Home DNA aptamer-based detection of prostate cancer
Article
Licensed
Unlicensed Requires Authentication

DNA aptamer-based detection of prostate cancer

  • Pawan Jolly , Nello Formisano and Pedro Estrela EMAIL logo
Published/Copyright: November 28, 2014
Become an author with De Gruyter Brill

Abstract

The use of aptamers in biosensing has attracted considerable attention as an alternative to antibodies because of their unique properties such as long-term stability, cost-effectiveness and adjustability to various applications. Among cancers, the early diagnosis of prostate cancer (PCa) is one of the greatest concerns for ageing men worldwide. One of the most commonly used biomarkers for PCa is prostate-specific antigen (PSA), which can be found in elevated levels in patients with cancer. This review presents the gradual transition of research from antibody-based to aptamerbased biosensors, specifically for PSA. A brief description on aptamer-based biosensing for other PCa biomarkers is also presented. Special attention is given to electrochemical methods as analytical techniques for the development of simple, sensitive and cost-effective biosensors. The review also focuses on the different surface chemistries exploited for fabrication and their applications in clinical samples. The use of aptamers represents a promising tool for the development of point-ofcare biosensors for the early detection of prostate cancer. In view of the unmatched upper hand of aptamers, future prospects are also discussed, not only in the point-of-care format but also in other novel applications.

References

Acevedo, B., Perera, Y., Ruiz, M., Rojas, G., Benitez, J., Ayala, M., & Gavilondo, J. (2002). Development and validation of a quantitative ELISA for the measurement of PSA concentration. Clinica Chimica Acta, 317, 55-63. DOI: 10.1016/s0009-8981(01)00749-5.10.1016/S0009-8981(01)00749-5Search in Google Scholar

Albrecht, S., Brandl, H., Steinke, M., & Freidt, T. (1994). Chemiluminescent enzyme immunoassay of prostate-specific antigen based on indoxyl phosphate substrate. Clinical Chemistry, 40, 1970-1971.10.1093/clinchem/40.10.1970Search in Google Scholar

Andriole, G. L., Crawford, E. D., Grubb, R. L., Buys, S. S., Chia, D., Church, T. R., Fouad, M. N., Gelmann, E. P., Kvale, P. A., Reding, D. J., Weissfeld, J. L., Yokochi, L. A., O’Brien, B., Clapp, J. D., Rathmell, J. M., Riley, T. L., Hayes, R. B., Kramer, B. S., Izmirlian, G., Miller, A. B., Pinsky, P. F., Prorok, P. C., Gohagan, J. K., & Berg, C. D. (2009). Mortality results from a randomized prostate-cancer screening trial. New England Journal of Medicine, 360, 1310-1319. DOI: 10.1056/nejmoa0810696.10.1056/NEJMoa0810696Search in Google Scholar

Arya, S. K., & Bhansali, S. (2012). Anti-prostate specific antigen (anti-PSA) modified interdigitated microelectrode-based impedimetric biosensor for PSA detection. Biosensors Journal, 1, H110601. DOI: 10.4303/bj/h110601.10.4303/BJ/H110601Search in Google Scholar

Aus, G., Ahlgren, G., Bergdahl, S., & Hugosson, J. (1996). Infection after transrectal core biopsies of the prostate. British Journal of Urology, 77, 851-855. DOI: 10.1046/j.1464-410x.1996.01014.x. 10.1046/j.1464-410X.1996.01014.xSearch in Google Scholar

Balducci, L., Pow-Sang, J., Friedland, J., & Diaz, J. I. (1997). Prostate cancer. Clinics in Geriatric Medicine, 13, 283-306.10.1016/S0749-0690(18)30170-8Search in Google Scholar

Balk, S. P., Ko, Y. J., & Bubley, G. J. (2003). Biology of prostate-specific antigen. Journal of Clinical Oncology, 21, 383-391. DOI: 10.1200/jco.2003.02.083.10.1200/JCO.2003.02.083Search in Google Scholar PubMed

Basler, J. W., & Thompson, I. M. (1998). Lest we abandon digital rectal examination as a screening test for prostate cancer. Journal of the National Cancer Institute, 90, 1761-1763. DOI: 10.1093/jnci/90.23.1761.10.1093/jnci/90.23.1761Search in Google Scholar PubMed

Bertok, T., Klukova, L., Sediva, A., Kasak, P., Semak, V., Micusik, M., Omastova, M., Chovanova, L., Vlček, M., Imrich, R., Vikartovska, A., & Tkac, J. (2013). Ultrasensitive impedimetric lectin biosensors with efficient antifouling properties applied in glycoprofiling of human serum samples. Analytical Chemistry, 85, 7324-7332. DOI: 10.1021/ac401281t.10.1021/ac401281tSearch in Google Scholar PubMed PubMed Central

Besselink, G. A. J., Kooyman, R. P. H., van Os, P. J. H. J., Engbers, G. H. M., & Schasfoort, R. B. M. (2004). Signal amplification on planar and gel-type sensor surfaces in surface plasmon resonance-based detection of prostatespecific antigen. Analytical Biochemistry, 333, 165-173. DOI: 10.1016/j.ab.2004.05.009.10.1016/j.ab.2004.05.009Search in Google Scholar PubMed

Bostwick, D. G. (1989). The pathology of early prostate cancer. CA: A Cancer Journal for Clinicians, 39, 376-393. DOI: 10.3322/canjclin.39.6.376.10.3322/canjclin.39.6.376Search in Google Scholar

Campuzano, S., Pedrero, M., Montemayor, C., Fatas, E., & Pingarron, J. M. (2006). Characterization of alkanethiol-selfassembled monolayers-modified gold electrodes by electrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry, 586, 112-121. DOI: 10.1016/j.jelechem.2005. 09.007.Search in Google Scholar

Cao, C., & Sim, S. J. (2007). Double-enhancement strategy: a practical approach to a femto-molar level detection of prostate specific antigen-α1-antichymotrypsin (PSA/ACT complex) for SPR immunosensing. Journal of Microbiology and Biotechnology, 17, 1031-1035.Search in Google Scholar

Carter, H. B., Pearson, J. D.,Metter, E. J., Brant, L. J., Chan, D. W., Andres, R., Fozard, J. L., & Walsh, P. C. (1992). Longitudinal evaluation of prostate-specific antigen levels in men with and without prostate disease. JAMA: The Journal of the American Medical Association, 267, 2215-2220. DOI: 10.1001/jama.267.16.2215.10.1001/jama.267.16.2215Search in Google Scholar

Catalona, W. J., Smith, D. S., Ratliff, T. L., Dodds, K. M., Coplen, D. E., Yuan, J. J. J., Petros, J. A., & Andriole, G. L. (1991). Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. New England Journal of Medicine, 324, 1156-1161. DOI: 10.1056/nejm199104253241702.10.1056/NEJM199104253241702Search in Google Scholar

Catalona, W. J., Partin, A. W., Slawin, K. M., Brawer, M. K., Flanigan, R. C., Patel, A., Richie, J. P., deKernion, J. B., Walsh, P. C., Scardino, P. T., Lange, P. H., Subong, E. N. P., Parson, R. E., Gasior, G. H., Loveland, K. G., & Southwick, P. C. (1998). Use of the percentage of free prostatespecific antigen to enhance differentiation of prostate cancer from benign prostatic disease: A prospective multicenter clinical trial. Journal of the American Medical Association, 279, 1542-1547. DOI: 10.1001/jama.279.19.1542.10.1001/jama.279.19.1542Search in Google Scholar

Chen, Z. G., Lei, Y. L., Chen, X., Wang, Z., & Liu, J. B. (2012). An aptamer based resonance light scattering assay of prostate specific antigen. Biosensors and Bioelectronics, 36, 35-40. DOI: 10.1016/j.bios.2012.03.041.10.1016/j.bios.2012.03.041Search in Google Scholar

Chikkaveeraiah, B. V., Mani, V., Patel, V., Gutkind, J. S., & Rusling, J. F. (2011). Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum. Biosensors and Bioelectronics, 26, 4477-4483. DOI: 10.1016/j.bios.2011.05.005.10.1016/j.bios.2011.05.005Search in Google Scholar

Chiriacò, M. S., Primiceri, E., Montanaro, A., de Feo, F., Leone, L., Rinaldi, R., & Maruccio, G. (2013). On-chip screening for prostate cancer: An EIS microfluidic platform for contemporary detection of free and total PSA. The Analyst, 138, 5404-5410. DOI: 10.1039/c3an00911d.10.1039/c3an00911dSearch in Google Scholar

Cho, E. J., Lee, J.W., & Ellington, A. D. (2009). Applications of aptamers as sensors. Annual Review of Analytical Chemistry, 2, 241-264. DOI: 10.1146/annurev.anchem.1.031207.112851.10.1146/annurev.anchem.1.031207.112851Search in Google Scholar

Chornokur, G., Arya, S. K., Phelan, C., Tanner, R., & Bhansali, S. (2011). Impedance-based miniaturized biosensor for ultrasensitive and fast prostate-specific antigen detection. Journal of Sensors, 2011, 983752. DOI: 10.1155/2011/983752.10.1155/2011/983752Search in Google Scholar

Chou, E., & Simons, J. W. (1997). The molecular biology of prostate cancer morbidity and mortality: Accelerated death from ejaculate poisoning? Urologic Oncology: Seminars and Original Investigations, 3, 79-84. DOI: 10.1016/s1078-1439(97)00041-0.10.1016/S1078-1439(97)00041-0Search in Google Scholar

Christensson, A. S., Bj¨ork, T., Nilsson, O., Dahlen, U., Matikainen, M. T., Cockett, A. T., Abrahamsson, P. A., & Lilja, H. (1993). Serum prostate specific antigen complexed to α-1-antichymotrypsin as an indicator of prostate cancer. Journal of Urology, 150, 100-105.10.1016/S0022-5347(17)35408-3Search in Google Scholar

Clark, S. L., & Remcho, V. T. (2002). Aptamers as analytical reagents. Electrophoresis, 23, 1335-1340. DOI: 10.1002/1522-2683(200205)23:9<1335::aid-elps1335>3.0.co;2-e.10.1002/1522-2683(200205)23:9<1335::AID-ELPS1335>3.0.CO;2-ESearch in Google Scholar

D’Amico, A. V., Chen, M. H., Roehl, K. A., & Catalona, W. J. (2004). Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. New England Journal of Medicine, 351, 125-135. DOI: 10.1056/nejmoa032975.10.1056/NEJMoa032975Search in Google Scholar

D’Amico, A. V., Renshaw, A. A., Sussman, B., & Chen, M. H. (2005). Pretreatment PSA velocity and risk of death from prostate cancer following external beam radiation therapy. Journal of the American Medical Association, 294, 440-447. DOI: 10.1001/jama.294.4.440.10.1001/jama.294.4.440Search in Google Scholar

Feneley, M. R., Jan, H., Granowska, M., Mather, S. J., Ellison, D., Glass, J., Coptcoat, M., Kirby, R. S., Ogden, C., Oliver, R. T. D., Badenoch, D. F., Chinegwundoh, F. I., Nargund, V. H., Paris, A. M. I., & Britton, K. E. (2000). Imaging with prostate-specific membrane antigen (PSMA) in prostate cancer. Prostate Cancer and Prostatic Diseases, 3, 47-52. DOI: 10.1038/sj.pcan.4500390.10.1038/sj.pcan.4500390Search in Google Scholar

Feng, K. J., Sun, C. H., Kang, Y., Chen, J. W., Jiang, J. H., Shen, G. L., & Yu, R. Q. (2008). Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement. Electrochemistry Communications, 10, 531-535. DOI: 10.1016/j.elecom.2008.01.024.10.1016/j.elecom.2008.01.024Search in Google Scholar

Fernández-Sánchez, C., McNeil, C. J., Rawson, K., & Nilsson, O. (2004). Disposable noncompetitive immunosensor for free and total prostate-specific antigen based on capacitance measurement. Analytical Chemistry, 76, 5649-5656. DOI: 10.1021/ac0494937.10.1021/ac0494937Search in Google Scholar

Formisano, N., Jolly, P., Cromhout, M., Fogel, R., Limson, J. L., & Estrela, P. (2014). Optimisation of an electrochemical impedance spectroscopy aptasensor by exploiting quartz crystal microbalance with dissipation signals. Sensors and Actuators B, submitted.Search in Google Scholar

Ghosh, A., & Heston, W. D. W. (2004). Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. Journal of Cellular Biochemistry, 91, 528-539. DOI: 10.1002/jcb.10661.10.1002/jcb.10661Search in Google Scholar

Greenlee, R. T., Murray, T., Bolden, S., & Wingo, P. A. (2000). Cancer statistics, 2000. CA: A Cancer Journal for Clinicians, 50, 7-33. DOI: 10.3322/canjclin.50.1.7.10.3322/canjclin.50.1.7Search in Google Scholar

Grossklaus, D. J., Smith, J. A., Shappell, S. B., Coffey, C. S., Chang, S. S., & Cookson, M. S. (2002). The free/total prostate-specific antigen ratio (%fPSA) is the best predictor of tumor involvement in the radical prostatectomy spec imen among men with an elevated PSA. Urologic Oncology: Seminars and Original Investigations, 7, 195-198. DOI: 10.1016/s1078-1439(02)00190-4.10.1016/S1078-1439(02)00190-4Search in Google Scholar

Healy, D. A., Hayes, C. J., Leonard, P., McKenna, L., & O’Kennedy, R. (2007). Biosensor developments: Application to prostate-specific antigen detection. Trends in Biotechnology, 25, 125-131. DOI: 10.1016/j.tibtech.2007.01.004.10.1016/j.tibtech.2007.01.004Search in Google Scholar PubMed

Hermann, T., & Patel, D. J. (2000). Adaptive recognition by nucleic acid aptamers. Science, 287, 820-825. DOI: 10.1126/science. 287.5454.820.10.1126/scienceSearch in Google Scholar

Herne, T. M., & Tarlov, M. J. (1997). Characterization of DNA probes immobilized on gold surfaces. Journal of the American Chemical Society, 119, 8916-8920. DOI: 10.1021/ja9719586.10.1021/ja9719586Search in Google Scholar

Hianik, T., & Wang, J. (2009). Electrochemical aptasensors - recent achievements and perspectives. Electroanalysis, 21, 1223-1235. DOI: 10.1002/elan.200904566.10.1002/elan.200904566Search in Google Scholar

Hoffman, R. M. (2011). Screening for prostate cancer. New England Journal of Medicine, 365, 2013-2019. DOI: 10.1056/nejmcp1103642.10.1056/NEJMcp1103642Search in Google Scholar PubMed

Huang, L., Reekmans, G., Saerens, D., Friedt, J. M., Frederix, F., Francis, L., Muyldermans, S., Campitelli, A., & Van Hoof, C. (2005). Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosensors and Bioelectronics, 21, 483-490. DOI: 10.1016/j.bios.2004.11.016.10.1016/j.bios.2004.11.016Search in Google Scholar PubMed

Huang, Y. W., Wu, C. S., Chuang, C. K., Pang, S. T., Pan, T. M., Yang, Y. S., & Ko, F. H. (2013). Real-time and label-free detection of the prostate-specific antigen in human serum by a polycrystalline silicon nanowire field-effect transistor biosensor. Analytical Chemistry, 85, 7912-7918. DOI: 10.1021/ac401610s.10.1021/ac401610sSearch in Google Scholar PubMed

Ikebukuro, K., Kiyohara, C., & Sode, K. (2005). Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosensors and Bioelectronics, 20, 2168-2172. DOI: 10.1016/j.bios.2004.09.002.10.1016/j.bios.2004.09.002Search in Google Scholar PubMed

Iliuk, A. B., Hu, L. H., & Tao, W. A. (2011). Aptamer in bioanalytical applications. Analytical Chemistry, 83, 4440-4452. DOI: 10.1021/ac201057w.10.1021/ac201057wSearch in Google Scholar PubMed PubMed Central

Irani, J., Fournier, F., Bon, D., Gremmo, E., Dore, B., & Aubert, J. (1997). Patient tolerance of transrectal ultrasoundguided biopsy of the prostate. British Journal of Urology, 79, 608-610. DOI: 10.1046/j.1464-410x.1997.00120.x.10.1046/j.1464-410X.1997.00120.xSearch in Google Scholar PubMed

Jeong, S., Han, S. R., Lee, Y. J., & Lee, S. W. (2010). Selection of RNA aptamers specific to active prostate-specific antigen. Biotechnology Letters, 32, 379-385. DOI: 10.1007/s10529-009-0168-1.10.1007/s10529-009-0168-1Search in Google Scholar PubMed

Jiang, Z., Fanger, G. R.,Woda, B. A., Banner, B. F., Algate, P., Dresser, K., Xu, J. C., & Chu, P. G. G. (2003). Expression of α-methylacyl-CoA racemase (p504s) in various malignant neoplasms and normal tissues: A study of 761 cases. Human Pathology, 34, 792-796. DOI: 10.1016/s0046-8177(03)00268-5.10.1016/S0046-8177(03)00268-5Search in Google Scholar

Jolly, P., Formisano, N., Tkač, J., Kasak, P., Frost, C. G., & Estrela, P. (2014). Label-free impedimetric prostate cancer aptasensor with antifouling surface chemistry. Analytical Chemistry, submitted.Search in Google Scholar

Keighley, S. D., Li, P., Estrela, P., & Migliorato, P. (2008a). Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. Biosensors and Bioelectronics, 23, 1291-1297. DOI: 10.1016/j.bios.2007.11.012.10.1016/j.bios.2007.11.012Search in Google Scholar PubMed

Keighley, S. D., Estrela, P., Li, P., & Migliorato, P. (2008b). Optimization of label-free DNA detection with electrochemical impedance spectroscopy using PNA probes. Biosensors and Bioelectronics, 24, 906-911. DOI: 10.1016/j.bios.2008.07.041..Search in Google Scholar

Kirk, D. (1997). MRC study: When to commence treatment in advanced prostate cancer. Prostate Cancer and Prostatic Diseases, 1, 11-15.10.1038/sj.pcan.4500207Search in Google Scholar PubMed

Kufe, D. W., Pollock, R. E., Weichselbaum, R. R., Bast, R. C., Gansler, T. S., Holland, J. F., & Frei, E. (2003). Cancer medicine (6th ed.). Hamilton, ON, Canada: BC Decker.Search in Google Scholar

Lee, J. W., Sim, S. J., Cho, S. M., & Lee, J. (2005). Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody. Biosensors and Bioelectronics, 20, 1422-1427. DOI: 10.1016/j.bios.2004.04.017.10.1016/j.bios.2004.04.017Search in Google Scholar PubMed

Li, C., Curreli, M., Lin, H., Lei, B., Ishikawa, F. N., Datar, R., Cote, R. J., Thompson, M. E., & Zhou, C. W. (2005). Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. Journal of the American Chemical Society, 127, 12484-12485. DOI: 10.1021/ja053761g.10.1021/ja053761gSearch in Google Scholar PubMed

Lilja, H., Oldbring, J., Rannevik, G., & Laurell, C. B. (1987). Seminal vesicle-secreted proteins and their reactions during gelation and liquefaction of human semen. Journal of Clinical Investigation, 80, 281-285. DOI: 10.1172/jci113070.10.1172/JCI113070Search in Google Scholar PubMed PubMed Central

Lilja, H., Ulmert, D., & Vickers, A. J. (2008). Prostatespecific antigen and prostate cancer: Prediction, detection and monitoring. Nature Reviews Cancer, 8, 268-278. DOI: 10.1038/nrc2351.10.1038/nrc2351Search in Google Scholar PubMed

Lim, Y. C., Kouzani, A. Z., & Duan, W. (2009). Aptasensors design considerations. In Z. H. Cai, Z. H. Li, Z. Kang, & Y. Liu (Eds.), Computational intelligence and intelligent systems (pp. 118-127). Berlin, Germany: Springer. DOI: 10.1007/978-3-642-04962-0 14.10.1007/978-3-642-04962-0Search in Google Scholar

Lin, J. H., & Ju, H. X. (2005). Electrochemical and chemiluminescent immunosensors for tumor markers. Biosensors and Bioelectronics, 20, 1461-1470. DOI: 10.1016/j.bios.2004.05. 008.Search in Google Scholar

Liu, B., Lu, L. S., Hua, E. H., Jiang, S. T., & Xie, G. M. (2012). Detection of the human prostate-specific antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon. Microchimica Acta, 178, 163-170. DOI: 10.1007/s00604-012-0822-5.10.1007/s00604-012-0822-5Search in Google Scholar

Liu, J., Lu, C. Y., Zhou, H., Xu, J. J., Wang, Z. H., & Chen, H. Y. (2013). A dual-functional electrochemical biosensor for the detection of prostate specific antigen and telomerase activity. Chemical Communications, 49, 6602-6604. DOI: 10.1039/c3cc43532f.10.1039/c3cc43532fSearch in Google Scholar PubMed

Loeb, S., & Catalona, W. J. (2007). Prostate-specific antigen in clinical practice. Cancer Letters, 249, 30-39. DOI: 10.1016/j.canlet.2006.12.022.10.1016/j.canlet.2006.12.022Search in Google Scholar PubMed

Loeb, S., Vellekoop, A., Ahmed, H. U., Catto, J., Emberton, M., Nam, R., Rosario, D. J., Scattoni, V., & Lotan, Y. (2013). Systematic review of complications of prostate biopsy. European Urology, 64, 876-892. DOI: 10.1016/j.eururo.2013.05.049.10.1016/j.eururo.2013.05.049Search in Google Scholar PubMed

Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., &Whitesides, G. M. (2005). Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 105, 1103-1170. DOI: 10.1021/cr0300789.10.1021/cr0300789Search in Google Scholar PubMed

Lövgren, J., Valtonen-Andre, C., Marsal, K., Liua, H., & Lundwall, ˚A . (1999). Measurement of prostate-specific antigen and human glandular kallikrein 2 in different body fluids. Journal of Andrology, 20, 348-355. DOI: 10.1002/j.1939-4640.1999.tb02528.x.Search in Google Scholar

Lupold, S. E., Hicke, B. J., Lin, Y., & Coffey, D. S. (2002). Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Research, 62, 4029-4033.Search in Google Scholar

Madu, C. O., & Lu, Y. (2010). Novel diagnostic biomarkers for prostate cancer. Journal of Cancer, 1, 150-177. DOI: 10.7150/jca.1.150.10.7150/jca.1.150Search in Google Scholar PubMed PubMed Central

Mairal, T., ¨Ozalp, V. C., Sanchez, P. L., Mir, M., Katakis, I., & O’Sullivan, C. K. (2008). Aptamers: Molecular tools for analytical applications. Analytical and Bioanalytical Chemistry, 390, 989-1007. DOI: 10.1007/s00216-007-1346-4.10.1007/s00216-007-1346-4Search in Google Scholar PubMed

Mani, V., Chikkaveeraiah, B. V., Patel, V., Gutkind, J. S., & Rusling, J. F. (2009). Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano, 3, 585-594. DOI: 10.1021/nn800863w.10.1021/nn800863wSearch in Google Scholar PubMed PubMed Central

Melichar, B. (2012). Tumor biomarkers: PSA and beyond. Clinical Chemistry and Laboratory Medicine, 50, 1865-1869. DOI: 10.1515/cclm-2012-0631.10.1515/cclm-2012-0631Search in Google Scholar PubMed

Mikolajczyk, S. D., Marker, K. M., Millar, L. S., Kumar, A., Saedi,M. S., Payne, J. K.,Evans, C. L., Gasoir,C. L., Linton, H. J., Carpenter, P., & Rittenhouse, H. G. (2001). A truncated precursor form of prostate-specific antigen is a more specific serum marker of prostate cancer. Cancer Research, 61, 6958-6963.Search in Google Scholar

Mikolajczyk, S. D., Catalona, W. J., Evans, C. L., Linton, H. J., Millar, L. S., Marker, K. M., Katir, D., Amirkhan, A., & Rittenhouse, H. G. (2004). Proenzyme forms of prostate-specific antigen in serum improve the detection of prostate cancer. Clinical Chemistry, 50, 1017-1025. DOI: 10.1373/clinchem.2003.026823.10.1373/clinchem.2003.026823Search in Google Scholar PubMed

Min, K., Song, K. M., Cho, M., Chun, Y. S., Shim, Y. B., Ku, J. K., & Ban, C. (2010). Simultaneous electrochemical detection of both PSMA (+) and PSMA (-) prostate cancer cells using an RNA/peptide dual-aptamer probe. Chemical Communications, 46, 5566-5568. DOI: 10.1039/c002524k.10.1039/c002524kSearch in Google Scholar PubMed

Moyer, V. A. (2012). Screening for prostate cancer: US Preventive Services Task Force recommendation statement. Annals of Internal Medicine, 157, 120-134. DOI: 10.7326/0003-4819-157-2-201207170-00459.10.7326/0003-4819-157-2-201207170-00459Search in Google Scholar PubMed

Numnuam, A., Chumbimuni-Torres, K. Y., Xiang, Y., Bash, R., Thavarungkul, P., Kanatharana, P., Pretsch, E., Wang, J., & Bakker, E. (2008). Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Analytical Chemistry, 80, 707-712. DOI: 10.1021/ac701910r.10.1021/ac701910rSearch in Google Scholar

Ohori, M., Dunn, J. K., & Scardino, P. T. (1995). Is prostatespecific antigen density more useful than prostate-specific antigen levels in the diagnosis of prostate-cancer? Urology, 46, 666-671. DOI: 10.1016/s0090-4295(99)80298-2.10.1016/S0090-4295(99)80298-2Search in Google Scholar

Okuno, J., Maehashi, K., Kerman, K., Takamura, Y., Matsumoto, K., & Tamiya, E. (2007). Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosensors and Bioelectronics, 22, 2377-2381. DOI: 10.1016/j.bios.2006.09. 038.Search in Google Scholar

Panini, N. V., Messina, G. A., Salinas, E., Fernandez, H., & Raba, J. (2008). Integrated microfluidic systems with an immunosensor modified with carbon nanotubes for detection of prostate specific antigen (PSA) in human serum samples. Biosensors and Bioelectronics, 23, 1145-1151. DOI: 10.1016/j.bios.2007.11.003.10.1016/j.bios.2007.11.003Search in Google Scholar

Pinsky, P. F., Andriole, G., Crawford, E. D., Chia, D., Kramer, B. S., Grubb, R., Greenlee, R., & Gohagan, J. K. (2007). Prostate-specific antigen velocity and prostate cancer gleason grade and stage. Cancer, 109, 1689-1695. DOI: 10.1002/cncr.22558.10.1002/cncr.22558Search in Google Scholar

Pircher, A., Hilbe, W., Heidegger, I., Drevs, J., Tichelli, A., & Medinger, M. (2011). Biomarkers in tumor angiogenesis and anti-angiogenic therapy. International Journal of Molecular Sciences, 12, 7077-7099. DOI: 10.3390/ijms12107077.10.3390/ijms12107077Search in Google Scholar

Putzbach, W., & Ronkainen, N. J. (2013). Immobilization techniques in the fabrication of nanomaterial-based electrochemical electrochemical biosensors: A review. Sensors, 13, 4811-4840. DOI: 10.3390/s130404811.10.3390/s130404811Search in Google Scholar

Rodriguez, M. C., Kawde, A. N., & Wang, J. (2005). Aptamer biosensor for label-free impedance spectroscopy detection proteins based on recognition-induced switching of the surface charge. Chemical Communications, 34, 4267-4269. DOI: 10.1039/b506571b.10.1039/b506571bSearch in Google Scholar

Ross, R. K., Pike, M. C., Coetzee, G. A., Reichardt, J. K. V., Yu, M. C., Feigelson, H., Stanczyk, F. Z., Kolonel, L. N., Henderson, B. E. (1998). Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Cancer Research, 58, 4497-4504.Search in Google Scholar

Rubin, M. A., Zhou, M., Dhanasekaran, S. M., Varambally, S., Barrette, T. R., Sanda, M. G., Pienta, K. J., Ghosh, D., Chinnaiyan, A. M. (2002). α-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA: Journal of the American Medical Association, 287, 1662-1670. DOI: 10.1001/jama.287.13.1662.10.1001/jama.287.13.1662Search in Google Scholar

Sardesai, N. P., Barron, J. C., & Rusling, J. F. (2011). Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. Analytical Chemistry, 83, 6698-6703. DOI: 10.1021/ac201292q.10.1021/ac201292qSearch in Google Scholar

Sarkar, P., Pal, P. S., Ghosh, D., Setford, S. J., & Tothill, I. E. (2002). Amperometric biosensors for detection of the prostate cancer marker (PSA). International Journal of Pharmaceutics, 238, 1-9. DOI: 10.1016/s0378-5173(02)00015-7.10.1016/S0378-5173(02)00015-7Search in Google Scholar

Savory, N., Abe, K., Sode, K., & Ikebukuro, K. (2010). Selection of DNA aptamer against prostate specific antigen using a genetic algorithm and application to sensing. Biosensors and Bioelectronics, 26, 1386-1391. DOI: 10.1016/j.bios.2010.07.057.10.1016/j.bios.2010.07.057Search in Google Scholar

Seto, Y., Iba, T., & Abe, K. (2001). Development of ultra-high sensitivity bioluminescent enzyme immunoassay for prostatespecific antigen (PSA) using firefly luciferase. Luminescence, 16, 285-290. DOI: 10.1002/bio.654.10.1002/bio.654Search in Google Scholar

Song, S. P., Wang, L. H., Li, J., Zhao, J. L., & Fan, C. H. (2008). Aptamer-based biosensors. TrAC Trends in Analytical Chemistry, 27, 108-117. DOI: 10.1016/j.trac.2007.12.004.10.1016/j.trac.2007.12.004Search in Google Scholar

Stamey, T. A., Yang, N., Hay, A. R., McNeal, J. E., Freiha, F. S., & Redwine, E. (1987). Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. New England Journal of Medicine, 317, 909-916. DOI: 10.1056/nejm198710083171501.10.1056/NEJM198710083171501Search in Google Scholar

Stanford, J. L., Stephenson, R. A., Coyle, L. M., Cerhan, J., Correa, R., Eley, J. W., Gilliland, F., Hankey, B., Kolonel, L. N., Kosary, C., Ross, R., Severson, R., & West, D. (1999). Prostate cancer trends, 1973-1995. Bethesda, MD, USA: SEER Program, National Cancer Institute.Search in Google Scholar

Stephan, C., Lein, M., Jung, K., Schnorr, D., & Loening, S. A. (1997). The influence of prostate volume on the ratio of free to total prostate specific antigen in serum patients with prostate carcinoma and benign prostate hyperplasia. Cancer, 79, 104-109. DOI: 10.1002/(sici)1097-0142(19970101)79:1<104::aid-cncr15>3.0.co;2-8.10.1002/(SICI)1097-0142(19970101)79:1<104::AID-CNCR15>3.0.CO;2-8Search in Google Scholar

Syed, M. A., & Pervaiz, S. (2010). Advances in aptamers. Oligonucleotides, 20, 215-224. DOI: 10.1089/oli.2010.0234.10.1089/oli.2010.0234Search in Google Scholar

Takayama, T. K., Fujikawa, K., & Davie, E. W. (1997). Characterization of the precursor of prostate-specific antigen. Activation by trypsin and by human glandular kallikrein. Journal of Biological Chemistry, 272, 21582-21588. DOI: 10.1074/jbc.272.34.21582.10.1074/jbc.272.34.21582Search in Google Scholar

Tombelli, S., Minunni, M., & Mascini, M. (2005). Analytical applications of aptamers. Biosensors and Bioelectronics, 20, 2424-2434. DOI: 10.1016/j.bios.2004.11.006.10.1016/j.bios.2004.11.006Search in Google Scholar

Uzzo, R. G., Wei, J. T., Waldbaum, R. S., Perlmutter, A. P., Byrne, J. C., & Vaughan, D., (1995). The influence prostate size on cancer detection. Urology, 46, 831-836. DOI: 10.1016/s0090-4295(99)80353-7.10.1016/S0090-4295(99)80353-7Search in Google Scholar

Velonas, V. M., Woo, H. H., dos Remedios, C. G., & Assinder, S. J. (2013). Current status of biomarkers for prostate cancer. International Journal of Molecular Sciences, 14, 11034-11060. DOI: 10.3390/ijms140611034.10.3390/ijms140611034Search in Google Scholar

Wang, X. Y., Zhou, J. M., Yun, W., Xiao, S. S., Chang, Z., He, P. G., & Fang, Y. Z. (2007). Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)2+ 3 -doped silica nanoparticle aptasensor via target proteininduced strand displacement. Analytica Chimica Acta, 598, 242-248. DOI: 10.1016/j.aca.2007.07.050.10.1016/j.aca.2007.07.050Search in Google Scholar PubMed

Wee, K. W., Kang, G. Y., Park, J., Kang, J. Y., Yoon, D. S., Park, J. H., & Kim, T. S. (2005). Novel electrical detection of label-free disease marker proteins using piezoresistive selfsensing micro-cantilevers. Biosensors and Bioelectronics, 20, 1932-1938. DOI: 10.1016/j.bios.2004.09.023.10.1016/j.bios.2004.09.023Search in Google Scholar PubMed

Weeks, B. L., Camarero, J., Noy, A., Miller, A. E., De Yoreo, J. J., & Stanker, L. (2003). A microcantileverbased pathogen detector. Scanning, 25, 297-299. DOI: 10.1002/sca.4950250605.10.1002/sca.4950250605Search in Google Scholar PubMed

Wu, C. L., Yang, X. J., Tretiakova, M., Patton, K. T., Halpern, E. F.,Woda, B. A., Young, R. H., & Jiang, Z. (2004). Analysis of α-methylacyl-CoA racemase (P504S) expression in highgrade prostatic intraepithelial neoplasia. Human Pathology, 35, 1008-1013. DOI: 10.1016/j.humpath.2004.03.019.10.1016/j.humpath.2004.03.019Search in Google Scholar PubMed

Willner, I., & Zayats, M. (2007). Electronic aptamer-based sensors. Angewandte Chemie International Edition, 46, 6408-6418. DOI: 10.1002/anie.200604524.10.1002/anie.200604524Search in Google Scholar PubMed

Xiao, Y., Lubin, A. A., Heeger, A. J., & Plaxco, K. W. (2005). Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angewandte Chemie, 117, 5592-5595. DOI: 10.1002/ange.200500989.10.1002/ange.200500989Search in Google Scholar

Xu, D. K., Xu, D. W., Yu, X. B., Liu, Z. H., He,W., & Ma, Z. Q. (2005). Label-free electrochemical detection for aptamerbased array electrodes. Analytical Chemistry, 77, 5107-5113. DOI: 10.1021/ac050192m.10.1021/ac050192mSearch in Google Scholar PubMed

Yang, D. K., Chen, C. S., & Chen, L. C. (2013). Screening of functional aptamers against α-methylacyl-coA racemase. In Abstracts of the 13th American Institute of Chemical Engineers Annual Meeting, 3-8 November, 2013. San Francisco, CA, USA: American Institute of Chemical Engineers. Retrieved May 9, 2014, from https://aiche.confex.com/aiche/2013/webprogram/Paper332288.html Search in Google Scholar

Zani, A., Laschi, S., Mascini, M., & Marrazza, G. (2011). A new electrochemical multiplexed assay for PSA cancer marker detection. Electroanalysis, 23, 91-99. DOI: 10.1002/elan.201000486.10.1002/elan.201000486Search in Google Scholar

Zitzmann, S., Mier, W., Schad, A., Kinscherf, R., Askozylakis, V., Kramer, S., Altmann, A., Eisenhut, M., & Haberkorn, U. (2005). A new prostate carcinoma binding peptide (DUP-1) for tumor imaging and therapy. Clinical Cancer Research, 11, 139-146. 10.1158/1078-0432.139.11.1Search in Google Scholar

Received: 2014-4-1
Revised: 2014-5-11
Accepted: 2014-5-12
Published Online: 2014-11-28
Published in Print: 2015-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Biosensors – Topical issue
  2. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
  3. Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
  4. Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
  5. Application of nanomaterials in microbial-cell biosensor constructions
  6. Use of green fluorescent proteins for in vitro biosensing
  7. Biosensors based on molecular beacons
  8. DNA aptamer-based detection of prostate cancer
  9. Can glycoprofiling be helpful in detecting prostate cancer?
  10. Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
  11. Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
  12. Surface plasmon resonance application in prostate cancer biomarker research
  13. Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
  14. Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
  15. Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
  16. Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
  17. Whole-cell optical biosensor for mercury – operational conditions in saline water
  18. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
  19. Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
  20. Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
  21. Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
  22. Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
  23. Can voltammetry distinguish glycan isomers?
Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0025/html
Scroll to top button