Abstract
Due to the considerable stability of green fluorescent proteins and their capacity to be readily permutated or mutated, they may be exploited in multiple ways to enhance the functionality of in vitro biosensors. Many possibilities, such as the formation of chimeras with other proteins or antibodies, as well as Förster resonance emission transfer performance, may be used for the highly sensitive and specific detection of the target molecules. This review considers the great potential of green fluorescent proteins as the fluorescent probing or recognition biomolecule in various in vitro biosensors applications, as well as obstacles associated with their use.
References
Abedi, M. R., Caponigro, G., & Kamb, A. (1998). Green fluorescent protein as a scaffold for intracellular presentation of peptides. Nucleic Acids Research, 26, 623-630. DOI: 10.1093/nar/26.2.623.10.1093/nar/26.2.623Suche in Google Scholar
Ai,H. W.,Olenych, S.G., Wong, P.,Davidson,M.W., & Campbell, R. E. (2008). Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: Identification of the molecular determinants of color and applications in fluorescence imaging. BMC Biology, 6, 13. DOI: 10.1186/1741-7007-6-13.10.1186/1741-7007-6-13Suche in Google Scholar
Arosio, D., Ricci, F., Marchetti, L., Gualdani, R., Albertazzi, L., & Beltram, F. (2010). Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nature Methods, 7, 516-518. DOI: 10.1038/nmeth.1471.10.1038/nmeth.1471Suche in Google Scholar
Baird, G. S., Zacharias, D. A., & Tsien, R. Y. (1999). Circular permutation and receptor insertion within green fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America, 96, 11241-11246. DOI: 10.1073/pnas.96.20.11241.10.1073/pnas.96.20.11241Suche in Google Scholar
Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A., & Tsien, R. Y. (2002). A monomeric red fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 99, 7877-7882. DOI: 10.1073/pnas.082243699.10.1073/pnas.082243699Suche in Google Scholar
Campbell, R. E. (2009). Fluorescent-protein-based biosensors: Modulation of energy transfer as a design principle. Analytical Chemistry, 81, 5972-5979. DOI: 10.1021/ac802613w.10.1021/ac802613wSuche in Google Scholar
Chen, G. W., Song, F. L., Xiong, X. Q., & Peng, X. J. (2013). Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Industrial & Engineering Chemistry Research, 52, 11228-11245. DOI: 10.1021/ie303485n.10.1021/ie303485nSuche in Google Scholar
Coumans, J. V. F., Gau, D., Poljak, A.,Wasinger, V., Roy, P., & Moens, P. (2014). Green fluorescent protein expression triggers proteome changes in breast cancer cells. Experimental Cell Research, 320, 33-45. DOI: 10.1016/j.yexcr.2013.07.019.10.1016/j.yexcr.2013.07.019Suche in Google Scholar
Cubitt, A.B.,Heim,R.,Adams, S. R.,Boyd, A.E.,Gross, L.A., & Tsien, R. Y. (1995). Understanding, improving and using green fluorescent proteins. Trends in Biochemical Sciences, 20, 448-455. DOI: 10.1016/s0968-0004(00)89099-4.10.1016/S0968-0004(00)89099-4Suche in Google Scholar
Day, R. N., & Davidson, M. W. (2009). The fluorescent protein palette: Tools for cellular imaging. Chemical Society Reviews, 38, 2887-2921. DOI: 10.1039/b901966a.10.1039/b901966aSuche in Google Scholar PubMed PubMed Central
Dennis, A. M., & Bao, G. (2008). Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes. Nano Letters, 8, 1439-1445. DOI: 10.1021/nl080 358+.Suche in Google Scholar
Dennis, A. M., Sotto, D. C., Mei, B. C., Medintz, I. L., Mattoussi, H., & Bao, G. (2010). Surface ligand effects on metal-affinity coordination to quantum dots: Implications for nanoprobe self-assembly. Bioconjugate Chemistry, 21, 1160-1170. DOI: 10.1021/bc900500m.10.1021/bc900500mSuche in Google Scholar
Dikici, E., Deo, S. K., & Daunert, S. (2003). Drug detection based on the conformational changes of calmodulin and the fluorescence of its enhanced green fluorescent protein fusion partner. Analytica Chimica Acta, 500, 237-245. DOI: 10.1016/j.aca.2003.08.027.10.1016/j.aca.2003.08.027Suche in Google Scholar
Doi, N., & Yanagawa, H. (1999). Design of generic biosensors based on green fluorescent proteins with allosteric sites by directed evolution. FEBS Letters, 453, 305-307. DOI: 10.1016/s0014-5793(99)00732-2.10.1016/S0014-5793(99)00732-2Suche in Google Scholar
García-Alonso, J., Greenway, G. M., Hardege, J. D., & Haswell, S. J. (2009). A prototype microfluidic chip using fluorescent yeast for detection of toxic compounds. Biosensors & Bioelectronics, 24, 1508-1511. DOI: 10.1016/j.bios.2008.07.074.10.1016/j.bios.2008.07.074Suche in Google Scholar PubMed
Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., & Tsien, R. Y. (2001). Reducing the environmental sensitivity of yellow fluorescent protein: Mechanism and applications. Journal of Biological Chemistry, 276, 29188-29194. DOI: 10.1074/jbc.m102815200. Hudson, P. J., & Souriau, C. (2003). Engineered antibodies. Nature Medicine, 9, 129-134. DOI: 10.1038/nm0103-129.10.1038/nm0103-129Suche in Google Scholar PubMed
Ip, D. T. M., Wong, K. B., & Wan, D. C. C. (2007). Characterization of novel orange fluorescent protein cloned from cnidarian tube anemone Cerianthus sp. Marine Biotechnology, 9, 469-478. DOI: 10.1007/s10126-007-9005-5.10.1007/s10126-007-9005-5Suche in Google Scholar PubMed
Kogure, T., Karasawa, S., Araki, T., Saito, K., Kinjo, M., & Miyawaki, A. (2006). A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nature Biotechnology, 24, 577-581. DOI: 10.1038/nbt1207.10.1038/nbt1207Suche in Google Scholar PubMed
Kremers, G. J., Goedhart, J., van den Heuvel, D. J., Gerritsen, H. C., & Gadella, T. W. J. (2007). Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry, 46, 3775-3783. DOI: 10.1021/bi0622874.10.1021/bi0622874Suche in Google Scholar PubMed
Kuang, Y., Biran, I., & Walt, D. R. (2004). Living bacterial cell array for genotoxin monitoring. Analytical Chemistry, 76, 2902-2909. DOI: 10.1021/ac0354589.10.1021/ac0354589Suche in Google Scholar PubMed
Lim, D. V., Simpson, J. M., Kearns, E. A., & Kramer, M. F. (2005). Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clinical Microbiology Reviews, 18, 583-607. DOI: 10.1128/cmr.18.4.583-607.2005.10.1128/CMR.18.4.583-607.2005Suche in Google Scholar PubMed PubMed Central
Mazzola, P. G., Ishii, M., Chau, E., Cholewa, O., & Penna, T. C. V. (2006). Stability of green fluorescent protein (GFP). in chlorine solutions of varying pH. Biotechnology Progress, 22, 1702-1707. DOI: 10.1021/bp060217i.10.1021/bp060217iSuche in Google Scholar PubMed
McFadden, P. (2002). Broadband biodetection: Holmes on a chip. Science, 297, 2075-2076. DOI: 10.1126/science.297. 5589.2075.Suche in Google Scholar
Medintz, I. L., Clapp, A. R., Mattoussi, H., Goldman, E. R., Fisher, B., & Mauro, J. M. (2003). Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Materials, 2, 630-638. DOI: 10.1038/nmat961.10.1038/nmat961Suche in Google Scholar PubMed
Merzlyak, E. M., Goedhart, J., Shcherbo, D., Bulina, M. E., Shcheglov, A. S., Fradkov, A. F., Gaintzeva, A., Lukyanov, K. A., Lukyanov, S., Gadella, T. W. J., & Chudakov, D. M. (2007). Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nature Methods, 4, 555-557. DOI: 10.1038/nmeth1062.10.1038/nmeth1062Suche in Google Scholar PubMed
Nguyen, A. W., & Daugherty, P. S. (2005). Evolutionary optimization of fluorescent proteins for intracellular FRET. Nature Biotechnology, 23, 355-360. DOI: 10.1038/nbt1066.10.1038/nbt1066Suche in Google Scholar PubMed
Ormö, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., & Remington, S. J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science, 273, 1392-1395. DOI: 10.1126/science.273.5280.1392.10.1126/science.273.5280.1392Suche in Google Scholar PubMed
Patterson, G. H., Piston, D.W., & Barisas, B. G. (2000). F¨orster distances between green fluorescent protein pairs. Analytical Biochemistry, 284, 438-440. DOI: 10.1006/abio.2000.4708.10.1006/abio.2000.4708Suche in Google Scholar PubMed
Pavoor, T. V., Cho, Y. K., & Shusta, E. V. (2009). Development of GFP-based biosensors possessing the binding properties of antibodies. Proceedings of the National Academy of Sciences of the United States of America, 106, 11895-11900. DOI: 10.1073/pnas.0902828106.10.1073/pnas.0902828106Suche in Google Scholar PubMed PubMed Central
Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., & Waldo, G. S. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology, 24, 79-88. DOI: 10.1038/nbt1172.10.1038/nbt1172Suche in Google Scholar PubMed
Piston, D. W., & Kremers, G. J. (2007). Fluorescent protein FRET: The good, the bad and the ugly. Trends in Biochemical Sciences, 32, 407-414. DOI: 10.1016/j.tibs.2007.08.003.10.1016/j.tibs.2007.08.003Suche in Google Scholar PubMed
Pouwels, L. J., Zhang, L. P., Chan, N. H., Dorrestein, P. C., & Wachter, R. M. (2008). Kinetic isotope effect studies on the de novo rate of chromophore formation in fastand slow-maturing GFP variants. Biochemistry, 47, 10111-10122. DOI: 10.1021/bi8007164.10.1021/bi8007164Suche in Google Scholar PubMed PubMed Central
Puckett, L. G., Dikici, E., Lai, S., Madou, M., Bachas, L. G., & Daunert, S. (2004). Investigation into the applicability of the centrifugal microfluidics platform for the development of protein-ligand binding assays incorporating enhanced green fluorescent protein as a fluorescent reporter. Analytical Chemistry, 76, 7263-7268. DOI: 10.1021/ac049758h.10.1021/ac049758hSuche in Google Scholar PubMed
Qu, L. H., & Peng, X. G. (2002). Control of photoluminescence properties of CdSe nanocrystals in growth. Journal of the American Chemical Society, 124, 2049-2055. DOI: 10.1021/ja017002j.10.1021/ja017002jSuche in Google Scholar PubMed
Richmond, T. A., Takahashi, T. T., Shimkhada, R., & Bernsdorf, J. (2000). Engineered metal binding sites on green fluorescence protein. Biochemical and Biophysical Research Communications, 268, 462-465. DOI: 10.1006/bbrc.1999. 1244.Suche in Google Scholar
Rizzo, M. A., Springer, G. H., Granada, B., & Piston, D. W. (2004). An improved cyan fluorescent protein variant useful for FRET. Nature Biotechnology, 22, 445-449. DOI: 10.1038/nbt945.10.1038/nbt945Suche in Google Scholar PubMed
Sapsford, K. E., Berti, L., & Medintz, I. L. (2006a). Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angewandte Chemie International Edition, 45, 4562-4589. DOI: 10.1002/anie.200503873.10.1002/anie.200503873Suche in Google Scholar PubMed
Sapsford, K. E., Pons, T., Medintz, I. L., & Mattoussi, H. (2006b). Biosensing with luminescent semiconductor quantum dots. Sensors, 6, 925-953. DOI: 10.3390/s6080925.10.3390/s6080925Suche in Google Scholar
Shagin, D. A., Barsova, E. V., Yanushevich, Y. G., Fradkov, A. F., Lukyanov, K. A., Labas, Y. A., Semenova, T. N., Ugalde, J. A., Meyers, A., Nunez, J. M., Widder, E. A., Lukyanov, S. A., & Matz, M. V. (2004). GFP-like proteins as ubiquitous metazoan superfamily: Evolution of functional features and structural complexity. Molecular Biology and Evolution, 21, 841-850. DOI: 10.1093/molbev/msh079.10.1093/molbev/msh079Suche in Google Scholar PubMed
Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E., & Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology, 22, 1567-1572. DOI: 10.1038/nbt1037.10.1038/nbt1037Suche in Google Scholar PubMed
Shaner, N. C., Patterson, G. H., & Davidson, M. W. (2007). Advances in fluorescent protein technology. Journal of Cell Science, 120, 4247-4260. DOI: 10.1242/jcs.005801.10.1242/jcs.005801Suche in Google Scholar PubMed
Shaner, N. C., Lin, M. Z., McKeown, M. R., Steinbach, P. A., Hazelwood, K. L., Davidson, M. W., & Tsien, R. Y. (2008). Improving the photostability of bright monomeric orange and red fluorescent proteins. Nature Methods, 5, 545-551. DOI: 10.1038/nmeth.1209.10.1038/nmeth.1209Suche in Google Scholar PubMed PubMed Central
Shanmugaratnam, S., Eisenbeis, S., & Hocker, B. (2012). A highly stable protein chimera built from fragments of different folds. Protein Engineering Design and Selection, 25, 699-703. DOI: 10.1093/protein/gzs074.10.1093/protein/gzs074Suche in Google Scholar PubMed
Shcherbo, D., Shemiakina, I. I., Ryabova, A. V., Luker, K. E., Schmidt, B. T., Souslova, E. A., Gorodnicheva, T. V., Strukova, L., Shidlovskiy, K. M., Britanova, O. V., Zaraisky, A. G., Lukyanov, K. A., Loschenov, V. B., Luker, G. D., & Chudakov, D. M. (2010). Near-infrared fluorescent proteins. Nature Methods, 7, 827-829. DOI: 10.1038/nmeth.1501.10.1038/nmeth.1501Suche in Google Scholar PubMed PubMed Central
Subach, O. M., Gundorov, I. S., Yoshimura, M., Subach, F. V., Zhang, J. H., Gr¨uenwald, D., Souslova, E. A., Chudakov, D. M., & Verkhusha, V. V. (2008). Conversion of red fluorescent protein into a bright blue probe. Chemistry & Biology, 15, 1116-1124. DOI: 10.1016/j.chembiol.2008.08.006.10.1016/j.chembiol.2008.08.006Suche in Google Scholar PubMed PubMed Central
Sun, P., Liu, Y., Sha, J., Zhang, Z. Y., Tu, Q., Chen, P., & Wang, J. Y. (2011). High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments. Biosensors & Bioelectronics, 26, 1993-1999. DOI: 10.1016/j.bios.2010.08.062.10.1016/j.bios.2010.08.062Suche in Google Scholar PubMed
Tansila, N., Tantimongcolwat, T., Isarankura-Na-Ayudhya, C., Nantasenamat, C., & Prachayasittikul, V. (2007). Rational design of analyte channels of the green fluorescent protein for biosensor applications. International Journal of Biological Sciences, 3, 463-470.10.7150/ijbs.3.463Suche in Google Scholar PubMed PubMed Central
Tomosugi, W., Matsuda, T., Tani, T., Nemoto, T., Kotera, I., Saito, K., Horikawa, K., & Nagai, T. (2009). An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nature Methods, 6, 351-353. DOI: 10.1038/nmeth.1317.10.1038/nmeth.1317Suche in Google Scholar PubMed
Tsutsui, H., Karasawa, S., Okamura, Y., & Miyawaki, A. (2008). Improving membrane voltage measurements using FRET with new fluorescent proteins. Nature Methods, 5, 683-685. DOI: 10.1038/nmeth.1235.10.1038/nmeth.1235Suche in Google Scholar PubMed
Wachter, R. M. (2007). Chromogenic cross-link formation in green fluorescent protein. Accounts of Chemical Research, 40, 120-127. DOI: 10.1021/ar040086r.10.1021/ar040086rSuche in Google Scholar PubMed
Wang, L., & Tsien, R. Y. (2006). Evolving proteins in mammalian cells using somatic hypermutation. Nature Protocols, 1, 1346-1350. DOI: 10.1038/nprot.2006.243.10.1038/nprot.2006.243Suche in Google Scholar PubMed
Yang, F., Moss, L. G., & Phillips, G. N. (1996). The molecular structure of green fluorescent protein. Nature Biotechnology, 14, 1246-1251. DOI: 10.1038/nbt1096-1246.10.1038/nbt1096-1246Suche in Google Scholar PubMed
Zhang, J., Campbell, R. E., Ting, A. Y., & Tsien, R. Y. (2002). Creating new fluorescent probes for cell biology. Nature Reviews Molecular Cell Biology, 3, 906-918. DOI: 10.1038/nrm976.10.1038/nrm976Suche in Google Scholar PubMed
Zhang, L. P., Patel, H. N., Lappe, J. W., & Wachter, R. M. (2006). Reaction progress of chromophore biogenesis in green fluorescent protein. Journal of the American Chemical Society, 128, 4766-4772. DOI: 10.1021/ja0580439. 10.1021/ja0580439Suche in Google Scholar PubMed
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Biosensors – Topical issue
- Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
- Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
- Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
- Application of nanomaterials in microbial-cell biosensor constructions
- Use of green fluorescent proteins for in vitro biosensing
- Biosensors based on molecular beacons
- DNA aptamer-based detection of prostate cancer
- Can glycoprofiling be helpful in detecting prostate cancer?
- Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
- Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
- Surface plasmon resonance application in prostate cancer biomarker research
- Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
- Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
- Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
- Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
- Whole-cell optical biosensor for mercury – operational conditions in saline water
- Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
- Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
- Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
- Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
- Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
- Can voltammetry distinguish glycan isomers?
Artikel in diesem Heft
- Biosensors – Topical issue
- Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
- Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
- Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
- Application of nanomaterials in microbial-cell biosensor constructions
- Use of green fluorescent proteins for in vitro biosensing
- Biosensors based on molecular beacons
- DNA aptamer-based detection of prostate cancer
- Can glycoprofiling be helpful in detecting prostate cancer?
- Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
- Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
- Surface plasmon resonance application in prostate cancer biomarker research
- Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
- Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
- Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
- Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
- Whole-cell optical biosensor for mercury – operational conditions in saline water
- Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
- Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
- Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
- Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
- Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
- Can voltammetry distinguish glycan isomers?