247. DOI: 10.1016/j.bios.2004.09.030.10.1016/j.bios.2004.09.030Search in Google Scholar PubMed

Biscay, J., Costa Rama, E., Gonzalez Garcia, M. B., Pingarron Carrazon, J. M., & Costa Garcia, A. (2011). Enzymatic sensor using mediator-screen-printed carbon electrodes. Electroanalysis, 23, 209-214. DOI: 10.1002/elan.201000471.10.1002/elan.201000471Search in Google Scholar

Chen, W., Cai, S., Ren, Q. Q., Wen, W., & Zhao, Y. D. (2012). Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst, 137, 49-58. DOI: 10.1039/c1an15738h.10.1039/C1AN15738HSearch in Google Scholar PubMed

Chen, X. M., Cai, Z. X., Huang, Z. Y., Oyama, M., Jiang, Y. Q., & Chen, X. (2013). Ultrafine palladium nanoparticles grown on graphene nanosheets for enhanced electrochemical sensing of hydrogen peroxide. Electrochimica Acta, 97, 398-403. DOI: 10.1016/j.electacta.2013.02.047.10.1016/j.electacta.2013.02.047Search in Google Scholar

Ding, Y. J.,Wang, H., Shen, G. L., & Yu, R. Q. (2005). Enzymecatalyzed amplified immunoassay for the detection of Toxoplasma gondii-specific IgG using Faradaic impedance spectroscopy, CV and QCM. Analytical & Bioanalytical Chemistry, 382, 1491-1499. DOI: 10.1007/s00216-005-3350-x.10.1007/s00216-005-3350-xSearch in Google Scholar PubMed

Dominguez Sanchez, P., Tu˜non Blanco, P., Fernandez Alvarez, J. M., Smyth, M. R., & OKennedy, R. (1990). Flow-injection analysis of hydrogen peroxide using a horseradish peroxidasemodified electrode detection system. Electroanalysis, 2, 303-308. DOI: 10.1002/elan.1140020407.10.1002/elan.1140020407Search in Google Scholar

Dunford, H. B. (1991). Horseradish peroxidase: structure and kinetic properties. In J. Everse, K. E. Everse, & M. B. Grisham (Eds.), Peroxidases in chemistry and biology (Vol. 2, pp. 1-24). Boca Raton, FL, USA: CRC Press.Search in Google Scholar

Ebersole, R. C., & Ward, M. D. (1988). Amplified mass immunosorbent assay with a quartz crystal microbalance. Journal of the American Chemical Society, 110, 8623-8628. DOI: 10.1021/ja00234a008.10.1021/ja00234a008Search in Google Scholar

Hool, K., & Nieman, T. A. (1988). Immobilized luminol chemiluminescence reagent system for hydrogen peroxide determinations in flowing streams. Analytical Chemistry, 60, 834-837. DOI: 10.1021/ac00160a002.10.1021/ac00160a002Search in Google Scholar

Ivama, V. M., & Serrano, S. H. P. (2003). Rhodium-Prussian Blue modified carbon paste electrode (Rh-PBMCPE) for amperometric detection of hydrogen peroxide. Journal of the Brazilian Chemical Society, 14, 551-555. DOI: 10.1590/ s0103-50532003000400010.10.1590/S0103-50532003000400010Search in Google Scholar

Jin, X. F., Jin, X. Y., Liu, X. P., Chen, L. G., Jiang, J. H., Shen, G. L., & Yu, R. Q. (2009). Biocatalyzed deposition amplification for detection of aflatoxin B-1 based on quartz crystal microbalance. Analytica Chimica Acta, 645, 92-97. DOI: 10.1016/j.aca.2009.04.041.10.1016/j.aca.2009.04.041Search in Google Scholar

Karyakin, A. A., Karyakina, E. E., & Gorton, L. (1996). Prussian-Blue-based amperometric biosensors in flow-injection analysis. Talanta, 43, 1597-1606. DOI: 10.1016/0039-9140(96)01909-1.10.1016/0039-9140(96)01909-1Search in Google Scholar

Khoo, S. B., & Chen, F. (2002). Studies of sol-gel ceramic film incorporating methylene blue on glassy carbon: An electrocatalytic system for the simultaneous determination of ascorbic and uric acids. Analytical Chemistry, 74, 5734-5741. DOI: 10.1021/ac0255882.10.1021/ac0255882Search in Google Scholar

Kong, Y. T., Boopathi, M., & Shim, Y. B. (2003). Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode. Biosensors & Bioelectronics, 19, 227-232. DOI: 10.1016/s0956-5663(03)00216-1.10.1016/S0956-5663(03)00216-1Search in Google Scholar

Liu, H. Y., Malhotra, R., Peczuh, M. W., & Rusling, J. F. (2010). Electrochemical immunosensors for antibodies to peanut allergen Ara h2 using gold nanoparticle-peptide films. Analytical Chemistry, 82, 5865-5871. DOI: 10.1021/ac1011 10q.Search in Google Scholar

Liu, H. Y., Ying, T. L., Sun, K., & Qi, D. Y. (1996). A reagentless biosensor highly sensitive to hydrogen peroxide based on new methylene blue N dispersed in Nafion_gel as the electron shuttle. Journal of Electroanalytical Chemistry, 417, 59-64. DOI: 10.1016/s0022-0728(96)04756-0.10.1016/S0022-0728(96)04756-0Search in Google Scholar

Lu, S. M., Song, J., & Campbell-Palmer, L. (2009). A modified chemiluminescence method for hydrogen peroxide determination in apple fruit tissues. Scientia Horticulturae, 120, 336-341. DOI: 10.1016/j.scienta.2008.11.003.10.1016/j.scienta.2008.11.003Search in Google Scholar

Malinauskas, A., Araminait˙e, R., Mickeviči ̄ut˙e, G., & Garjonyt ˙e, R. (2004). Evaluation of operational stability of Prussian blue- and cobalt hexacyanoferrate-based amperometric hydrogen peroxide sensors for biosensing application. Materials Science & Engineering C, 24, 513-519. DOI: 10.1016/j.msec.2004.01.002.10.1016/j.msec.2004.01.002Search in Google Scholar

Meloan, C. E., Mauck, M., & Huffman, C. (1961). Spectrophotometric detetermination of traces of hydrogen peroxide. Analytical Chemistry, 33, 104-106. DOI: 10.1021/ac60169a033.10.1021/ac60169a033Search in Google Scholar

Meyer, J., & Karst, U. (1999). Workplace monitoring of gas phase hydrogen peroxide by means of fluorescence spectroscopy. Analytica Chimica Acta, 401, 191-196. DOI: 10.1016/s0003-2670(99)00488-2.10.1016/S0003-2670(99)00488-2Search in Google Scholar

Nagaraja, P., Prakash, J., Asha, S. C., Bhaskara, B. L., & Kumar, S. A. (2012). Dibenzazepin hydrochloride as a new spectrophotometric reagent for determination of hydrogen peroxide in plant extracts. Environmental Monitoring and Assessment, 184, 5983-5988. DOI: 10.1007/s10661-011-2395-x.10.1007/s10661-011-2395-xSearch in Google Scholar

Patolsky, F., Zayats, M., Katz, E., & Willner, I. (1999). Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: Characterization by Faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyses. Analytical Chemistry, 71, 3171-3180. DOI: 10.1021/ac9901541.10.1021/ac9901541Search in Google Scholar

Prodromidis, M. I., & Karayannis, M. I. (2002). Enzyme based amperometric biosensors for food analysis. Electroanalysis, 14, 241-261. DOI: 10.1002/1521-4109(200202)14:4<241:: AID-ELAN241>3.3.CO;2-P.Search in Google Scholar

Reddy, S. M., Jones, J. P., Lewis, T. J., & Vadgama, P. M. (1998). Development of an oxidase-based glucose sensor using thickness-shear-mode quartz crystals. Analytica Chimica Acta, 363, 203-213. DOI: 10.1016/s0003-2670(98)00131-7.10.1016/S0003-2670(98)00131-7Search in Google Scholar

Ricci, F., Amine, A., Palleschi, G., & Moscone, D. (2003). Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosensors & Bioelectronics, 18, 165-174. DOI: 10.1016/s0956-5663(02)00169-0.10.1016/S0956-5663(02)00169-0Search in Google Scholar

Su, X. D., & Li, S. F. Y. (2001). Serological determination of Helicobacter pylori infection using sandwiched and enzymatically amplified piezoelectric biosensor. Analytica Chimica Acta, 429, 27-36. DOI: 10.1016/s0003-2670(00)01262-9.10.1016/S0003-2670(00)01262-9Search in Google Scholar

Sunil, K., & Narayana, B. (2008). Spectrophotometric determination of hydrogen peroxide in water and cream samples. Bulletin of Environmental Contamination and Toxicology, 81, 422-426. DOI: 10.1007/s00128-008-9477-7. 10.1007/s00128-008-9477-7Search in Google Scholar PubMed

Tang, H.,Wang, Q., Xie, Q. J., Zhang, Y. Y., Tan, L., & Yao, S. Z. (2007). Enzymatically biocatalytic precipitates amplified antibody-antigen interaction for super low level immunoassay: An investigation combined surface plasmon resonance with electrochemistry. Biosensors & Bioelectronics, 23, 668-674. DOI: 10.1016/j.bios.2007.08.001.10.1016/j.bios.2007.08.001Search in Google Scholar PubMed

Tsai, W. C., & Cass, A. G. (1995). Ferrocene-modified horseradish peroxidase enyzme electrodes. A kinetic study on reactions with hydrogen peroxide and linoleic hydroperoxide. Analyst, 120, 2249-2254. DOI: 10.1039/an9952002249 Wang, J. (2008). Electrochemical glucose biosensors. Chemical Reviews, 108, 814-825. DOI: 10.1021/cr068123a.10.1021/cr068123aSearch in Google Scholar PubMed

Won, B. Y., Lee, D. W., Shin, S. C., Cho, D. Y., Lee, S. S., Yoon, H. C., & Park, H. G. (2008). A DNA intercalationbased electrochemical method for detection of Chlamydia trachomatis utilizing peroxidase-catalyzed signal amplification. Biosensors & Bioelectronics, 24, 665-669. DOI: 10.1016/j.bios.2008.06.020.10.1016/j.bios.2008.06.020Search in Google Scholar PubMed

Yang, L., Janle, E., Huang, T. H., Gitzen, J., Kissinger, P. T., Vreeke, M., & Heller, A. (1995). Applications of wired peroxidase electrodes for peroxide determination in liquid chromatography coupled to oxidase immobilized enzyme reactors. Analytical Chemistry, 67, 1326-1331. DOI: 10.1021/ac00104a005.10.1021/ac00104a005Search in Google Scholar

Yoon, H. C., Yang, H. S., & Kim, Y. T. (2002). Biocatalytic precipitation induced by an affinity reaction on dendrimer-activated surfaces for the electrochemical signalling from immunosensors. Analyst, 127, 1082-1087. DOI: 10.1039/b203299f.10.1039/b203299fSearch in Google Scholar PubMed

Zhu, L. D., Yang, R. L., Zhai, J. L., & Tian, C. Y. (2007). Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. Biosensors & Bioelectronics, 23, 528-535. DOI: 10.1016/j.bios.2007.07.002. 10.1016/j.bios.2007.07.002Search in Google Scholar PubMed

Received: 2014-4-16
Revised: 2014-7-3
Accepted: 2014-7-3
Published Online: 2014-11-28
Published in Print: 2015-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Biosensors – Topical issue
  2. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
  3. Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
  4. Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
  5. Application of nanomaterials in microbial-cell biosensor constructions
  6. Use of green fluorescent proteins for in vitro biosensing
  7. Biosensors based on molecular beacons
  8. DNA aptamer-based detection of prostate cancer
  9. Can glycoprofiling be helpful in detecting prostate cancer?
  10. Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
  11. Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
  12. Surface plasmon resonance application in prostate cancer biomarker research
  13. Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
  14. Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
  15. Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
  16. Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
  17. Whole-cell optical biosensor for mercury – operational conditions in saline water
  18. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
  19. Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
  20. Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
  21. Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
  22. Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
  23. Can voltammetry distinguish glycan isomers?
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0003/html
Scroll to top button