Abstract
Biocatalysed precipitation of an insoluble product accumulated on the enzyme-modified electrode surface was applied as the amplification path for low concentration sensing of hydrogen peroxide and glucose. Sensitive electrochemical and quartz-crystal microbalance (QCM) biosensors based on biocatalytic precipitation were developed. A horseradish peroxidase (HRP) monolayer-modified electrode was used to sense H2O2 via the oxidation of 4-chloro-1-naphthol (4CN) forming insoluble benzo-4-chlorocyclohexadienone. Additionally, the bienzyme system employed glucose oxidase (GOx) linked to HRP/4CN. The amount of the precipitate assembled on the sensing surface corresponded to the concentration of analytes and to the length of the incubation interval. The precipitated deposits were followed as a change of impedance using cyclic voltammetry (CV), mass change was determined continuously using a microgravimetric quartz-crystal microbalance, and optical microscopy enabled the visualisation of the precipitate. Regeneration of the enzyme-modified electrode was performed using cathodic reduction of the insoluble product. Thus, a simple biosensor for multiple analyses with low detection limits and of low cost can be developed.
References
Abad, J. M., Pariente, F., Hernandez, L., & Lorenzo, E. (1998). A quartz crystal microbalance assay for detection of antibodies against the recombinant African swine fever virus attachment protein p12 in swine serum. Analytica Chimica Acta, 368, 183-189. DOI: 10.1016/s0003-2670(98)00205-0.10.1016/S0003-2670(98)00205-0Search in Google Scholar
Akter, R., Rahman, M. A., & Rhee, C. K. (2012). Amplified electrochemical detection of a cancer biomarker by enhanced precipitation using horseradish peroxidase attached on carbon nanotubes. Analytical Chemistry, 84, 6407-6415. DOI: 10.1021/ac300110n.10.1021/ac300110nSearch in Google Scholar
Alfonta, L., Katz, E., & Willner, I. (2000). Sensing of acetylcholine by a tricomponent-enzyme layered electrode using Faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance transduction methods. Analytical Chemistry, 72, 927-935. DOI: 10.1021/ac990439d.10.1021/ac990439dSearch in Google Scholar
Alfonta, L., Bardea, A., Khersonsky, O., Katz, E., & Willner, I. (2001). Chronopotentiometry and Faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: routes for enzyme sensors, immunosensors and DNA sensors. Biosensors & Bioelectronics, 16, 675-687. DOI: 10.1016/s0956-5663(01)00231-7.10.1016/S0956-5663(01)00231-7Search in Google Scholar
Azevedo, A. M., Prazeres, D. M. F., Cabral, J. M. S., & Fonseca, L. P. (2005). Ethanol biosensors based on alcohol oxidase. Biosensors & Bioelectronics, 21, 235-247. DOI: 10.1016/j.bios.2004.09.030.10.1016/j.bios.2004.09.030Search in Google Scholar PubMed
Biscay, J., Costa Rama, E., Gonzalez Garcia, M. B., Pingarron Carrazon, J. M., & Costa Garcia, A. (2011). Enzymatic sensor using mediator-screen-printed carbon electrodes. Electroanalysis, 23, 209-214. DOI: 10.1002/elan.201000471.10.1002/elan.201000471Search in Google Scholar
Chen, W., Cai, S., Ren, Q. Q., Wen, W., & Zhao, Y. D. (2012). Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst, 137, 49-58. DOI: 10.1039/c1an15738h.10.1039/C1AN15738HSearch in Google Scholar PubMed
Chen, X. M., Cai, Z. X., Huang, Z. Y., Oyama, M., Jiang, Y. Q., & Chen, X. (2013). Ultrafine palladium nanoparticles grown on graphene nanosheets for enhanced electrochemical sensing of hydrogen peroxide. Electrochimica Acta, 97, 398-403. DOI: 10.1016/j.electacta.2013.02.047.10.1016/j.electacta.2013.02.047Search in Google Scholar
Ding, Y. J.,Wang, H., Shen, G. L., & Yu, R. Q. (2005). Enzymecatalyzed amplified immunoassay for the detection of Toxoplasma gondii-specific IgG using Faradaic impedance spectroscopy, CV and QCM. Analytical & Bioanalytical Chemistry, 382, 1491-1499. DOI: 10.1007/s00216-005-3350-x.10.1007/s00216-005-3350-xSearch in Google Scholar PubMed
Dominguez Sanchez, P., Tu˜non Blanco, P., Fernandez Alvarez, J. M., Smyth, M. R., & OKennedy, R. (1990). Flow-injection analysis of hydrogen peroxide using a horseradish peroxidasemodified electrode detection system. Electroanalysis, 2, 303-308. DOI: 10.1002/elan.1140020407.10.1002/elan.1140020407Search in Google Scholar
Dunford, H. B. (1991). Horseradish peroxidase: structure and kinetic properties. In J. Everse, K. E. Everse, & M. B. Grisham (Eds.), Peroxidases in chemistry and biology (Vol. 2, pp. 1-24). Boca Raton, FL, USA: CRC Press.Search in Google Scholar
Ebersole, R. C., & Ward, M. D. (1988). Amplified mass immunosorbent assay with a quartz crystal microbalance. Journal of the American Chemical Society, 110, 8623-8628. DOI: 10.1021/ja00234a008.10.1021/ja00234a008Search in Google Scholar
Hool, K., & Nieman, T. A. (1988). Immobilized luminol chemiluminescence reagent system for hydrogen peroxide determinations in flowing streams. Analytical Chemistry, 60, 834-837. DOI: 10.1021/ac00160a002.10.1021/ac00160a002Search in Google Scholar
Ivama, V. M., & Serrano, S. H. P. (2003). Rhodium-Prussian Blue modified carbon paste electrode (Rh-PBMCPE) for amperometric detection of hydrogen peroxide. Journal of the Brazilian Chemical Society, 14, 551-555. DOI: 10.1590/ s0103-50532003000400010.10.1590/S0103-50532003000400010Search in Google Scholar
Jin, X. F., Jin, X. Y., Liu, X. P., Chen, L. G., Jiang, J. H., Shen, G. L., & Yu, R. Q. (2009). Biocatalyzed deposition amplification for detection of aflatoxin B-1 based on quartz crystal microbalance. Analytica Chimica Acta, 645, 92-97. DOI: 10.1016/j.aca.2009.04.041.10.1016/j.aca.2009.04.041Search in Google Scholar
Karyakin, A. A., Karyakina, E. E., & Gorton, L. (1996). Prussian-Blue-based amperometric biosensors in flow-injection analysis. Talanta, 43, 1597-1606. DOI: 10.1016/0039-9140(96)01909-1.10.1016/0039-9140(96)01909-1Search in Google Scholar
Khoo, S. B., & Chen, F. (2002). Studies of sol-gel ceramic film incorporating methylene blue on glassy carbon: An electrocatalytic system for the simultaneous determination of ascorbic and uric acids. Analytical Chemistry, 74, 5734-5741. DOI: 10.1021/ac0255882.10.1021/ac0255882Search in Google Scholar
Kong, Y. T., Boopathi, M., & Shim, Y. B. (2003). Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode. Biosensors & Bioelectronics, 19, 227-232. DOI: 10.1016/s0956-5663(03)00216-1.10.1016/S0956-5663(03)00216-1Search in Google Scholar
Liu, H. Y., Malhotra, R., Peczuh, M. W., & Rusling, J. F. (2010). Electrochemical immunosensors for antibodies to peanut allergen Ara h2 using gold nanoparticle-peptide films. Analytical Chemistry, 82, 5865-5871. DOI: 10.1021/ac1011 10q.Search in Google Scholar
Liu, H. Y., Ying, T. L., Sun, K., & Qi, D. Y. (1996). A reagentless biosensor highly sensitive to hydrogen peroxide based on new methylene blue N dispersed in Nafion_gel as the electron shuttle. Journal of Electroanalytical Chemistry, 417, 59-64. DOI: 10.1016/s0022-0728(96)04756-0.10.1016/S0022-0728(96)04756-0Search in Google Scholar
Lu, S. M., Song, J., & Campbell-Palmer, L. (2009). A modified chemiluminescence method for hydrogen peroxide determination in apple fruit tissues. Scientia Horticulturae, 120, 336-341. DOI: 10.1016/j.scienta.2008.11.003.10.1016/j.scienta.2008.11.003Search in Google Scholar
Malinauskas, A., Araminait˙e, R., Mickeviči ̄ut˙e, G., & Garjonyt ˙e, R. (2004). Evaluation of operational stability of Prussian blue- and cobalt hexacyanoferrate-based amperometric hydrogen peroxide sensors for biosensing application. Materials Science & Engineering C, 24, 513-519. DOI: 10.1016/j.msec.2004.01.002.10.1016/j.msec.2004.01.002Search in Google Scholar
Meloan, C. E., Mauck, M., & Huffman, C. (1961). Spectrophotometric detetermination of traces of hydrogen peroxide. Analytical Chemistry, 33, 104-106. DOI: 10.1021/ac60169a033.10.1021/ac60169a033Search in Google Scholar
Meyer, J., & Karst, U. (1999). Workplace monitoring of gas phase hydrogen peroxide by means of fluorescence spectroscopy. Analytica Chimica Acta, 401, 191-196. DOI: 10.1016/s0003-2670(99)00488-2.10.1016/S0003-2670(99)00488-2Search in Google Scholar
Nagaraja, P., Prakash, J., Asha, S. C., Bhaskara, B. L., & Kumar, S. A. (2012). Dibenzazepin hydrochloride as a new spectrophotometric reagent for determination of hydrogen peroxide in plant extracts. Environmental Monitoring and Assessment, 184, 5983-5988. DOI: 10.1007/s10661-011-2395-x.10.1007/s10661-011-2395-xSearch in Google Scholar
Patolsky, F., Zayats, M., Katz, E., & Willner, I. (1999). Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: Characterization by Faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyses. Analytical Chemistry, 71, 3171-3180. DOI: 10.1021/ac9901541.10.1021/ac9901541Search in Google Scholar
Prodromidis, M. I., & Karayannis, M. I. (2002). Enzyme based amperometric biosensors for food analysis. Electroanalysis, 14, 241-261. DOI: 10.1002/1521-4109(200202)14:4<241:: AID-ELAN241>3.3.CO;2-P.Search in Google Scholar
Reddy, S. M., Jones, J. P., Lewis, T. J., & Vadgama, P. M. (1998). Development of an oxidase-based glucose sensor using thickness-shear-mode quartz crystals. Analytica Chimica Acta, 363, 203-213. DOI: 10.1016/s0003-2670(98)00131-7.10.1016/S0003-2670(98)00131-7Search in Google Scholar
Ricci, F., Amine, A., Palleschi, G., & Moscone, D. (2003). Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosensors & Bioelectronics, 18, 165-174. DOI: 10.1016/s0956-5663(02)00169-0.10.1016/S0956-5663(02)00169-0Search in Google Scholar
Su, X. D., & Li, S. F. Y. (2001). Serological determination of Helicobacter pylori infection using sandwiched and enzymatically amplified piezoelectric biosensor. Analytica Chimica Acta, 429, 27-36. DOI: 10.1016/s0003-2670(00)01262-9.10.1016/S0003-2670(00)01262-9Search in Google Scholar
Sunil, K., & Narayana, B. (2008). Spectrophotometric determination of hydrogen peroxide in water and cream samples. Bulletin of Environmental Contamination and Toxicology, 81, 422-426. DOI: 10.1007/s00128-008-9477-7. 10.1007/s00128-008-9477-7Search in Google Scholar PubMed
Tang, H.,Wang, Q., Xie, Q. J., Zhang, Y. Y., Tan, L., & Yao, S. Z. (2007). Enzymatically biocatalytic precipitates amplified antibody-antigen interaction for super low level immunoassay: An investigation combined surface plasmon resonance with electrochemistry. Biosensors & Bioelectronics, 23, 668-674. DOI: 10.1016/j.bios.2007.08.001.10.1016/j.bios.2007.08.001Search in Google Scholar PubMed
Tsai, W. C., & Cass, A. G. (1995). Ferrocene-modified horseradish peroxidase enyzme electrodes. A kinetic study on reactions with hydrogen peroxide and linoleic hydroperoxide. Analyst, 120, 2249-2254. DOI: 10.1039/an9952002249 Wang, J. (2008). Electrochemical glucose biosensors. Chemical Reviews, 108, 814-825. DOI: 10.1021/cr068123a.10.1021/cr068123aSearch in Google Scholar PubMed
Won, B. Y., Lee, D. W., Shin, S. C., Cho, D. Y., Lee, S. S., Yoon, H. C., & Park, H. G. (2008). A DNA intercalationbased electrochemical method for detection of Chlamydia trachomatis utilizing peroxidase-catalyzed signal amplification. Biosensors & Bioelectronics, 24, 665-669. DOI: 10.1016/j.bios.2008.06.020.10.1016/j.bios.2008.06.020Search in Google Scholar PubMed
Yang, L., Janle, E., Huang, T. H., Gitzen, J., Kissinger, P. T., Vreeke, M., & Heller, A. (1995). Applications of wired peroxidase electrodes for peroxide determination in liquid chromatography coupled to oxidase immobilized enzyme reactors. Analytical Chemistry, 67, 1326-1331. DOI: 10.1021/ac00104a005.10.1021/ac00104a005Search in Google Scholar
Yoon, H. C., Yang, H. S., & Kim, Y. T. (2002). Biocatalytic precipitation induced by an affinity reaction on dendrimer-activated surfaces for the electrochemical signalling from immunosensors. Analyst, 127, 1082-1087. DOI: 10.1039/b203299f.10.1039/b203299fSearch in Google Scholar PubMed
Zhu, L. D., Yang, R. L., Zhai, J. L., & Tian, C. Y. (2007). Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. Biosensors & Bioelectronics, 23, 528-535. DOI: 10.1016/j.bios.2007.07.002. 10.1016/j.bios.2007.07.002Search in Google Scholar PubMed
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Biosensors – Topical issue
- Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
- Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
- Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
- Application of nanomaterials in microbial-cell biosensor constructions
- Use of green fluorescent proteins for in vitro biosensing
- Biosensors based on molecular beacons
- DNA aptamer-based detection of prostate cancer
- Can glycoprofiling be helpful in detecting prostate cancer?
- Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
- Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
- Surface plasmon resonance application in prostate cancer biomarker research
- Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
- Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
- Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
- Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
- Whole-cell optical biosensor for mercury – operational conditions in saline water
- Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
- Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
- Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
- Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
- Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
- Can voltammetry distinguish glycan isomers?
Articles in the same Issue
- Biosensors – Topical issue
- Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
- Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
- Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
- Application of nanomaterials in microbial-cell biosensor constructions
- Use of green fluorescent proteins for in vitro biosensing
- Biosensors based on molecular beacons
- DNA aptamer-based detection of prostate cancer
- Can glycoprofiling be helpful in detecting prostate cancer?
- Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
- Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
- Surface plasmon resonance application in prostate cancer biomarker research
- Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
- Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
- Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
- Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
- Whole-cell optical biosensor for mercury – operational conditions in saline water
- Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
- Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
- Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
- Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
- Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
- Can voltammetry distinguish glycan isomers?