Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
-
Lucie Maixnerová
, Alexandar Horvitz
, Gabriela Kuncová , Michal Přibyl , Marek Šebela and Martin Koštejn
Abstract
A biosensor for putrescine containing a sensing layer with an optical oxygen probe based on ruthenium complex and the enzyme diamine oxidase from pea is described. The diamine oxidase was pre-immobilised on broken micro-beads modified with a ferrofluid. The pre-immobilised enzyme and ruthenium complex were both incorporated into the UV-cured inorganic-organic hybrid polymer ORMOCER® and deposited on a lens to form a sensitive layer of 210 μm in thickness. The sensitivity to the putrescine concentration determined under air saturation was between 3.50 μs L mmol−1 and 4.50 μs L mmol−1 in a hundred experiments conducted intermittently over a one year period. With the oxygen concentration increasing from 10 % to 100 % of DO (dissolved oxygen), the biosensor sensitivity decreased from 6.87 μs L mmol−1 to 0.70 μs L mmol−1 and its dynamic range increased from 0.10 mmol L−1 to 1.75 mmol L−1. To estimate the behaviour of the putrescine sensor in parametric space, a mathematical model of the reaction-transport processes inside the sensing layer was developed. The model revealed the qualitative relations between the sensor analytical features, the characteristics of the sensitive layer and concentrations of substrates. The results of the mathematical modelling may serve as guidelines in the design of optodes for specific applications.
References
Akin, M., Prediger, A., Yuksel, M., Höpfner, T., Demirkol, D. O., Beutel, S., Timur, S., & Scheper, T. (2011). A new set up for multi-analyte sensing: At-line bio-process monitoring.10.1016/j.bios.2011.05.018Search in Google Scholar
Biosensors and Bioelectronics, 26, 4532-4537. DOI: 10.1016/j.bios.2011.05.018.10.1016/j.bios.2011.05.018Search in Google Scholar
Bóka, B., Adanyi, N., Virag, D., Sebela, M., & Kiss, A. (2012). Spoilage detection with biogenic amine biosensors, comparison of different enzyme electrodes. Electroanalysis, 24, 181-186. DOI: 10.1002/elan.201100419.10.1002/elan.201100419Search in Google Scholar
Brown, J. Q., & McShane, M. J. (2006). Modeling of spherical fluorescent glucose microsensor systems: Design of enzymatic smart tattoos. Biosensors and Bioelectronics, 21, 1760-1769. DOI: 10.1016/j.bios.2005.08.013.10.1016/j.bios.2005.08.013Search in Google Scholar
Cai, Y. K., Shinar, R., Zhou, Z. Q., & Shinar, J. (2008). Multianalyte sensor array based on an organic light emitting diode platform. Sensors and Actuators B: Chemical, 134, 727-735. DOI: 10.1016/j.snb.2008.06.019.10.1016/j.snb.2008.06.019Search in Google Scholar
Healey, B. G., Li, L., &Walt, D. R. (1997). Multianalyte biosensors on optical imaging bundles. Biosensors and Bioelectronics, 12, 521-529. DOI: 10.1016/s0956-5663(97)00009-2.10.1016/S0956-5663(97)00009-2Search in Google Scholar
Höber, R., Hitchcock, D. I., Bateman, J. B., Goddard, D. R., & Fenn, W. O. (1946). Physical chemistry of cells and tissues. The Journal of Physical Chemistry, 50, 386-387. DOI: 10.1021/j150448a010.10.1021/j150448a010Search in Google Scholar
Illanes, A., Altamirano, C., & Wilson, L. (2008). Homogeneous enzyme kinetics. In A. Illanes (Ed.), Enzyme biocatalysis (pp. 129-130). Houten, The Netherlands: Springer. DOI: 10.1007/978-1-4020-8361-7 3.10.1007/978-1-4020-8361-7Search in Google Scholar
Kumar, V., Dooley, D. M., Freeman, H. C., Guss, J. M., Harvey, I., McGuirl, M. A., Wilce, M. C. J., & Zubak, V. M. (1996). Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 ˚A resolution. Structure, 4, 943-955. DOI: 10.1016/s0969-2126(96)00101-3.10.1016/S0969-2126(96)00101-3Search in Google Scholar
Kuncová, G., & Šandova, M. (2007). Glucose optical sensor for bioreactors [motion picture]. Czech Republic, _c Sanda, s.r.o. https://www.youtube.com/watch?v=NTJwmRK3oZ4 and http://ds-uchp-backup.asuch.cas.cz:5000/fbsharing/ilGRdL0X Search in Google Scholar
Li, X. P., & Rosenzweig, Z. (1997). A fiber optic sensor for rapid analysis of bilirubin in serum. Analytica Chimica Acta, 353, 263-273. DOI: 10.1016/s0003-2670(97)87785-9.10.1016/S0003-2670(97)87785-9Search in Google Scholar
Marazuela, M. D., Cuesta, B., Moreno-Bondi, M. C., & Quejido, A. (1997). Free cholesterol fiber-optic biosensor for serum samples with simplex optimization. Biosensors and Bioelectronics, 12, 233-240. DOI: 10.1016/s0956-5663(97)85341-9.10.1016/S0956-5663(97)85341-9Search in Google Scholar
Meškauskas, T., Ivanauskas F., & Laurinavicius, V. (2013). Degradation of substrate and/or product: mathematical modeling of biosensor action. Journal of Mathematical Chemistry, 51, 2491-2502. DOI: 10.1007/s10910-013-0223-y.10.1007/s10910-013-0223-ySearch in Google Scholar
Mitsubayashi, K., Kon, T., & Hashimoto, Y. (2003). Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber. Biosensors and Bioelectronics, 19, 193-198. DOI: 10.1016/s0956-5663(03)00218-5.10.1016/S0956-5663(03)00218-5Search in Google Scholar
Netrabukkana, R., Lourvanij, K., & Rorrer, G. L. (1996). Diffusion of glucose and glucitol in microporous and mesoporous silicate/aluminosilicate catalysts. Industrial & Engineering Chemistry Research, 35, 458-464. DOI: 10.1021/ie950200x.10.1021/ie950200xSearch in Google Scholar
Pasic, A., Koehler, H., Klimant, I., & Schaupp, L. (2007). Miniaturized fiber-optic hybrid sensor for continuous glucose monitoring in subcutaneous tissue. Sensors and Actuators B: Chemical, 122, 60-68. DOI: 10.1016/j.snb.2006.05.010.10.1016/j.snb.2006.05.010Search in Google Scholar
Pierangelli, E., Levin, V. A., Seidenfeld, J., & Marton, L. J. (1981). Putrescine diffusion in cat brain and capillary permeability in rat brain: Relation to CSF putrescine levels in brain tumor patients. European Journal of Cancer, 17, 143-147. DOI: 10.1016/0014-2964(81)90028-1.10.1016/0014-2964(81)90028-1Search in Google Scholar
Pospiskova, K., Safarik, I., Sebela, M., & Kuncova, G. (2013). Magnetic particles-based biosensor for biogenic amines using an optical oxygen sensor as a transducer. Microchimica Acta, 180, 311-318. DOI: 10.1007/s00604-012-0932-0.10.1007/s00604-012-0932-0Search in Google Scholar
Psoma, S. D., van der Wal, P. D., & de Rooij, N. F. (2011). Low fluorescence enzyme matrices based on microfabricated SU-8 films for a phenol micro-biosensor application. Procedia Engineering, 25, 1369-1372. DOI: 10.1016/j.proeng.2011.12. 338.Search in Google Scholar
Rassaei, L., Olthuis, W., Tsujimura, S., Sudhölter, E. J. R., & van den Berg, A. (2014). Lactate biosensors: current status and outlook. Analytical and Bioanalytical Chemistry, 406, 123-137. DOI: 10.1007/s00216-013-7307-1.10.1007/s00216-013-7307-1Search in Google Scholar PubMed
Romero, M. R., Baruzzi, A. M., & Garay, F. (2012). Mathematical modeling and experimental results of a sandwich-type amperometric biosensor. Sensors and Actuators B: Chemical, 162, 284-291. DOI: 10.1016/j.snb.2011.12.079.10.1016/j.snb.2011.12.079Search in Google Scholar
Scully, P. J., Betancor, L., Bolyo, J., Dzyadevych, S., Guisan, J. M., Fernandez-Lafuente, R., Jaffrezic-Renault, N., Kuncova, G., Matějec, V., O’Kennedy, B., Podrazky, O., Rose, K., Sasek, L., & Young, J. S. (2011). Optical fibre biosensors using enzymatic transducers to monitor glucose. Measurement Science and Technology, 18, 3177-3186. DOI: 10.1088/0957-0233/18/10/s20.10.1088/0957-0233/18/10/S20Search in Google Scholar
Shrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2, 21-25. DOI: 10.4103/2229-5186.79345.10.4103/2229-5186.79345Search in Google Scholar
Steiner, M. S., Duerkop, A., & Wolfbeis, O. S. (2011). Optical methods for sensing glucose. Chemical Society Reviews, 40, 4805-4839. DOI: 10.1039/c1cs15063d.10.1039/c1cs15063dSearch in Google Scholar
Štikonien˙e, O., Ivanauskas, F., & Laurinavicius, V. (2010). The influence of external factors on the operational stability of the biosensor response. Talanta, 81, 1245-1249. DOI: 10.1016/j.talanta.2010.02.016.10.1016/j.talanta.2010.02.016Search in Google Scholar
Wang, X. D., & Wolfbeis, O. S. (2014). Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chemical Society Reviews, 43, 3666-3761. DOI: 10.1039/c4cs00039k.10.1039/C4CS00039KSearch in Google Scholar
Wolfbeis, O. S. (1991). Optical sensing based on analyte recognition by enzymes, carriers and molecular interactions. Analytica Chimica Acta, 250, 181-201. DOI: 10.1016/0003-2670(91)85071-y.10.1016/0003-2670(91)85071-YSearch in Google Scholar
Wu, X. J., & Choi, M. M. F. (2003). Hydrogel network entrapping cholesterol oxidase and octadecylsilica for optical biosensing in hydrophobic organic or aqueous micelle solvents. Analytical Chemistry, 75, 4019-4027. DOI: 10.1021/ac020736+.10.1021/ac020736+Search in Google Scholar PubMed
Wu, X. J., & Choi, M. M. F. (2004). Spongiform immobilization architecture of ionotropy polymer hydrogel coentrapping alcohol oxidase and horseradish peroxidase with octadecylsilica for optical biosensing alcohol in organic solvent. Analytical Chemistry, 76, 4279-4285. DOI: 10.1021/ac049799d.10.1021/ac049799dSearch in Google Scholar PubMed
Wu, X. J., Choi, M. M. F., Chen, C. S., & Wu, X. M. (2007). On-line monitoring of methanol in n-hexane by an organicphase alcohol biosensor. Biosensors and Bioelectronics, 22, 1337-1344. DOI: 10.1016/j.bios.2006.06.002.10.1016/j.bios.2006.06.002Search in Google Scholar PubMed
Xiao, D., & Choi, M. M. F. (2002). Aspartame optical biosensor with bienzyme-immobilized eggshell membrane and oxygensensitive optode membrane. Analytical Chemistry, 74, 863-870. DOI: 10.1021/ac001097a. 10.1021/ac001097aSearch in Google Scholar PubMed
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Biosensors – Topical issue
- Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
- Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
- Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
- Application of nanomaterials in microbial-cell biosensor constructions
- Use of green fluorescent proteins for in vitro biosensing
- Biosensors based on molecular beacons
- DNA aptamer-based detection of prostate cancer
- Can glycoprofiling be helpful in detecting prostate cancer?
- Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
- Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
- Surface plasmon resonance application in prostate cancer biomarker research
- Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
- Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
- Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
- Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
- Whole-cell optical biosensor for mercury – operational conditions in saline water
- Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
- Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
- Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
- Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
- Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
- Can voltammetry distinguish glycan isomers?
Articles in the same Issue
- Biosensors – Topical issue
- Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
- Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
- Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
- Application of nanomaterials in microbial-cell biosensor constructions
- Use of green fluorescent proteins for in vitro biosensing
- Biosensors based on molecular beacons
- DNA aptamer-based detection of prostate cancer
- Can glycoprofiling be helpful in detecting prostate cancer?
- Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
- Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
- Surface plasmon resonance application in prostate cancer biomarker research
- Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
- Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
- Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
- Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
- Whole-cell optical biosensor for mercury – operational conditions in saline water
- Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
- Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
- Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
- Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
- Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
- Can voltammetry distinguish glycan isomers?