Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes expressed in the human body under physiological conditions. AChE is an important part of the cholinergic nerves where it hydrolyses neurotransmitter acetylcholine. Both cholinesterases are sensitive to inhibitors acting as neurotoxic compounds. In analytical applications, the enzymes can serve as a biorecognition element in biosensors as well as simple disposable sensors (dipsticks) and be used for assaying the neurotoxic compounds. In the present review, the mechanism of AChE and BChE inhibition by disparate compounds is explained and methods for assaying the enzymes activity are shown. Optical, electrochemical, and piezoelectric biosensors are described. Attention is also given to the application of sol-gel techniques and quantum dots in the biosensors’ construction. Examples of the biosensors are provided and the pros and cons are discussed.
References
Akoh, C. C., Lee, G. C., Liaw, Y. C., Huang, T. H., & Shaw, J. F. (2004). GDSL family of serine esterases/lipases. Progress in Lipid Research, 43, 534-552. DOI: 10.1016/j.plipres.2004.09.002.10.1016/j.plipres.2004.09.002Search in Google Scholar
Andreescu, S., & Marty, J. L. (2006). Twenty years research in cholinesterase biosensors: From basic research to practical applications. Biomolecular Engineering, 23, 1-15. DOI: 10.1016/j.bioeng.2006.01.001.10.1016/j.bioeng.2006.01.001Search in Google Scholar
Arduini, F., Amine, A., Moscone, D., & Palleschi, G. (2010). Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Microchimica Acta, 170, 193-214. DOI: 10.1007/s00604-010-0317-1.10.1007/s00604-010-0317-1Search in Google Scholar
Arkhypova, V. N., Dzyadevych, S. V., Soldatkin, A. P., El’skaya, A. V., Martelet, C., & Jaffrezic-Renault, N. (2003). Development and optimisation of biosensors based on pHsensitive field effect transistors and cholinesterases for sensitive detection of solanaceous glycoalkaloids. Biosensors and Bioelectronics, 18, 1047-1053. DOI: 10.1016/s0956-5663(02)00222-1.10.1016/S0956-5663(02)00222-1Search in Google Scholar
Assis, C. R. D., Castro, P. F., Amaral, I. P. G., Carvalho, E. V. M. M., Carvalho, L. B., Jr., & Bezerra, R. S. (2010). Characterization of acetylcholinesterase from the brain of the Amazonian tambaqui (Colossoma macropomum) and in vitro effect of organophosphorus and carbamate pesticides. Enviromental Toxicology and Chemistry, 29, 2243-2248. DOI: 10.1002/etc.272.10.1002/etc.272Search in Google Scholar PubMed
Axelsen, P. H., Harel, M., Silman, I., & Sussman, J. L. (1994). Structure and dynamics of the active site gorge of acetylcholinesterase: Synergistic use of molecular dynamics simulation and X-ray crystallography. Protein Science, 3, 188-197. DOI: 10.1002/pro.5560030204.10.1002/pro.5560030204Search in Google Scholar PubMed PubMed Central
Bai, D. L., Tang, X. C., & He, X. C. (2000). Huperzine A, a potential therapeutic agent for treatment of Alzheimer’s disease. Current Medicinal Chemistry, 7, 355-374. 10.2174/0929867003375281.10.2174/0929867003375281Search in Google Scholar PubMed
Bellier, J. P., & Kimura, H. (2011). Peripheral type of choline acetyltransferase: Biological and evolutionary implications for novel mechanisms in cholinergic system. Journal of Chemical Neuroanatomy, 42, 225-235. DOI: 10.1016/j.jchemneu.2011.02.005.10.1016/j.jchemneu.2011.02.005Search in Google Scholar PubMed
Benilova, I. V., Arkhypova, V. N., Dzyadevych, S. V., Jaffrezic- Renault, N., Martelet, C., & Soldatkin, A. P. (2006). Kinetics of human and horse sera cholinesterases inhibition with solanaceous glycoalkaloids: Study by potentiometric biosensor. Pesticide Biochemistry and Physiology, 86, 203-210. DOI: 10.1016/j.pestbp.2006.04.002.10.1016/j.pestbp.2006.04.002Search in Google Scholar
Berg, L., Andersson, C. D., Artursson, E., Hörnberg, A., Tunemalm, A. K., Linusson, A., & Ekstr¨om, F. (2011). Targeting acetylcholinesterase: Identification of chemical leads by high throughput screening, structure determination and molecular modeling. PLoS One, 6, e26039. DOI: 10.1371/journal. pone.0026039.Search in Google Scholar
Bertok, T., Klukova, L., Sediva, A., Kasak, P., Semak, V., Micusik, M., Omastova, M., Chovanova, M., Vlček, M., Imrich, R., Vikartovska, A., & Tkac, J. (2013). Ultrasensitive impedimetric lectin biosensors with efficient antifouling properties applied in glycoprofiling of human serum samples. Analytical Chemistry, 85, 7324-7332. DOI: 10.1021/ac401281t.10.1021/ac401281tSearch in Google Scholar PubMed PubMed Central
Bobrowski, A., & Zarębski, J. (2012). Review of the catalytic voltammetric determination of titanium traces. Acta Chimica Slovenica, 59, 233-241.Search in Google Scholar
Brecht, A., & Gauglitz, G. (1995). Optical probes and transducers. Biosensors and Bioelectronics, 10, 923-936. DOI: 10.1016/0956-5663(95)99230-i.10.1016/0956-5663(95)99230-ISearch in Google Scholar
Bucaretchi, F., Prado, C. C., Branco, M. M., Soubhia, P., Metta, G. M., Mello, S. M., de Capitani, E. M., Lanaro, R., Hyslop, S., Costa, J. L., Fernandes, L. C. R., & Vieira, R. J. (2012). Poisoning by illegal rodenticides containing acetylcholinesterase inhibitors (chumbinho): a prospective case series. Clincial Toxicology, 50, 44-51. DOI: 10.3109/15563650.2011.639715.10.3109/15563650.2011.639715Search in Google Scholar PubMed
Bueno, P. R., Watanabe, A. M., Faria, R. C., Santos, M. L., & Riccardi, C. S. (2010). Electrogravimetric real-time and in situ Michaelis-Menten enzymatic kinetics: progress curve of acetylcholinesterase hydrolysis. The Journal of Physical Chemistry B, 114, 16605-16610. DOI: 10.1021/jp106274m.10.1021/jp106274mSearch in Google Scholar PubMed
Bueno, P. R., Gon,calves, L. M., dos Santos, F. C., dos Santos, M. L., Barros, A. A., & Faria, R. C. (2013). Electrogravimetric analysis by quartz-crystal microbalance on the consumption of the neurotransmitter acetylcholine by acetylcholinesterase. Analytical Letters, 46, 258-265. DOI: 10.1080/00032719.2012.713065.10.1080/00032719.2012.713065Search in Google Scholar
Cavalli, A., Bottegoni, G., Raco, C., De Vivo, M., & Recanatini, M. (2004). A computational study of the binding of propidium to the peripheral anionic site of human acetylcholinesterase. Journal of Medicinal Chemistry, 47, 3991-3999. DOI: 10.1021/jm040787u.10.1021/jm040787uSearch in Google Scholar PubMed
Caygill, R. L., Blair, G. E., & Millner, P. A. (2010). A review on viral biosensors to detect human pathogens. Analytica Chimica Acta, 681, 8-15. DOI: 10.1016/j.aca.2010.09.038.10.1016/j.aca.2010.09.038Search in Google Scholar PubMed
Chauhan, N., Narang, J., & Pundir, C. S. (2011a). Immobilization of rat brain acetylcholinesterase on porous goldnanoparticle- CaCO3 hybrid material modified Au electrode for detection of organophosphorous insecticides. International Journal of Biological Macromolecules, 49, 923-929. DOI: 10.1016/j.ijbiomac.2011.08.006.10.1016/j.ijbiomac.2011.08.006Search in Google Scholar PubMed
Chauhan, N., Narang, J., Pundir, C. S. (2011b). Immobilization of rat brain acetylcholinesterase on ZnS and poly(indole-5-carboxylic acid) modified Au electrode for detection of organophosphorus insecticides. Biosensors and Bioelectronics, 29, 82-88. DOI: 10.1016/j.bios.2011.07.070.10.1016/j.bios.2011.07.070Search in Google Scholar PubMed
Cheewakriengkrai, L., & Gauthier, S. (2013). A 10-year perspective on donepezil. Expert Opinion on Pharmacotherapy, 14, 331-338. DOI: 10.1517/14656566.2013.760543.10.1517/14656566.2013.760543Search in Google Scholar PubMed
Cheki, M., Moslehi, M., & Assadi, M. (2013). Marvelous applications of quantum dots. European Review for Medical and Pharmacological Sciences, 17, 1141-1148.Search in Google Scholar
Cometa, M. F., Lorenzini, P., Fortuna, S., Volpe, M. T., Meneguz, A., & Palmery, M. (2005). In vitro inhibitory effect of aflatoxin B1 on acetylcholinesterase activity in mouse brain. Toxicology, 206, 125-135. DOI: 10.1016/j.tox.2004.07.009.10.1016/j.tox.2004.07.009Search in Google Scholar PubMed
Cooper, M. A., & Singleton, V. T. (2007). A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. Journal of Molecular Recognition, 20, 154-184. DOI: 10.1002/jmr.826.10.1002/jmr.826Search in Google Scholar PubMed
Cygler, M., Schrag, J. D., Sussman, J. L., Harel, M., Silman, I., Gentry, M. K., & Doctor, B. P. (1993). Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Science, 2, 366-382. DOI: 10.1002/pro.5560020309.10.1002/pro.5560020309Search in Google Scholar PubMed PubMed Central
Darreh-Shori, T., & Soininen, H. (2010). Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer’s disease: A review of recent clinical studies. Current Alzheimer Research, 7, 67-73. DOI: 10.2174/156720510790274455.10.2174/156720510790274455Search in Google Scholar PubMed
da Silva, V. B., de Andrade, P., Kawano, D. F., Morais, P. A. B., de Almeida, J. R., Carvalho, I., Taft, C. A., & de Paula da Silva, C. H. T. (2011). In silico design and search for acetylcholinesterase inhibitors in Alzheimer’s disease with a suitable pharmacokinetic profile and low toxicity. Future Medicinal Chemistry, 3, 947-960. DOI: 10.4155/fmc.11.67.10.4155/fmc.11.67Search in Google Scholar PubMed
Davis, K. L., Thal, L. J., Gamzu, E. R., Davis, C. S., Woolson, R. F., Gracon, S. I., Drachman, D. A., Schneider, L. S., Whitehouse, P. J., Hoover, T. M., Morris, J. C., Kawas, C. H., Knopman, D. S., Earl, N. L., Kumar, V., & Doody, R. S. (1992). A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer’s disease. The New England Journal of Medicine, 327, 1253-1259. DOI: 10.1056/nejm199210293271801.10.1056/NEJM199210293271801Search in Google Scholar PubMed
Dominguez, C. M., Quintanilla, A., Ocon, P., Casas, J. A., & Rodriguez, J. J. (2013). The use of cyclic voltammetry to assess the activity of carbon materials for hydrogen peroxide decomposition. Carbon, 60, 76-83. DOI: 10.1016/j.carbon.2013.03.058.10.1016/j.carbon.2013.03.058Search in Google Scholar
Du, D., Huang, X. Cai, J., & Zhang, A. (2007). Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosensors and Bioelectronics, 23, 285-289. DOI: 10.1016/j.bios.2007.05.002.10.1016/j.bios.2007.05.002Search in Google Scholar PubMed
Duysen, E. G., & Lockridge, O. (2011). Prolonged toxic effects after cocaine challenge in butyrylcholinesterase/plasma carboxylesterase double knockout mice: A model for butyrylcholinesterase- deficient humans. Drug Metabolism and Disposition, 39, 1321-1323. DOI: 10.1124/dmd.111.039917.10.1124/dmd.111.039917Search in Google Scholar PubMed
Dzyadevych, S. V., Arkhypova, V. N., Martelet, C., Jaffrezic- Renault, N., Chovelon, J. M., El’skaya, A. V., & Soldatkin, A. P. (2004a). Potentiometric biosensors based on ISFETs and immobilized cholinesterases. Electroanalysis, 16, 1873-1882. DOI: 10.1002/elan.200403075.10.1002/elan.200403075Search in Google Scholar
Dzyadevych, S. V., Arkhypova, V. N., Soldatkin, A. P., El’skaya, A. V., Martelet, C., & Jaffrezic-Renault, N. (2004b). Enzyme biosensor for tomatine detection in tomatoes. Analytical Letters, 37, 1611-1624. DOI: 10.1081/al-120037591.10.1081/AL-120037591Search in Google Scholar
Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-95.10.1016/0006-2952(61)90145-9Search in Google Scholar
Eyer, P., Worek, F., Kiderlen, D., Sinko, G., Stuglin, A., Simeon-Rudolf, V., & Reiner, E. (2003). Molar absorption coefficients for the reduced Ellman reagent: reassessment. Analytical Biochemistry, 312, 224-227. DOI: 10.1016/s0003-2697(02)00506-7.10.1016/S0003-2697(02)00506-7Search in Google Scholar
Fania, L., Zampetti, A., Guerriero, G., & Feliciani, C. (2012). Alteration of cholinergic system in keratinocytes cells produces acantholysis: A possible use of cholinergic drugs in Pemphigus vulgaris. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 11, 238-242. DOI: 10.2174/1871523011202030238.10.2174/1871523011202030238Search in Google Scholar PubMed
Fee, C. J. (2013a). Label-free, real-time interaction and adsorption analysis 1: Surface plasmon resonance. Methods in Molecular Biology, 996, 287-312. DOI: 10.1007/978-1-62703-354-1-17.Search in Google Scholar
Fee, C. J. (2013b). Label-free, real-time interaction and adsorption analysis 2: Quartz crystal microbalance. Methods in Molecular Biology, 996, 313-322. DOI: 10.1007/978-1-62703-354-1-18.Search in Google Scholar
Filip, J., Šefčovičova, J., Tomčik, P., Gemeiner, P., & Tkac, J. (2011). A hyaluronic acid dispersed carbon nanotube electrode used for a mediatorless NADH sensing and biosensing. Talanta, 84, 355-361. DOI: 10.1016/j.talanta.2011.01.004.10.1016/j.talanta.2011.01.004Search in Google Scholar PubMed
Flores, F., Artigas, J., Marty, J. L., & Valdes, F. (2003). Development of an EnFET for the detection of organophosphorous and carbamate insecticides. Analytical and Bioanalytical Chemistry, 376, 476-480. DOI: 10.1007/s00216-003-1925- y.Search in Google Scholar
Gao, X., Tang, G., & Su, X. (2012). Optical detection of organophosphorus compounds based on Mn-doped ZnSe ddot enzymatic catalytic sensor. Biosensors and Bioelectronics, 36, 75-80. DOI: 10.1016/j.bios.2012.03.042.10.1016/j.bios.2012.03.042Search in Google Scholar PubMed
GhattyVenkataKrishna, P. K., Chavali, N., & Uberbacher, E. C. (2013). Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase. Chemical Papers, 67, 677-681. DOI: 10.2478/s11696-013-0354-4.10.2478/s11696-013-0354-4Search in Google Scholar
Gilson, M. K., Straatsma, T. P., McCammon, J. A., Ripoll, D. R., Faerman, C. H., Axelsen, P. H., Silman, I., & Sussman, J. L. (1994). Open ”back door” in a molecular dynamics simulation of acetylcholinesterase. Science, 263, 1276-1278.10.1126/science.8122110Search in Google Scholar PubMed
Gong, J., Guan, Z., & Song, D. (2013). Biosensor based on acetylcholinesterase immobilized onto layered double hydroxides for flow injection/amperometric detection of organophosphate pesticides. Biosensors and Bioelectronics, 39, 320-323. DOI: 10.1016/j.bios.2012.07.026.10.1016/j.bios.2012.07.026Search in Google Scholar PubMed
Grando, S. A. (2006). Cholinergic control of epidermal cohesion. Experimental Dermatology, 15, 265-282. DOI: 10.1111/j. 0906-6705.2006.00410.x.Search in Google Scholar
Guerrieri, A., & Palmisano, F. (2001). An acetylcholinesterase/ choline oxidase-based amperometric biosensors as a liquid chromatography detector for acetylcholine and choline determination in brain tissue homogenates. Analytical Chemistry, 73, 2875-2882. DOI: 10.1021/ac000852h.10.1021/ac000852hSearch in Google Scholar PubMed
Guo, X. (2012). Surface plasmon resonance based biosensor technique: A review. Journal of Biophotonics, 5, 483-501. DOI: 10.1002/jbio.201200015.10.1002/jbio.201200015Search in Google Scholar PubMed
Hai, N.N., Chinh, V. D., Thuy, U. T. D., Chi, T. K., Yen, N. H., Cao, D. T., Liem, N. Q., & Nga, P. T. (2013). Detection of the pesticide by functionalised quantum dots as fluorescencebased biosensor. International Journal of Nanotechnology, 10, 137-145. DOI: 10.1504/ijnt.2013.053126.10.1504/IJNT.2013.053126Search in Google Scholar
Herzog, G., & Beni, V. (2013). Stripping voltammetry at microinterface arrays: A review. Analytica Chimica Acta, 769, 10-21. DOI: 10.1016/j.aca.2012.12.031.10.1016/j.aca.2012.12.031Search in Google Scholar PubMed
Holtje, H. D., & Kier, L. B. (1975). Nature of anionic or α-site of cholinesterase. Journal of Pharmaceutical Sciences, 64, 418-420. DOI: 10.1002/jps.2600640313.10.1002/jps.2600640313Search in Google Scholar PubMed
Homola, J. (2003). Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 377, 528-539. DOI: 10.1007/s00216-003-2101-0.10.1007/s00216-003-2101-0Search in Google Scholar PubMed
Hoskovcova, M., Dubina, P., Halamek, E., & Kobliha, Z. (2011). Identification of pairs of organophosphorus warfare agents through cholinesterase reaction. Analytical Letters, 44, 2521-2529. DOI: 10.1080/00032719.2011.551860.10.1080/00032719.2011.551860Search in Google Scholar
Hou, S., Ou, Z., Chen, Q., & Wu, B. (2012). Amperometric acetylcholine biosensor based on self-assembly of gold nanoparticles and acetylcholinesterase on the sol-gel/multiwalled carbon nanotubes/choline oxidase composite-modified platinum electrode. Biosensors and Bioelectronics, 33, 44-49. DOI: 10.1016/j.bios.2011.12.014.10.1016/j.bios.2011.12.014Search in Google Scholar PubMed
Huang, X., Tu, H., Zhu, D., Du, D., & Zhang, A. (2009). A gold nanoparticle labeling strategy for the sensitive kinetic assay of the carbamate-acetylcholinesterase interaction by surface plasmon resonance. Talanta, 78, 1036-1042. DOI: 10.1016/j.talanta.2009.01.018.10.1016/j.talanta.2009.01.018Search in Google Scholar PubMed
Ishige, Y., Takeda, S., & Kamahori, M. (2010). Direct detection of enzyme-catalyzed products by FET sensor with ferrocenemodified electrode. Biosensors and Bioelectronics, 26, 1366-1372. DOI: 10.1016/j.bios.2010.07.053.10.1016/j.bios.2010.07.053Search in Google Scholar PubMed
Jogani, V. V., Shah, P. J., Misra, A. R., Mishra, P., & Mishra, A. K. (2007). Nose-to-brain delivery of tacrine. Journal of Pharmacy and Pharmacology, 59, 1199-1205. DOI: 10.1211/jpp.59.9.0003.10.1211/jpp.59.9.0003Search in Google Scholar PubMed
Johnson, G., & Moore, S. W. (2006). The peripheral anionic site of acetylcholinesterase: Structure, functions and potential role in rational drug design. Current Pharmaceutical Design, 12, 217-225. DOI: 10.2174/138161206775193127.10.2174/138161206775193127Search in Google Scholar PubMed
Kairdolf, B. A., Smith, A. M., Stokes, T. H., Wang, M. D., Young, A. N., & Nie, S. (2013). Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annual Review of Analytical Chemistry, 6, 143-162. DOI: 10.1146/annurev-anchem-060908-155136.10.1146/annurev-anchem-060908-155136Search in Google Scholar
Khaled, E., Hassan, H. N. A., Mohamed, G. G., Ragab, F. A., & Seleim, A. E. A. (2010). Disposable potentiometric sensors for monitoring cholinesterase activity. Talanta, 83, 357-363. DOI: 10.1016/j.talanta.2010.09.020.10.1016/j.talanta.2010.09.020Search in Google Scholar
Khan, I., Samad, A., Khan, A. Z., Habtemariam, S., Badshah, A., Abdullah, S. M., Ullah, N., Khan, A., & Zia-Ul-Haq, M. (2013). Molecular interactions of 4-acetoxy-plakinamine B with peripheral anionic and other catalytic subsites of the aromatic gorge of acetylcholinesterase: Computational and structural insights. Pharmaceutical Biology, 51, 722-727. DOI: 10.3109/13880209.2013.764329.10.3109/13880209.2013.764329Search in Google Scholar
Knapp, M. J., Gracon, S. I., Davis, C. S., Solomon, P. R., Pendlebury, W. W., & Knopman, D. S. (1994). Efficacy and safety of high-dose tacrine: A 30-week evaluation. Alzheimer Disease and Associated Disorders, 8, S22-S31. DOI: 10.1097/00002093-199424000-00003.10.1097/00002093-199424000-00003Search in Google Scholar
Lane, J. E., Shivers, J. P., & Zisser, H. (2013). Continuous glucose monitors: Current status and future developments. Current Opinion in Endocrinology Diabetes and Obesity, 20, 106-111. DOI: 10.1097/med.0b013e32835edb9d.10.1097/MED.0b013e32835edb9dSearch in Google Scholar
Liao, J., Norgaard-Pedersen, B., & Brodbeck, U. (1993). Subunit association and glycosylation of acetylcholinesterase from monkey brain. Journal of Neurochemistry, 61, 1127-1134. DOI: 10.1111/j.1471-4159.1993.tb03629.x.10.1111/j.1471-4159.1993.tb03629.xSearch in Google Scholar
Lilienfeld, S. (2002). Galantamine-a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Reviews, 8, 159-176. DOI: 10.1111/j.1527-3458.2002.tb00221.x.10.1111/j.1527-3458.2002.tb00221.xSearch in Google Scholar
Litescu, S. C., Eremia, S., & Radu, G. L. (2010). Biosensors for the determination of phenolic metabolites. Advances in Experimental Medicine and Biology, 698, 234-240. DOI: 10.1007/978-1-4419-7347-4 17.10.1007/978-1-4419-7347-4Search in Google Scholar
Liu, J., Zhang, H. Y., Tang, X. C., Wang, B., He, X. C., & Bai, D. L. (1998). Effects of synthetic (-)-huperzine A on cholinesterase activities and mouse water maze performance. Acta Pharmacologica Sinica, 19, 413-416.Search in Google Scholar
Lockridge, O., Bartels, C. F., Vaughan, T. A., Wogn, C. K., Norton, S. E., & Johnson, L. L. (1987). Complete amino acid sequence of human serum cholinesterase. The Journal of Biological Chemistry, 262, 549-557.10.1016/S0021-9258(19)75818-9Search in Google Scholar
Luo, W., Li, Y. P., He, Y., Huang, S. L., Li, D., Gu, L. Q., & Huang, Z. S. (2011). Synthesis and evaluation of heterobivalent tacrine derivatives as potential multi-functional anti- Alzheimer agents. European Journal of Medicinal Chemistry, 46, 2609-2616. DOI: 10.1016/j.ejmech.2011.03.058.10.1016/j.ejmech.2011.03.058Search in Google Scholar PubMed
Marrs, T. C. (1993). Organophosphate poisoning. Pharmacology & Therapeutics, 58, 51-66. DOI: 10.1016/0163-7258(93)90066-m.10.1016/0163-7258(93)90066-MSearch in Google Scholar
Masson, P., Froment, M. T., Gillon, E., Nachon, F., Darvesh, S., & Schopfer, L. M. (2007). Kinetic analysis of butyrylcholinesterase- catalyzed hydrolysis of acetanilides. Biochim ica Biophysica Acta (BBA) - Proteins and Proteomics, 1774, 1139-1147. DOI: 10.1016/j.bbapap.2007.06.004.10.1016/j.bbapap.2007.06.004Search in Google Scholar
Massoulie, J., Anselmet, A., Bon, S., Krejci, E., Legay, C., Morel, N., & Simon, S. (1999). The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization. Chemico-Biological Interactions, 119-120, 29-42. DOI: 10.1016/s0009-2797(99)00011-3.10.1016/S0009-2797(99)00011-3Search in Google Scholar
Mazzanti, C. M., Spanevello, R. M., Obregon, A., Pereira, L. B., Streher, C. A., Ahmed, M., Mazzanti, A., Gra,ca, D. L., Morsch, V. M., & Schetinger, M. R. C. (2006). Ethidium bromide inhibits rat brain acetylcholinesterase activity in vitro. Chemico-Biological Interactions, 162, 121-127. DOI: 10.1016/j.cbi.2006.05.013.10.1016/j.cbi.2006.05.013Search in Google Scholar PubMed
Meng, X., Wei, J., Ren, X., Ren, J., & Tang, F. (2013). A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosensors and Bioelectronics, 47, 402-407. DOI: 10.1016/j.bios.2013.03.053.10.1016/j.bios.2013.03.053Search in Google Scholar PubMed
Milkani, E., Lambert, C. R., & McGimpsey, W. G. (2011). Direct detection of acetylcholinesterase inhibitor binding with an enzyme-based surface plasmon resonance sensor. Analytical Biochemistry, 408, 212-219. DOI: 10.1016/j.ab.2010.09.009.10.1016/j.ab.2010.09.009Search in Google Scholar PubMed
Mitchell, J. (2010). Small molecule immunosensing using surface plasmon resonance. Sensors, 10, 7323-7346. DOI: 10.3390/s100807323.10.3390/s100807323Search in Google Scholar PubMed PubMed Central
Montenegro, M. F., Moral-Naranjo, M. T., Paez de la Cadena, M., Campoy, F. J., Mu˜noz-Delgado, E., & Vidal, C. J. (2008a). Human butyrylcholinesterase components differ in aryl acylamidase activity. Biological Chemistry, 389, 425-432. DOI: 10.1515/bc.2008.041.10.1515/BC.2008.041Search in Google Scholar PubMed
Montenegro, M. F., Moral-Naranjo, M. T., Paez de la Cadena, M., Campoy, F. J., Mu˜noz-Delgado, E., & Vidal, C. J. (2008b). The level of aryl acylamidase activity displayed by human butyrylcholinesterase depends on its molecular distribution. Chemico-Biological Interactions, 175, 336-339. DOI: 10.1016/j.cbi.2008.03.007.10.1016/j.cbi.2008.03.007Search in Google Scholar PubMed
Montenegro, M. F., Moral-Naranjo, M. T., Mu˜noz-Delgado, E., Campoy, F. J., & Vidal, C. J. (2009). Hydrolysis of acetylthiocoline, o-nitroacetanilide and o-nitrotrifluoroacetanilide by fetal bovine serum acetylcholinesterase. FEBS Journal, 276, 2074-2083. DOI: 10.1111/j.1742-4658.2009.06942.x.10.1111/j.1742-4658.2009.06942.xSearch in Google Scholar PubMed
Nawaz, S. A., Ayaz, M., Brandt, W., Wessjohann, L. A., & Westermann, B. (2011). Cation-π and π-π stacking interactions allow selective inhibition of butyrylcholinesterase by modified quinine and cinchonidine alkaloids. Biochemical and Biophysical Research Communications, 404, 935-940. DOI: 10.1016/j.bbrc.2010.12.084.10.1016/j.bbrc.2010.12.084Search in Google Scholar
Ngeh-Ngwainbi, J., Suleiman, A. A., & Guilbault, G. G. (1990). Piezoelectric crystal biosensors. Biosensors and Bioelectronics, 5, 13-26. DOI: 10.1016/0956-5663(90)80023-7.10.1016/0956-5663(90)80023-7Search in Google Scholar
Nichols, S. P., Koh, A., Storm,W. L., Shin, J. H., & Schoenfisch, M. H. (2013). Biocompatible materials for continuous glucose monitoring devices. Chemical Reviews, 113, 2528-2549. DOI: 10.1021/cr300387j.10.1021/cr300387jSearch in Google Scholar PubMed PubMed Central
No, H. Y., Kim, Y. A., Lee, Y. T., & Lee, H. S. (2007). Cholinesterase-based dipstick assay for the detection of organophosphate and carbamate pesticides. Analytica Chimica Acta, 594, 37-43. DOI: 10.1016/j.aca.2007.05.008.10.1016/j.aca.2007.05.008Search in Google Scholar PubMed
Okazaki, S., Nakagawa, H., Asakura, S., Fukuda, K., Kiuchi, H., Takahashi, S., & Shigemori, T. (1998). A re-usable biosensor for organophosphate pesticides. Denki Kagaku, 66, 615-619.10.5796/kogyobutsurikagaku.66.615Search in Google Scholar
Ovalle, M., Stoytcheva, M., Zlatev, R., & Valdez, B. (2009). Electrochemical study of rat brain acetylcholinesterase inhibition by chlorofos: Kinetic aspects and analytical applications. Electrochimica Acta, 55, 516-520. DOI: 10.1016/j. electacta.2009.09.008.Search in Google Scholar
Periasamy, A. P., Umasankar, Y., & Chen, S. M. (2009). Nanomaterials - acetylcholinesterase enzyme matrices for organophosphorus pesticides electrochemical sensors: a review. Sensors, 9, 4034-4055. DOI: 10.3390/s90604034.10.3390/s90604034Search in Google Scholar PubMed PubMed Central
Pohanka, M. (2009). Monoclonal and polyclonal antibodies production - preparation of potent biorecognition element. Journal of Applied Biomedicine, 7, 115-121.10.32725/jab.2009.012Search in Google Scholar
Pohanka, M. (2011a). Cholinesterases, a target of pharmacology and toxicology. Biomedical Papers, 155, 219-229. DOI: 10.5507/bp.2011.036.10.5507/bp.2011.036Search in Google Scholar PubMed
Pohanka, M. (2011b). Alzheimer’s disease and related neurodegenerative disorders: implication and counteracting of melatonin. Journal of Applied Biomedicine, 9, 185-196. DOI: 10.2478/v10136-011-0003-6.10.2478/v10136-011-0003-6Search in Google Scholar
Pohanka, M. (2012a). Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. International Journal of Molecular Sciences, 13, 2219-2238. DOI: 10.3390/ijms13022219.10.3390/ijms13022219Search in Google Scholar PubMed PubMed Central
Pohanka, M. (2012b). Acetylcholinesterase inhibitors: a patent review (2008-present). Expert Opinion on Therapeutic Patents, 22, 871-886. DOI: 10.1517/13543776.2012.701620.10.1517/13543776.2012.701620Search in Google Scholar PubMed
Pohanka, M. (2012c). Acetylcholinesterase based dipsticks with indoxyl acetate as a substrate for assay of organophosphates and carbamates. Analytical Letters, 45, 367-374. DOI: 10.1080/00032719.2011.644743.10.1080/00032719.2011.644743Search in Google Scholar
Pohanka, M. (2012d). Antioxidants countermeasures against sulfur mustard. Mini-Reviews in Medicinal Chemistry, 12, 742-748. DOI: 10.2174/138955712801264783.10.2174/138955712801264783Search in Google Scholar PubMed
Pohanka, M. (2013a). Cholinesterases in biorecognition and biosensors construction: A review. Analytical Letters, 46, 1849-1868. DOI: 10.1080/00032719.2013.780240.10.1080/00032719.2013.780240Search in Google Scholar
Pohanka, M. (2013b). Spectrophotomeric assay of aflatoxin B1 using acetylcholinesterase immobilized on standard microplates. Analytical Letters, 46, 1306-1315. DOI: 10.1080/00032719.2012.757703.10.1080/00032719.2012.757703Search in Google Scholar
Pohanka, M. (2014). Voltammetric assay of butyrylcholinesterase in plasma samples and its comparison to the standard spectrophotometric test. Talanta, 119, 412-416. DOI: 10.1016/j.talanta.2013.11.045.10.1016/j.talanta.2013.11.045Search in Google Scholar PubMed
Raghu, P., Kumara Swamy, B. E., Madhusudana Reddy, T., Chandrashekar, B. N., & Reddaiah, K. (2012). Sol-gel immobilized biosensor for the detection of organophosphorous pesticides: A voltammetric method. Bioelectrochemistry, 83, 19-24. DOI: 10.1016/j.bioelechem.2011.08.002.10.1016/j.bioelechem.2011.08.002Search in Google Scholar PubMed
Raghu, P., Madhusudana Reddy, T., Reddaiah, K., Kumara Swamy, B. E., & Sreedhar, M. (2014). Acetylcholinesterase based biosensor for monitoring of malathion and acephate in food samples: A voltammetric study. Food Chemistry, 142, 188-196. DOI: 10.1016/j.foodchem.2013.07.047.10.1016/j.foodchem.2013.07.047Search in Google Scholar PubMed
Rai, D. K., & Sharma, B. (2007). Carbofuran-induced oxidative stress in mammalian brain. Molecular Biotechnology, 37, 66-71. DOI: 10.1007/s12033-007-0046-9.10.1007/s12033-007-0046-9Search in Google Scholar PubMed
Rainer, M. (1997). Galanthamine in Alzheimer’s disease: A new alternative to tacrine? CNS Drugs, 7, 89-97. DOI: 10.2165/00023210-199707020-00001.10.2165/00023210-199707020-00001Search in Google Scholar PubMed
Rajan, Chand, S., & Gupta, B. D. (2007). Surface plasmon resonance based fiber-optic sensor for the detection of pesticide. Sensors and Actuators B: Chemical, 123, 661-666. DOI: 10.1016/j.snb.2006.10.001.10.1016/j.snb.2006.10.001Search in Google Scholar
Rampa, A., Belluti, F., Gobbi, S., & Bisi, A. (2011). Hybridbased multi-target ligands for the treatment of Alzheimer’s disease. Current Topics in Medicinal Chemimstry, 11, 2716-2730. DOI: 10.2174/156802611798184409.10.2174/156802611798184409Search in Google Scholar
Rand, J. B. (2007, January 30). Acetylcholine. In the C. elegans research community (Ed.), WormBook. Retrieved from http://www.wormbook.org. DOI: 10.1895/wormbook.1.131.1.10.1895/wormbook.1.131.1Search in Google Scholar
Ricci, F., Volpe, G., Micheli, L., & Palleschi, G. (2007). A review on novel developments and applications of immunosensors in food analysis. Analytica Chimica Acta, 605, 111-129. DOI: 10.1016/j.aca.2007.10.046.10.1016/j.aca.2007.10.046Search in Google Scholar
Saxena, A., Redman, A. M. G., Jiang, X., Lockridge, O., & Doctor, B. P. (1997). Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Biochemistry, 36, 14642-14651. DOI: 10.1021/bi971425+.10.1021/bi971425+Search in Google Scholar
Šefčovičova, J., Filip, J., Mastihuba, V., Gemeiner, P., & Tkac, J. (2012). Analysis of ethanol in fermentation samples by a robust nanocomposite-based microbial biosensor. Biotechnology Letters, 34, 1033-1039. DOI: 10.1007/s10529-012-0875-x.10.1007/s10529-012-0875-xSearch in Google Scholar
Shafferman, A., Kronman, C., Flashner, Y., Leitner, M., Grosfeld, H., Ordentlich, A., Gozes, Y., Cohen, S., Ariel, N., Barak, D., Harel, M., Silman, I., Sussman, J. L., & Velan, B. (1992). Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. The Journal of Biological Chemistry, 267, 17640-17648.10.1016/S0021-9258(19)37091-7Search in Google Scholar
Silman, I., & Sussman, J. L. (2008). Acetylcholinesterase: How is structure related to function? Chemico-Biological Interactions, 175, 3-10. DOI: 10.1016/j.cbi.2008.05.035.10.1016/j.cbi.2008.05.035Search in Google Scholar PubMed
Šipova, H., & Homola, J. (2013). Surface plasmon resonance sensing of nucleic acids: A review. Analytica Chimica Acta, 773, 9-23. DOI: 10.1016/j.aca.2012.12.040.10.1016/j.aca.2012.12.040Search in Google Scholar PubMed
Squellerio, I., Caruso, D., Porro, B., Veglia, F., Tremoli, E., & Cavalca, V. (2012). Direct glutathione quantification in human blood by LC-MS/MS: comparison with HPLC with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis, 71, 111-118. DOI: 10.1016/j.jpba.2012.08.013.10.1016/j.jpba.2012.08.013Search in Google Scholar PubMed
Srinivasan, T. G., & Vasudeva Rao, P. R. (2014). Free acidity measurement - A review. Talanta, 118, 162-171. DOI: 10.1016/j.talanta.2013.10.017.10.1016/j.talanta.2013.10.017Search in Google Scholar
Stoytcheva, M., Zlatev, R., Valdez, B., Magnin, J. P., & Velkova, Z. (2006). Electrochemical sensor based on Arthrobacter globiformis for cholinesterase activity determination. Biosensors and Bioelectronics, 22, 1-9. DOI: 10.1016/j.bios.2005.11.013.10.1016/j.bios.2005.11.013Search in Google Scholar
Stoytcheva, M., Zlatev, R., Velkova, Z., Valdez, B., Ovalle, M., & Petkov, L. (2009). Hybrid electrochemical biosensor for organophosphorus pesticides quantification. Electrochimica Acta, 54, 1721-1727. DOI: 10.1016/j.electacta.2008.09.063.10.1016/j.electacta.2008.09.063Search in Google Scholar
Tayeb, H. O., Yang, H. D., Price, B. H., & Tarazi, F. I. (2012). Pharmacotherapies for Alzheimer’s disease: Beyond cholinesterase inhibitors. Pharmacology & Therapeutics, 134, 8-25. DOI: 10.1016/j.pharmthera.2011.12.002.10.1016/j.pharmthera.2011.12.002Search in Google Scholar
Thomsen, T., & Kewitz, H. (1990). Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo. Life Sciences, 46, 1553-1558. DOI: 10.1016/0024-3205(90)90429-u.10.1016/0024-3205(90)90429-USearch in Google Scholar
Tipple, T. E., & Rogers, L. K. (2012). Methods for the determination of plasma or tissue glutathione levels. Methods in Molecular Biology, 889, 315-324. DOI: 10.1007/978-1-61779-867-2 20.10.1007/978-1-61779-867-2Search in Google Scholar
Turner, A. P. F. (2013). Biosensors: sense and sensibility. Chemical Society Reviews, 42, 3184-3196. DOI: 10.1039/c3cs355 28d.Search in Google Scholar
Venkatasubban, K. S., Johnson, J. L., Thomas, J. L., Fauq, A., Cusack, B., & Rosenberry, T. L. (2005). Steric effects in the decarbamoylation of carbamoylated acetylcholinesterases. Chemico-Biological Interactions, 157-158, 433-434. DOI: 10.1016/j.cbi.2005.10.094.10.1016/j.cbi.2005.10.094Search in Google Scholar PubMed
Villatte, F., Bachman, T. T., Hussein, A. S., & Schmid, R. D. (2001). Acetylcholinesterase assay for rapid expression screening in liquid and solid media. BioTechniques, 30, 81-86.10.2144/01301st04Search in Google Scholar PubMed
Wang, C. L., Wei, L. Y., Yuan, C. J., & Hwang, K. C. (2012). Reusable amperometric biosensor for measuring protein tyrosine kinase activity. Analytical Chemistry, 84, 971-977. DOI: 10.1021/ac202369d.10.1021/ac202369dSearch in Google Scholar PubMed
Wong, D. M., Greenblatt, H. M., Dvir, H., Carlier, P. R., Han, Y. F., Pang, Y. P., Silman, I., & Sussman, J. L. (2003). Acetylcholinesterase complexed with bivalent ligands related to huperzine A: Experimental evidence for species-dependent protein-ligand complementarity. Journal of the American Chemical Society, 125, 363-373. DOI: 10.1021/ja021111w.10.1021/ja021111wSearch in Google Scholar PubMed
Xin, Q., & Wightman, R. M. (1997). Transport of choline in rat brain slices. Brain Research, 776, 126-132. DOI: 10.1016/s0006-8993(97)00996-7.10.1016/S0006-8993(97)00996-7Search in Google Scholar
Yang, H. (2012). Enzyme-based ultrasensitive electrochemical biosensors. Current Opinion in Chemical Biology, 16, 422-428. DOI: 10.1016/j.cbpa.2012.03.015.10.1016/j.cbpa.2012.03.015Search in Google Scholar PubMed
Yang, Z. Z., Zhang, Y. Q., Wu, K., Wang, Z. Z., & Qi, X. R. (2012). Tissue distribution and pharmacodynamics of rivastigmine after intranasal and intravenous administration in rats. Current Alzheimer Research, 9, 315-325. DOI: 10.2174/156720512800107528.10.2174/156720512800107528Search in Google Scholar PubMed
Yang, Y., Fu, R., Wang, H., & Wang, C. (2013a). Carbon nanofibers decorated with platinum nanoparticles: a novel three-dimensional platform for non-enzymatic sensing of hydrogen peroxide. Microchimica Acta, 180, 1249-1255. DOI: 10.1007/s00604-013-1041-4.10.1007/s00604-013-1041-4Search in Google Scholar
Yang, L.,Wang, G., Liu, Y., & Wang, M. (2013b). Development of a biosensor based on immobilization of acetylcholinesterase on NiO nanoparticles-carboxylic graphene-nafion modified electrode for detection of pesticides. Talanta, 113, 135-141. DOI: 10.1016/j.talanta.2013.03.025.10.1016/j.talanta.2013.03.025Search in Google Scholar PubMed
Yen, T., Nightingale, B. N., Burns, J. C., Sullivan, D. R., & Stewart, P. M. (2003). Butyrylcholinesterase (BCHE) genotyping for post-succinylcholine apnea in an Australian population. Clinical Chemistry, 49, 1297-1308. DOI: 10.1373/49.8.1297.10.1373/49.8.1297Search in Google Scholar PubMed
Yotova, L., & Medhat, N. (2012). Coimmobilization of acetylcholinesterase and choline oxidase on new nanohybrid membranes obtained by sol gel technology. Biotechnology & Biotechnological Equipment, 26, 3039-3043. DOI: 10.5504/ bbeq.2012.0020.10.5504/BBEQ.2012.0020Search in Google Scholar
Yu, Q. S., Holloway, H. W., Luo, W., Lahiri, D. K., Brossi, A., & Greig, N. H. (2010). Long-acting anticholinesterases for myasthenia gravis: synthesis and activities of quaternary phenylcarbamates of neostigmine, pyridostigmine and physostigmine. Bioorganic & Medicinal Chemistry, 18, 4687-4693. DOI: 10.1016/j.bmc.2010.05.022.10.1016/j.bmc.2010.05.022Search in Google Scholar PubMed PubMed Central
Zhang, J., Luo, A., Liu, P., Wei, S., Wang, G., & Wei, S. (2009). Detection of organophosphorus pesticides using potentiometric enzymatic membrane biosensor based on methylcellulose immobilization. Analytical Sciences, 25, 511-515. DOI: 10.2116/analsci.25.511.10.2116/analsci.25.511Search in Google Scholar PubMed
Zheng, Z., Zhou, Y., Li, X., Liu, S., & Tang, Z. (2011). Highlysensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosensors and Bioelectronics, 26, 3081-3085. DOI: 10.1016/j.bios.2010.12.021.10.1016/j.bios.2010.12.021Search in Google Scholar PubMed
Zhou, Q., Yang, L., Wang, G., & Yang, Y. (2013). Acetylcholinesterase biosensor based on SnO2 nanoparticles-carboxylic graphene-nafion modified electrode for detection of pesticides. Biosensors and Bioelectronics, 49, 25-31. DOI: 10.1016/j.bios.2013.04.037. 10.1016/j.bios.2013.04.037Search in Google Scholar PubMed
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Biosensors – Topical issue
- Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
- Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
- Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
- Application of nanomaterials in microbial-cell biosensor constructions
- Use of green fluorescent proteins for in vitro biosensing
- Biosensors based on molecular beacons
- DNA aptamer-based detection of prostate cancer
- Can glycoprofiling be helpful in detecting prostate cancer?
- Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
- Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
- Surface plasmon resonance application in prostate cancer biomarker research
- Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
- Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
- Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
- Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
- Whole-cell optical biosensor for mercury – operational conditions in saline water
- Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
- Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
- Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
- Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
- Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
- Can voltammetry distinguish glycan isomers?
Articles in the same Issue
- Biosensors – Topical issue
- Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
- Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
- Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
- Application of nanomaterials in microbial-cell biosensor constructions
- Use of green fluorescent proteins for in vitro biosensing
- Biosensors based on molecular beacons
- DNA aptamer-based detection of prostate cancer
- Can glycoprofiling be helpful in detecting prostate cancer?
- Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
- Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
- Surface plasmon resonance application in prostate cancer biomarker research
- Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
- Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
- Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
- Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
- Whole-cell optical biosensor for mercury – operational conditions in saline water
- Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
- Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
- Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
- Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
- Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
- Can voltammetry distinguish glycan isomers?