Home Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
Article
Licensed
Unlicensed Requires Authentication

Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors

  • Jaroslav Filip , Peter Kasák and Jan Tkac EMAIL logo
Published/Copyright: November 28, 2014
Become an author with De Gruyter Brill

Abstract

Early diagnosis of diseases with minimal cost and time-consumption has become achievable due to recent advances in the development of biosensors. These devices use biorecognition elements for the selective interaction with an analyte and the signal read-out is obtained via different types of transducers. The operational characteristics of biosensors have been reported as improving substantially when a diverse range of nanomaterials is employed. This review presents the construction of electrochemical biosensors based on graphene, atomically thin 2D carbon crystals, a nanomaterial currently the subject of intensive studies. Here, the most attractive directions for graphene applications in biosensor preparation are discussed, including novel detection and amplification schemes exploiting graphene’s unique electrochemical, physical and chemical properties. There is probably a very bright future for graphene-based biosensors, but much further work is required to fulfill the high expectations.

References

Akhavan, O., Ghaderi, E., & Rahighi, R. (2012). Toward single- DNA electrochemical biosensing by graphene nanowalls. ACS Nano, 6, 2904-2916. DOI: 10.1021/nn300261t.10.1021/nn300261tSearch in Google Scholar PubMed

Akhavan, O., Bijanzad, K., & Mirsepah, A. (2014). Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Advances, 4, 20441-20448. DOI: 10.1039/c4ra01550a.10.1039/c4ra01550aSearch in Google Scholar

Ambrosi, A., Bonanni, A., Sofer, Z., Cross, J. S., & Pumera, M. (2011). Electrochemistry at chemically modified graphenes. Chemistry - A European Journal, 17, 10763-10770. DOI: 10.1002/chem.201101117.10.1002/chem.201101117Search in Google Scholar PubMed

Ambrosi, A., Chua, C. K., Bonanni, A., & Pumera, M. (2014). Electrochemistry of graphene and related materials. Chemical Reviews, 114, 7150-7188. DOI: 10.1021/cr500023c.10.1021/cr500023cSearch in Google Scholar PubMed

Bai, L., Yuan, R., Chai, Y., Zhuo, Y., Yuan, Y., & Wang, Y. (2012). Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets. Biomaterials, 33, 1090-1096. DOI: 10.1016/j.biomaterials.2011.10. 012.Search in Google Scholar

Bai, L., Chai, Y., Pu, X., & Yuan, R. (2014). A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification. Nanoscale, 6, 2902-2908. DOI: 10.1039/c3nr05930h.10.1039/c3nr05930hSearch in Google Scholar PubMed

Bertok, T., Klukova, L., Sediva, A., Kasak, P., Semak, V., Micusik, M., Omastova, M., Chovanova, L., Vlček, M., Imrich, R., Vikartovska, A., & Tkac, J. (2013a). Ultrasensitive impedimetric lectin biosensors with efficient antifouling properties applied in glycoprofiling of human serum samples. Analytical Chemistry, 85, 7324-7332. DOI: 10.1021/ac401281t.10.1021/ac401281tSearch in Google Scholar PubMed PubMed Central

Bertok, T., Katrlik, J., Gemeiner, P., & Tkac, J. (2013b). Electrochemical lectin based biosensors as a label-free tool in glycomics. Microchimica Acta, 180, 1-13. DOI: 10.1007/s00604-012-0876-4.10.1007/s00604-012-0876-4Search in Google Scholar PubMed PubMed Central

Bo, Y., Yang, H., Hu, Y., Yao, T., & Huang, S. (2011). A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochimica Acta, 56, 2676-2681. DOI: 10.1016/j.electacta.2010.12.034.10.1016/j.electacta.2010.12.034Search in Google Scholar

Bonanni, A., & Pumera, M. (2011). Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano, 5, 2356-2361. DOI: 10.1021/nn200091p.10.1021/nn200091pSearch in Google Scholar PubMed

Bonanni, A., Loo, A. H., & Pumera, M. (2012a). Graphene for impedimetric biosensing. TrAC Trends in Analytical Chemistry, 37, 12-21. DOI: 10.1016/j.trac.2012.02.011.10.1016/j.trac.2012.02.011Search in Google Scholar

Bonanni, A., Chua, C. K., Zhao, G., Sofer, Z., & Pumera, M. (2012b). Inherently electroactive graphene oxide nanoplatelets as labels for single nucleotide polymorphism detection. ACS Nano, 6, 8546-8551. DOI: 10.1021/nn301359y.10.1021/nn301359ySearch in Google Scholar PubMed

Bonanni, A., Ambrosi, A., & Pumera, M. (2012c). Nucleic acid functionalized graphene for biosensing. Chemistry - A European Journal, 18, 1668-1673. DOI: 10.1002/chem.201102850.10.1002/chem.201102850Search in Google Scholar PubMed

Bučko, M., Mislovičova, D., Nahalka, J., Vikartovska, A., Šefčovičova, J., Katrlik, J., Tkač, J., Gemeiner, P., Lacik, I., Štefuca, V., Polakovič, M., Rosenberg, M., Rebroš, M., Šmogrovičova, D., & Švitel, J. (2012). Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems. Chemical Papers, 66, 983-998. DOI: 10.2478/s11696-012-0226-3.10.2478/s11696-012-0226-3Search in Google Scholar

Cai, Y., Li, H., Du, B., Yang, M., Li, Y., Wu, D., Zhao, Y., Dai, Y., & Wei, Q. (2011). Ultrasensitive electrochemical immunoassay for BRCA1 using BMIM·BF4-coated SBA-15 as labels and functionalized graphene as enhancer. Biomaterials, 32, 2117-2123. DOI: 10.1016/j.biomaterials.2010.11.058.10.1016/j.biomaterials.2010.11.058Search in Google Scholar PubMed

Chen, D., Tang, L., & Li, J. (2010). Graphene-based materials in electrochemistry. Chemical Society Reviews, 39, 3157-3180. DOI: 10.1039/b923596e.10.1039/b923596eSearch in Google Scholar PubMed

Chen, H., Zhang, B., Cui, Y., Liu, B., Chen, G., & Tang, D. (2011a). One-step electrochemical immunoassay of biomarker based on nanogold-functionalized graphene sensing platform. Analytical Methods, 3, 1615-1621. DOI: 10.1039/c1ay05172e.10.1039/c1ay05172eSearch in Google Scholar

Chen, Y., Jiang, B., Xiang, Y., Chai, Y., & Yuan, R. (2011b). Target recycling amplification for sensitive and label-free impedimetric genosensing based on hairpin DNA and graphene/Au nanocomposites. Chemical Communications, 47, 12798-12800. DOI: 10.1039/c1cc14902d.10.1039/c1cc14902dSearch in Google Scholar PubMed

Chen, J. R., Jiao, X. X., Luo, H. Q., & Li, N. B. (2013a). Probelabel- free electrochemical aptasensor based on methylene blue-anchored graphene oxide amplification. Journal of Materials Chemistry B, 1, 861-864. DOI: 10.1039/c2tb00267a.10.1039/C2TB00267ASearch in Google Scholar PubMed

Chen, X., Jia, X., Han, J., Ma, J., & Ma, Z. (2013b). Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites. Biosensors & Bioelectronics, 50, 356-361. DOI: 10.1016/j.bios.2013.06.054.10.1016/j.bios.2013.06.054Search in Google Scholar PubMed

Clark, L. C., Jr., & Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102, 29-45. DOI: 10.1111/j.1749-6632.1962.tb13623.x.10.1111/j.1749-6632.1962.tb13623.xSearch in Google Scholar PubMed

Deng, K., Xiang, Y., Zhang, L., Chen, Q., & Fu, W. (2013). An aptamer-based biosensing platform for highly sensitive detection of platelet-derived growth factor via enzyme-mediated direct electrochemistry. Analytica Chimica Acta, 759, 61-65. DOI: 10.1016/j.aca.2012.11.018.10.1016/j.aca.2012.11.018Search in Google Scholar PubMed

Devi, R., Relhan, S., & Pundir, C. S. (2013). Construction of a chitosan/polyaniline/graphene oxide nanoparticles/ polypyrrole/Au electrode for amperometric determination of urinary/plasma oxalate. Sensors and Actuators B: Chemical, 186, 17-26. DOI: 10.1016/j.snb.2013.05.078.10.1016/j.snb.2013.05.078Search in Google Scholar

Du, M., Yang, T., Zhao, C., & Jiao, K. (2012). Electrochemical logic aptasensor based on graphene. Sensors and Actuators B: Chemical, 169, 255-260. DOI: 10.1016/j.snb.2012.04.078.10.1016/j.snb.2012.04.078Search in Google Scholar

Dubuisson, E., Yang, Z., & Loh, K. P. (2011). Optimizing labelfree DNA electrical detection on graphene platform. Analytical Chemistry, 83, 2452-2460. DOI: 10.1021/ac102431d.10.1021/ac102431dSearch in Google Scholar PubMed

Eissa, S., Tlili, C., L’Hocine, L., & Zourob, M. (2012). Electrochemical immunosensor for the milk allergen β-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes. Biosensors & Bioelectronics, 38, 308-313. DOI: 10.1016/j.bios.2012.06.008.10.1016/j.bios.2012.06.008Search in Google Scholar PubMed

Eissa, S., L’Hocine, L., Siaj, M., & Zourob, M. (2013). A graphene-based label-free voltammetric immunosensor for sensitive detection of the egg allergen ovalbumin. Analyst, 138, 4378-4384. DOI: 10.1039/c3an36883a.10.1039/c3an36883aSearch in Google Scholar PubMed

Erdem, A., Eksin, E., & Muti, M. (2014). Chitosan-graphene oxide based aptasensor for the impedimetric detection of lysozyme. Colloids and Surfaces B: Biointerfaces, 115, 205-211. DOI: 10.1016/j.colsurfb.2013.11.037.10.1016/j.colsurfb.2013.11.037Search in Google Scholar PubMed

Feng, L., Chen, Y., Ren, J., & Qu, X. (2011). A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials, 32, 2930-2937. DOI: 10.1016/j.biomaterials.2011.01.002.10.1016/j.biomaterials.2011.01.002Search in Google Scholar PubMed

Filip, J., Šefčovičova, J., Gemeiner, P., & Tkac, J. (2013). Electrochemical features of bilirubin oxidase immobilized on different carbon nanostructures. Key Engineering Materials, 543, 13-17. DOI: 10.4028/www.scientific.net/kem.543.13.10.4028/www.scientific.net/KEM.543.13Search in Google Scholar

Filip, J., & Tkac, J. (2014). Is graphene worth using in biofuel cells? Electrochimica Acta, 136, 340-354. DOI: 10.1016/j.electacta.2014.05.119.10.1016/j.electacta.2014.05.119Search in Google Scholar

Fitzer, E., Kochling, K. H., Boehm, H. P., & Marsh, H. (1995). Recommended terminology for the description of carbon as a solid - (IUPAC Recommendations 1995). Pure and Applied Chemistry, 67, 473-506. DOI: 10.1351/pac199567030473.10.1351/pac199567030473Search in Google Scholar

Guo, K., Qian, K., Zhang, S., Kong, J., Yu, C., & Liu, B. (2011). Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes. Talanta, 85, 1174-1179. DOI: 10.1016/j.talanta.2011.05.038.10.1016/j.talanta.2011.05.038Search in Google Scholar PubMed

Guo, Y., Han, Y., Guo, Y., & Dong, C. (2013). Graphene- Orange II composite nanosheets with electroactive functions as label-free aptasensing platform for “signal-on” detection of protein. Biosensors & Bioelectronics, 45, 95-101. DOI: 10.1016/j.bios.2013.01.054.10.1016/j.bios.2013.01.054Search in Google Scholar PubMed

Han, J. M., Ma, J., & Ma, Z. (2013). One-step synthesis of graphene oxide-thionine-Au nanocomposites and its application for electrochemical immunosensing. Biosensors & Bioelectronics, 47, 243-247. DOI: 10.1016/j.bios.2013.03.032.10.1016/j.bios.2013.03.032Search in Google Scholar PubMed

Hernandez, F. J., & Ozalp, V. C. (2012). Graphene and other nanomaterial-based electrochemical aptasensors. Biosensors, 2, 1-14. DOI: 10.3390/bios2010001.10.3390/bios2010001Search in Google Scholar PubMed PubMed Central

Hernandez, R., Valles, C., Benito, A. M., Maser, W. K., Rius, F. X., & Riu, J. (2014). Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosensors & Bioelectronics, 54, 553-557. DOI: 10.1016/j.bios.2013.11.053.10.1016/j.bios.2013.11.053Search in Google Scholar PubMed

Hou, L., Cui, Y., Xu, M., Gao, Z., Huang, J., & Tang, D. (2013). Graphene oxide-labeled sandwich-type impedimetric immunoassay with sensitive enhancement based on enzymatic 4-chloro-1-naphthol oxidation. Biosensors & Bioelectronics, 47, 149-156. DOI: 10.1016/j.bios.2013.02.035.10.1016/j.bios.2013.02.035Search in Google Scholar PubMed

Hu, Y., Wang, K., Zhang, Q., Li, F., Wu, T., & Niu, L. (2012). Decorated graphene sheets for label-free DNA impedance biosensing. Biomaterials, 33, 1097-1106. DOI: 10.1016/j.biomaterials.2011.10.045.10.1016/j.biomaterials.2011.10.045Search in Google Scholar PubMed

Huang, K. J., Niu, D. J., Sun, J. Y., & Zhu, J. J. (2011).An electrochemical amperometric immunobiosensor for labelfree detection of α-fetoprotein based on amine-functionalized graphene and gold nanoparticles modified carbon ionic liquid electrode. Journal of Electroanalytical Chemistry, 656, 72-77. DOI: 10.1016/j.jelechem.2011.01.007.10.1016/j.jelechem.2011.01.007Search in Google Scholar

Huang, K. J., Li, J., Liu, Y. M., Cao, X., Yu, S., & Yu, M. (2012). Disposable immunoassay for hepatitis B surface antigen based on a graphene paste electrode functionalized with gold nanoparticles and a Nafion-cysteine conjugate. Microchimica Acta, 177, 419-426. DOI: 10.1007/s00604-012-0805-6.10.1007/s00604-012-0805-6Search in Google Scholar

Hushegyi, A., & Tkac, J. (2014). Are glycan biosensors an alternative to glycan microarrays? Analytical Methods, 6, 6610-6620. DOI: 10.1039/c4ay00692e.10.1039/C4AY00692ESearch in Google Scholar PubMed PubMed Central

Jia, X., Liu, Z., Liu, N., & Ma, Z. (2014). A label-free immunosensor based on graphene nanocomposites for simultaneous multiplexed electrochemical determination of tumor markers. Biosensors & Bioelectronics, 53, 160-166. DOI: 10.1016/j.bios.2013.09.050.10.1016/j.bios.2013.09.050Search in Google Scholar PubMed

Jiang, X., Chen, K., Wang, J., Shao, K., Fu, T., Shao, F., Lu, D., Liang, J., Foda, M. F., & Han, H. (2013). Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide-Ag nanoparticle composites as labels. Analyst, 138, 3388-3393. DOI: 10.1039/c3an00056g.10.1039/c3an00056gSearch in Google Scholar PubMed

Kluková, L., Bertok, T., Kasak, P., & Tkac, J. (2014). Nanoscale-controlled architecture for the development of ultrasensitive lectin biosensors applicable in glycomics. Analytical Methods, 6, 4922-4931. DOI: 10.1039/c4ay00495g.10.1039/c4ay00495gSearch in Google Scholar

Kochmann, S., Hirsch, T., & Wolfbeis, O. S. (2012). Graphenes in chemical sensors and biosensors. TrAC Trends in Analytical Chemistry, 39, 87-113. DOI: 10.1016/j.trac.2012.06.004.10.1016/j.trac.2012.06.004Search in Google Scholar

Kong, F. Y., Xu, M. T., Xu, J. J., & Chen, H. Y. (2011). A novel lable-free electrochemical immunosensor for carcinoembryonic antigen based on gold nanoparticles-thionine-reduced graphene oxide nanocomposite film modified glassy carbon electrode. Talanta, 85, 2620-2625. DOI: 10.1016/j.talanta. 2011.08.028. Search in Google Scholar

Kong, F. Y., Xu, B. Y., Du, Y., Xu, J. J., & Chen, H. Y. (2013). A branched electrode based electrochemical platform: towards new label-free and reagentless simultaneous detection of two biomarkers. Chemical Communications, 49, 1052-1054. DOI: 10.1039/c2cc37675j.10.1039/C2CC37675JSearch in Google Scholar PubMed

Kong, F. Y., Gu, S. X., Li, W. W., Chen, T. T., Xu, Q., & Wang, W. (2014). A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination. Biosensors & Bioelectronics, 56, 77-82. DOI: 10.1016/j.bios.2013.12.067.10.1016/j.bios.2013.12.067Search in Google Scholar PubMed

Li, R.,Wu, D., Li, H., Xu, C., Wang, H., Zhao, Y., Cai, Y., Wei, Q., & Du, B. (2011). Label-free amperometric immunosensor for the detection of human serum chorionic gonadotropin based on nanoporous gold and graphene. Analytical Biochemistry, 414, 196-201. DOI: 10.1016/j.ab.2011.03.019.10.1016/j.ab.2011.03.019Search in Google Scholar PubMed

Li, H., He, J., Li, S., & Turner, A. P. F. (2013). Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3. Biosensors & Bioelectronics, 43, 25-29. DOI: 10.1016/j.bios.2012.11.037.10.1016/j.bios.2012.11.037Search in Google Scholar PubMed

Lim, C. X., Hoh, H. Y., Ang, P. K., & Loh, K. P. (2010). Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: An insight into the role of oxygenated defects. Analytical Chemistry, 82, 7387-7393. DOI: 10.1021/ac101519v.10.1021/ac101519vSearch in Google Scholar PubMed

Liu, K., Zhang, J. J., Wang, C., & Zhu, J. J. (2011). Grapheneassisted dual amplification strategy for the fabrication of sensitive amperometric immunosensor. Biosensors & Bioelectronics, 26, 3627-3632. DOI: 10.1016/j.bios.2011.02.018.10.1016/j.bios.2011.02.018Search in Google Scholar PubMed

Liu, Y., Dong, X., & Chen, P. (2012). Biological and chemical sensors based on graphene materials. Chemical Society Reviews, 41, 2283-2307. DOI: 10.1039/c1cs15270j.10.1039/C1CS15270JSearch in Google Scholar

Liu, A. L., Zhong, G. X., Chen, J. Y., Weng, S. H., Huang, H. N., Chen, W., Lin, L. Q., Lei, Y., Fu, F. H., Sun, Z. L., Lin, X. H., Lin, J. H., & Yang, S. Y. (2013). A sandwichtype DNA biosensor based on electrochemical co-reduction synthesis of graphene-three dimensional nanostructure gold nanocomposite films. Analytica Chimica Acta, 767, 50-58. DOI: 10.1016/j.aca.2012.12.049.10.1016/j.aca.2012.12.049Search in Google Scholar PubMed

Loo, A. H., Bonanni, A., & Pumera, M. (2012a). Impedimetric thrombin aptasensor based on chemically modified graphenes. Nanoscale, 4, 143-147. DOI: 10.1039/c1nr10966a.10.1039/C1NR10966ASearch in Google Scholar PubMed

Loo, A. H., Bonanni, A., Ambrosi, A., Poh, H. L., & Pumera, M. (2012b). Impedimetric immunoglobulin G immunosensor based on chemically modified graphenes. Nanoscale, 4, 921-925. DOI: 10.1039/c2nr11492e.10.1039/C2NR11492ESearch in Google Scholar PubMed

Luo, X., & Davis, J. J. (2013). Electrical biosensors and the label free detection of protein disease biomarkers. Chemical Society Reviews, 42, 5944-5962. DOI: 10.1039/c3cs60077g.10.1039/c3cs60077gSearch in Google Scholar PubMed

Ma, X., Jiang, Y., Jia, F., Yu, Y., Chen, J., & Wang, Z. (2014). An aptamer-based electrochemical biosensor for the detection of Salmonella. Journal of Microbiological Methods, 98, 94-98. DOI: 10.1016/j.mimet.2014.01.003.10.1016/j.mimet.2014.01.003Search in Google Scholar PubMed

Mao,K., Wu,D., Li,Y., Ma, H., Ni, Z., Yu,H., Luo, C.,Wei,Q., & Du, B. (2012). Label-free electrochemical immunosensor based on graphene/methylene blue nanocomposite. Analytical Biochemistry, 422, 22-27. DOI: 10.1016/j.ab.2011.12.047.10.1016/j.ab.2011.12.047Search in Google Scholar PubMed

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666-669. DOI: 10.1126/science.1102896.10.1126/science.1102896Search in Google Scholar PubMed

Paleček, E., & Bartošik, M. (2012). Electrochemistry of nucleic acids. Chemical Reviews, 112, 3427-3481. DOI: 10.1021/cr200303p.10.1021/cr200303pSearch in Google Scholar PubMed

Paleček, E., Tkac, J., Bartošik, M., Bertok, T., Ostatna, V., & Paleček, J. (2014). Electrochemistry of non-conjugated proteins and glycoproteins. Towards sensors for biomedicine and glycomics. Chemical Reviews, submitted.Search in Google Scholar

Parlak, O., Tiwari, A., Turner, A. P. F., & Tiwari, A. (2013). Template-directed hierarchical self-assembly of graphene based hybrid structure for electrochemical biosensing. Biosensors & Bioelectronics, 49, 53-62. DOI: 10.1016/j.bios. 2013.04.004.Search in Google Scholar

Pei, X., Zhang, B., Tang, J., Liu, B., Lai,W., & Tang, D. (2013). Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Analytica Chimica Acta, 758, 1-18. DOI: 10.1016/j.aca.2012.10.060.10.1016/j.aca.2012.10.060Search in Google Scholar

Peng, K., Zhao, H., Wu, X., Yuan, Y., & Yuan, R. (2012). Ultrasensitive aptasensor based on graphene-3,4,9,10-perylenetetracarboxylic dianhydride as platform and functionalized hollow PtCo nanochains as enhancers. Sensors and Actuators B: Chemical, 169, 88-95. DOI: 10.1016/j.snb.2012.03.044.10.1016/j.snb.2012.03.044Search in Google Scholar

Pumera, M., Ambrosi, A., Bonanni, A., Chng, E. L. K., & Poh, H. L. (2010). Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry, 29, 954-965. DOI: 10.1016/j.trac.2010.05.011.10.1016/j.trac.2010.05.011Search in Google Scholar

Pumera, M. (2011). Graphene in biosensing. Materials Today, 14, 308-315. DOI: 10.1016/s1369-7021(11)70160-2.10.1016/S1369-7021(11)70160-2Search in Google Scholar

Pumera, M. (2013). Electrochemistry of graphene, graphene oxide and other graphenoids: Review. Electrochemistry Communications, 36, 14-18. DOI: 10.1016/j.elecom.2013.08.028. 10.1016/j.elecom.2013.08.028Search in Google Scholar

Qu, F., Lu, H., Yang, M., & Deng, C. (2011). Electrochemical immunosensor based on electron transfer mediated by graphene oxide initiated silver enhancement. Biosensors & Bioelectronics, 26, 4810-4814. DOI: 10.1016/j.bios.2011.06. 018.Search in Google Scholar

Šefčovičová, J., & Tkac, J. (2015). Application of nanomaterials in microbial-cell biosensor constructions. Chemical Papers, 69, 42-53. DOI: 10.2478/s11696-014-0602-2.10.2478/s11696-014-0602-2Search in Google Scholar

Shiddiky, M. J. A., Rauf, S., Kithva, P. H., & Trau, M. (2012). Graphene/quantum dot bionanoconjugates as signal amplifiers in stripping voltammetric detection of EpCAM biomarkers. Biosensors & Bioelectronics, 35, 251-257. DOI: 10.1016/j.bios.2012.02.057.10.1016/j.bios.2012.02.057Search in Google Scholar PubMed

Shleev, S., Tkac, J., Christenson, A., Ruzgas, T., Yaropolov, A. I., Whittaker, J. W., & Gorton, L. (2005). Direct electron transfer between copper-containing proteins and electrodes. Biosensors & Bioelectronics, 20, 2517-2554. DOI: 10.1016/j.bios.2004.10.003.10.1016/j.bios.2004.10.003Search in Google Scholar PubMed

Srivastava, S., Kumar, V., Ali, M. A., Solanki, P. R., Srivastava, A., Sumana, G., Saxena, P. S., Joshi, A. G., & Malhotra, B. D. (2013). Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale, 5, 3043-3051. DOI: 10.1039/c3nr32242d.10.1039/c3nr32242dSearch in Google Scholar PubMed

Sun, W., Qi, X., Chen, Y., Liu, S., & Gao, H. (2011a). Application of chitosan/Fe3O4 microsphere-graphene composite modified carbon ionic liquid electrode for the electrochemical detection of the PCR product of soybean Lectin gene sequence. Talanta, 87, 106-112. DOI: 10.1016/j.talanta.2011. 09.047.Search in Google Scholar

Sun, T., Wang, L., Li, N., & Gan, X. (2011b). Label-free electrochemical aptasensor for thrombin detection based on the nafion@graphene as platform. Bioprocess and Biosystems Engineering, 34, 1081-1085. DOI: 10.1007/s00449-011-0558-3. 10.1007/s00449-011-0558-3Search in Google Scholar PubMed

Świetlikowska, A., Gniadek, M., & Pa_ lys, B. ( 2013). Electrodeposited graphene nano-stacks for biosensor applications. Surface groups as redox mediators for laccase. Electrochimica Acta, 98, 75-81. DOI: 10.1016/j.electacta.2013.03.055.10.1016/j.electacta.2013.03.055Search in Google Scholar

Tang, J., Tang, D., Su, B., Li, Q., Qiu, B., & Chen, G. (2011). Silver nanowire-graphene hybrid nanocomposites as label for sensitive electrochemical immunoassay of alpha-fetoprotein. Electrochimica Acta, 56, 8168-8175. DOI: 10.1016/j.electacta.2011.05.128.10.1016/j.electacta.2011.05.128Search in Google Scholar

Tkac, J., Svitel, J., Vostiar, I., Navratil, M., & Gemeiner, P. (2009). Membrane-bound dehydrogenases from Gluconobac ter sp.: Interfacial electrochemistry and direct bioelectrocatalysis. Bioelectrochemistry, 76, 53-62. DOI: 10.1016/j. bioelechem.2009.02.013.Search in Google Scholar

Wang, Y., Li, Z., Wang, J., Li, J., & Lin, Y. (2011a). Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 29, 205-212. DOI: 10.1016/j.tibtech.2011.01.008.10.1016/j.tibtech.2011.01.008Search in Google Scholar PubMed PubMed Central

Wang, Q., Zheng, M., Shi, J., Gao, F., & Gao, F. (2011b). Electrochemical oxidation of native double-stranded DNA on a graphene-modified glassy carbon electrode. Electroanalysis, 23, 915-920. DOI: 10.1002/elan.201000713.10.1002/elan.201000713Search in Google Scholar

Wang, Y., Yuan, R., Chai, Y., Yuan, Y., Bai, L., & Liao, Y. (2011c). A multi-amplification aptasensor for highly sensitive detection of thrombin based on high-quality hollow CoPt nanoparticles decorated graphene. Biosensors & Bioelectronics, 30, 61-66. DOI: 10.1016/j.bios.2011.08.027.10.1016/j.bios.2011.08.027Search in Google Scholar PubMed

Wang, Z., Zhang, J., Chen, P., Zhou, X., Yang, Y., Wu, S., Niu, L., Han, Y., Wang, L., Chen, P., Boey, F., Zhang, Q., Liedberg, B., & Zhang, H. (2011d). Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosensors & Bioelectronics, 26, 3881-3886. DOI: 10.1016/j.bios.2011.03.002.10.1016/j.bios.2011.03.002Search in Google Scholar PubMed

Wang, Y., Xiao, Y., Ma, X., Lia, N., & Yang, X. (2012a). Labelfree and sensitive thrombin sensing on a molecularly grafted aptamer on graphene. Chemical Communications, 48, 738-740. DOI: 10.1039/c1cc15429j.10.1039/C1CC15429JSearch in Google Scholar PubMed

Wang, Y., Yuan, R., Chai, Y., Yuan, Y., & Bai, L. (2012b). In situ enzymatic silver enhancement based on functionalized graphene oxide and layer-by-layer assembled gold nanoparticles for ultrasensitive detection of thrombin. Biosensors & Bioelectronics, 38, 50-54. DOI: 10.1016/j.bios.2012.04.046.10.1016/j.bios.2012.04.046Search in Google Scholar PubMed

Wang, Y., Chang, H., Wu, H., & Liu, H. (2013a). Bioinspired prospects of graphene: from biosensing to energy. Journal of Materials Chemistry B, 1, 3521-3534. DOI: 10.1039/c3tb20524j.10.1039/c3tb20524jSearch in Google Scholar PubMed

Wang, G., Gang, X., Zhou, X., Zhang, G., Huang, H., Zhang, X., & Wang, L. (2013b). Electrochemical immunosensor with graphene/gold nanoparticles platform and ferrocene derivatives label. Talanta, 103, 75-80. DOI: 10.1016/j.talanta.2012. 10.008.Search in Google Scholar

Wang, H., Zhang, Y., Li, H., Du, B., Ma, H., Wu, D., & Wei, Q. (2013c). A silver-palladium alloy nanoparticle-based electrochemical biosensor for simultaneous detection of ractopamine, clenbuterol and salbutamol. Biosensors & Bioelectronics, 49, 14-19. DOI: 10.1016/j.bios.2013.04.041.10.1016/j.bios.2013.04.041Search in Google Scholar PubMed

Wang, Q., Lei, J., Deng, S., Zhang, L., & Ju, H. (2013d). Graphene-supported ferric porphyrin as a peroxidase mimic for electrochemical DNA biosensing. Chemical Communications, 49, 916-918. DOI: 10.1039/c2cc37664d.10.1039/C2CC37664DSearch in Google Scholar PubMed

Wang, Y., Ping, J., Ye, Z., Wu, J., & Ying, Y. (2013e). Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157:H7. Biosensors & Bioelectronics, 49, 492-498. DOI: 10.1016/j.bios.2013.05.061.10.1016/j.bios.2013.05.061Search in Google Scholar PubMed

Wang, J., Shi, A., Fang, X., Han, X., & Zhang, Y. (2014a). Ultrasensitive electrochemical supersandwich DNA biosensor using a glassy carbon electrode modified with gold particledecorated sheets of graphene oxide. Microchimica Acta, 181, 935-940. DOI: 10.1007/s00604-014-1182-0.10.1007/s00604-014-1182-0Search in Google Scholar

Wang, Z., Liu, N., & Ma, Z. (2014b). Platinum porous nanoparticles hybrid with metal ions as probes for simultaneous detection of multiplex cancer biomarkers. Biosensors & Bioelectronics, 53, 324-329. DOI: 10.1016/j.bios.2013.10.009.10.1016/j.bios.2013.10.009Search in Google Scholar PubMed

Wei, Q., Mao, K., Wu, D., Dai, Y., Yang, J., Du, B., Yang, M., & Li, H. (2010). A novel label-free electrochemical immunosensor based on graphene and thionine nanocomposite nanocomposite.Sensors and Actuators B: Chemical, 149, 314-318. DOI: 10.1016/j.snb.2010.06.008.10.1016/j.snb.2010.06.008Search in Google Scholar

Wu, J., Zou, Y., Li, X., Liu, H., Shen, G., & Yu, R. (2005). A biosensor monitoring DNA hybridization based on polyaniline intercalated graphite oxide nanocomposite. Sensors and Actuators B: Chemical, 104, 43-49. DOI: 10.1016/j.snb.2004.04.097.10.1016/j.snb.2004.04.097Search in Google Scholar

Wu, X., Hu, Y., Jin, J., Zhou, N., Wu, P., Zhang, H., & Cai, C. (2010). Electrochemical approach for detection of extracellular oxygen released from erythrocytes based on graphene film integrated with laccase and 2,2-azino-bis(3- ethylbenzothiazoline-6-sulfonic acid). Analytical Chemistry, 82, 3588-3596. DOI: 10.1021/ac100621r.10.1021/ac100621rSearch in Google Scholar PubMed

Wu, Y., Xue, P., Kang, Y., & Hui, K. M. (2013). Highly specific and ultrasensitive graphene-enhanced electrochemical detection of low-abundance tumor cells using silica nanoparticles coated with antibody-conjugated quantum dots. Analytical Chemistry, 85, 3166-3173. DOI: 10.1021/ac303398b.10.1021/ac303398bSearch in Google Scholar PubMed

Wu, C., Cheng, Q.,Wu, K.,Wu, G., & Li, Q. (2014a). Graphene prepared by one-pot solvent exfoliation as a highly sensitive platform for electrochemical sensing. Analytica Chimica Acta, 825, 26-33. DOI: 10.1016/j.aca.2014.03.036.10.1016/j.aca.2014.03.036Search in Google Scholar PubMed

Wu, Y., Xue, P., Hui, K.M., & Kang, Y. (2014b). A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. Biosensors & Bioelectronics, 52, 180-187. DOI: 10.1016/j.bios.2013.08.039.10.1016/j.bios.2013.08.039Search in Google Scholar PubMed

Xia, Y., Gao, P., Bo, Y., Wang, W., & Huang, S. (2012). Immunoassay for SKOV-3 human ovarian carcinoma cells using a graphene oxide-modified electrode. Microchimica Acta, 179, 201-207. DOI: 10.1007/s00604-012-0880-8.10.1007/s00604-012-0880-8Search in Google Scholar

Xie, X., Yu, G., Liu, N., Bao, Z., Criddle, C. S., & Cui, Y. (2012). Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy & Environmental Science, 5, 6862-6866. DOI: 10.1039/c2ee03583a.10.1039/c2ee03583aSearch in Google Scholar

Yang, W., Ratinac, K. R., Ringer, S. P., Thordarson, P., Gooding, J. J., & Braet, F. (2010). Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angewandte Chemie International Edition, 49, 2114-2138. DOI: 10.1002/anie.200903463.10.1002/anie.200903463Search in Google Scholar PubMed

Yang, M., Javadi, A., & Gong, S. (2011). Sensitive electrochemical immunosensor for the detection of cancer biomarker using quantum dot functionalized graphene sheets as labels. Sensors and Actuators B: Chemical, 155, 357-360. DOI: 10.1016/j.snb.2010.11.055.10.1016/j.snb.2010.11.055Search in Google Scholar

Yang, T., Guan, Q., Guo, X., Meng, L., Du, M., & Jiao, K. (2013a). Direct and freely switchable detection of target genes engineered by reduced graphene oxide-poly(maminobenzenesulfonic acid) nanocomposite via synchronous pulse electrosynthesis. Analytical Chemistry, 85, 1358-1366. DOI: 10.1021/ac3030009.10.1021/ac3030009Search in Google Scholar PubMed

Yang, T., Guo, X., Kong, Q., Yang, R., Li, Q., & Jiao, K. (2013b). Comparative studies on zirconia and graphene composites obtained by one-step and stepwise electrodeposition for deoxyribonucleic acid sensing. Analytica Chimica Acta, 786, 29-33. DOI: 10.1016/j.aca.2013.05.023.10.1016/j.aca.2013.05.023Search in Google Scholar PubMed

Yang, T., Li, Q., Li, X., Wang, X., Du, M., & Jiao, K. (2013c). Freely switchable impedimetric detection of target gene sequence based on synergistic effect of ERGNO/PANI nanocomposites. Biosensors & Bioelectronics, 42, 415-418. DOI: 10.1016/j.bios.2012.11.007.10.1016/j.bios.2012.11.007Search in Google Scholar PubMed

Yang, T., Li, Q., Meng, L., Wang, X., Chen, W., & Jiao, K. (2013d). Synchronous electrosynthesis of poly(xanthurenic acid)-reduced graphene oxide nanocomposite for highly sensitive impedimetric detection of DNA. ACS Applied Materials & Interfaces, 5, 3495-3499. DOI: 10.1021/am400370s.10.1021/am400370sSearch in Google Scholar PubMed

Yi, H., Xu, W., Yuan, Y., Bai, L., Wu, Y., Chai, Y., & Yuan, R. (2014). A pseudo triple-enzyme cascade amplified aptasen sor for thrombin detection based on hemin/G-quadruplex as signal label. Biosensors & Bioelectronics, 54, 415-420. DOI: 10.1016/j.bios.2013.11.036.10.1016/j.bios.2013.11.036Search in Google Scholar PubMed

Yin, H., Zhou, Y., Zhang, H., Meng, X., & Ai, S. (2012). Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. Biosensors & Bioelectronics, 33, 247-253. DOI: 10.1016/j.bios.2012.01.014.10.1016/j.bios.2012.01.014Search in Google Scholar PubMed

Yuan, Y., Gou, X., Yuan, R., Chai, Y., Zhuo, Y., Ye, X., & Gan, X. (2011). Graphene-promoted 3,4,9,10-perylenetetracarboxylic acid nanocomposite as redox probe in label-free electrochemical aptasensor. Biosensors & Bioelectronics, 30, 123-127. DOI: 10.1016/j.bios.2011.08.041.10.1016/j.bios.2011.08.041Search in Google Scholar PubMed

Yuan, Y., Yuan, R., Chai, Y., Zhuo, Y., Gan, X., & Bai, L. (2012). 3,4,9,10-Perylenetetracarboxylic acid/hemin nanocomposites act as redox probes and electrocatalysts for constructing a pseudobienzyme-channeling amplified electrochemical aptasensor. Chemistry - A European Journal, 18, 14186-14191. DOI: 10.1002/chem.201103960.10.1002/chem.201103960Search in Google Scholar PubMed

Zhang, J., Lei, J., Pan, R., Xue, Y., & Ju, H. (2010). Highly sensitive electrocatalytic biosensing of hypoxanthine based on functionalization of graphene sheets with water-soluble conducting graft copolymer. Biosensors & Bioelectronics, 26, 371-376. DOI: 10.1016/j.bios.2010.07.127.10.1016/j.bios.2010.07.127Search in Google Scholar PubMed

Zhang, Y., & Jiang, W. (2012). Decorating graphene sheets with gold nanoparticles for the detection of sequencespecific DNA. Electrochimica Acta, 71, 239-245. DOI: 10.1016/j.electacta.2012.03.136.10.1016/j.electacta.2012.03.136Search in Google Scholar

Zhang, X., Gao, F., Cai, X., Zheng, M., Gao, F., Jiang, S., & Wang, Q. (2013). Application of graphene-pyrenebutyric acid nanocomposite as probe oligonucleotide immobilization platform in a DNA biosensor. Materials Science & Engineering C: Materials for Biological Applications, 33, 3851-3857. DOI: 10.1016/j.msec.2013.05.022.10.1016/j.msec.2013.05.022Search in Google Scholar PubMed

Zhang, X., Liao, Q., Chu, M., Liu, S., & Zhang, Y. (2014). Structure effect on graphene-modified enzyme electrode glucose sensors. Biosensors & Bioelectronics, 52, 281-287. DOI: 10.1016/j.bios.2013.07.022.10.1016/j.bios.2013.07.022Search in Google Scholar PubMed

Zhong, Z., Wu, W., Wang, D., Wang, D., Shan, J., Qing, Y., & Zhang, Z. (2010). Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: Carcinoembryonic antigen as a model. Biosensors & Bioelectronics, 25, 2379-2383. DOI: 10.1016/j.bios.2010.03.009.10.1016/j.bios.2010.03.009Search in Google Scholar PubMed

Zhou, M., Zhai, Y., & Dong, S. (2009). Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry, 81, 5603-5613. DOI: 10.1021/ac900136z.10.1021/ac900136zSearch in Google Scholar PubMed

Zhou, Y., Yin, H., Meng, X., Xu, Z., Fu, Y., & Ai, S. (2012a). Direct electrochemistry of sarcosine oxidase on graphene, chitosan and silver nanoparticles modified glassy carbon electrode and its biosensing for hydrogen peroxide. Electrochimica Acta, 71, 294-301. DOI: 10.1016/j.electacta.2012.04.014.10.1016/j.electacta.2012.04.014Search in Google Scholar

Zhou L., Li, R., Li, Z., Xia, Q., Fang, Y., & Liu, J. (2012b). An immunosensor for ultrasensitive detection of aflatoxin B1 with an enhanced electrochemical performance based on graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition. Sensors and Actuators B: Chemical, 174, 359-365. DOI: 10.1016/j.snb.2012.06.051.10.1016/j.snb.2012.06.051Search in Google Scholar

Zhou, Y., Wang, M., Xu, Z., Ni, C., Yin, H., & Ai, S. (2014). Investigation of the effect of phytohormone on the expression of microRNA-159a in Arabidopsis thaliana seedlings based on mimic enzyme catalysis systematic electrochemical biosensor. Biosensors & Bioelectronics, 54, 244-250. DOI: 10.1016/j.bios.2013.11.026.10.1016/j.bios.2013.11.026Search in Google Scholar PubMed

Zhu, Z., Garcia-Gancedo, L., Flewitt, A. J., Xie, H., Moussy, F., & Milne, W. I. (2012). A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene. Sensors, 12, 5996-6022. DOI: 10.3390/s120505996.10.3390/s120505996Search in Google Scholar PubMed PubMed Central

Zhu, Q., Chai, Y., Yuan, R., Zhuo, Y., Han, J., Li, Y., & Liao, N. (2013). Amperometric immunosensor for simultaneous detection of three analytes in one interface using dual functionalized graphene sheets integrated with redox-probes as tracer matrixes. Biosensors & Bioelectronics, 43, 440-445. DOI: 10.1016/j.bios.2012.12.030. 10.1016/j.bios.2012.12.030Search in Google Scholar PubMed

Received: 2014-3-27
Revised: 2014-7-23
Accepted: 2014-8-3
Published Online: 2014-11-28
Published in Print: 2015-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Biosensors – Topical issue
  2. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
  3. Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
  4. Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
  5. Application of nanomaterials in microbial-cell biosensor constructions
  6. Use of green fluorescent proteins for in vitro biosensing
  7. Biosensors based on molecular beacons
  8. DNA aptamer-based detection of prostate cancer
  9. Can glycoprofiling be helpful in detecting prostate cancer?
  10. Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
  11. Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
  12. Surface plasmon resonance application in prostate cancer biomarker research
  13. Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
  14. Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
  15. Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
  16. Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
  17. Whole-cell optical biosensor for mercury – operational conditions in saline water
  18. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
  19. Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
  20. Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
  21. Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
  22. Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
  23. Can voltammetry distinguish glycan isomers?
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0051/html
Scroll to top button