Abstract
Multi-wall carbon nanotubes were coated with a conducting polymer, polyaniline phosphotungstate. Such composite structures have mixed electronic and proton conductivity, high surface area and porosity. These materials were decorated with catalytically-active noble metals — Pt, Pd, and Rh. Metal nanoparticles were uniformly distributed in the polymer matrix. Such ternary composites can be considered as electrode materials in sensors, electrolysers, supercapacitors, and especially in low-temperature fuel cells with a proton-conducting polymer membrane.
[1] Andreev, V. N. (2006). Electrochemical behavior of singlecarbon organic compounds on a composite Nafion-polyaniline-palladium particle electrode in acid solutions. Russian Journal of Electrochemistry, 42, 98–101. DOI: 10.1134/S1023193506010150. http://dx.doi.org/10.1134/S102319350601015010.1134/S1023193506010150Suche in Google Scholar
[2] Ayad, M. M., Zaki, E. A., & Stejskal, J. (2007). Determination of the dopant weight fraction in polyaniline films using quartz-crystal microbalance. Thin Solid Films, 515, 8381–8385. DOI: 10.1016/j.tsf.2007.05.057. http://dx.doi.org/10.1016/j.tsf.2007.05.05710.1016/j.tsf.2007.05.057Suche in Google Scholar
[3] Bialek, B. (2006). Computational studies of the interactions between emeraldine and palladium atom. Surface Science, 600, 1679–1683. DOI: 10.1016/j.susc.2005.12.059. http://dx.doi.org/10.1016/j.susc.2005.12.05910.1016/j.susc.2005.12.059Suche in Google Scholar
[4] Blinova, N. V., Sapurina, I., Klimovič, J., & Stejskal, J. (2005). The chemical and colloidal stability of polyaniline dispersions. Polymer Degradation and Stability, 88, 428–434. DOI: 10.1016/j.polymdegradstab.2004.11.014. http://dx.doi.org/10.1016/j.polymdegradstab.2004.11.01410.1016/j.polymdegradstab.2004.11.014Suche in Google Scholar
[5] Blinova, N. V., Stejskal, J., Trchová, M., & Prokeš, J. (2006). Polyaniline prepared in solutions of phosphoric acid: Powders, thin films, and colloidal dispersions. Polymer, 47, 42–48. DOI: 10.1016/j.polymer.2005.10.145. http://dx.doi.org/10.1016/j.polymer.2005.10.14510.1016/j.polymer.2005.10.145Suche in Google Scholar
[6] Brožová, L., Holler, P., Kovářová, J., Stejskal, J., & Trchová M. (2008). The stability of polyaniline in strongly alkaline or acidic aqueous media. Polymer Degradation and Stability, 93, 592–600. DOI: 10.1016/polymdegradstab.2008.01.012. http://dx.doi.org/10.1016/j.polymdegradstab.2008.01.01210.1016/j.polymdegradstab.2008.01.012Suche in Google Scholar
[7] Colomban, P., & Tomkinson, J. (1997). Novel forms of hydrogen in solids: The ‘ionic’ proton and the ‘quasi-free’ proton. Solid State Ionics, 97, 123–134. DOI: 10.1016/S0167-2738(97)00046-5. http://dx.doi.org/10.1016/S0167-2738(97)00046-510.1016/S0167-2738(97)00046-5Suche in Google Scholar
[8] Costamagna, P., & Srinivasan, S. (2001a). Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects. Journal of Power Sources, 102, 242–252. DOI: 10.1016/S0378-7753(01)00807-2. http://dx.doi.org/10.1016/S0378-7753(01)00807-210.1016/S0378-7753(01)00807-2Suche in Google Scholar
[9] Costamagna, P., & Srinivasan, S. (2001b). Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects. Journal of Power Sources, 102, 253–269. DOI: 10.1016/S0378-7753(01)00808-4. http://dx.doi.org/10.1016/S0378-7753(01)00808-410.1016/S0378-7753(01)00808-4Suche in Google Scholar
[10] Coutinho, D., Yang, Z. W., Ferraris, J. P., & Balkus, K. J., Jr. (2005). Proton conducting polyaniline molecular sieve composites. Micropororous and Mesoporous Materials, 81, 321–332. DOI: 10.1016/j.micromeso.2005.02.014. http://dx.doi.org/10.1016/j.micromeso.2005.02.01410.1016/j.micromeso.2005.02.014Suche in Google Scholar
[11] Du, Y., Li, J., & Yang, X. (2008). Polyaniline as nonmetal catalyst for styrene synthesis by oxidative dehydrogenation of ethylbenzene. Catalysis Communication, 9, 2331–2333. DOI:10.1016/j.catcom.2008.05.028. http://dx.doi.org/10.1016/j.catcom.2008.05.02810.1016/j.catcom.2008.05.028Suche in Google Scholar
[12] Gajendran, P., Vijayanand, S., & Saraswathi, R. (2007). Investigation of oxygen reduction at platinum loaded poly(ophenylenediamine) electrode in acid medium. Journal of Electroanalytical Chemistry, 601, 132–138. DOI: 10.1016/j.jelechem.2006.10.038. http://dx.doi.org/10.1016/j.jelechem.2006.10.03810.1016/j.jelechem.2006.10.038Suche in Google Scholar
[13] Gharibi, H., Zhiani, M., Mirzaie, R. A., Kheirmand, M., Entezami, A. A., Kakaei, K., & Javaheri, M. (2006). Investigation of polyaniline impregnation on the performance of gas diffusion electrode (GDE) in PEMFC using binary of Nafion and polyaniline nanofiber. Journal of Power Sources, 157, 703–708. DOI: 10.1016/j.jpowsour.2005.11.044. http://dx.doi.org/10.1016/j.jpowsour.2005.11.04410.1016/j.jpowsour.2005.11.044Suche in Google Scholar
[14] Grossiord, N., Loos, J., Regev, O., & Koning, C. E. (2006). Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chemistry of Materials, 18, 1089–1099. DOI: 10.1021/cm051881h. http://dx.doi.org/10.1021/cm051881h10.1021/cm051881hSuche in Google Scholar
[15] Grzeszczuk, M., & Poks, P. (2000). The HER performance of colloidal Pt nanoparticles incorporated in polyaniline. Electrochimica Acta, 45, 4171–4177. DOI: 10.1016/S0013-4686(00)00551-X. http://dx.doi.org/10.1016/S0013-4686(00)00551-X10.1016/S0013-4686(00)00551-XSuche in Google Scholar
[16] Hui, D., Alexandrescu, R., Chipara, M., Morjan, I., Aldica, Gh., Chipara, M. D., & Lau, K. T. (2004). Impedance spectroscopy studies on doped polyanilines. Journal of Optoelectronics and Advanced Materials, 6, 817–824. Suche in Google Scholar
[17] Jurevičiūtė, I., Brazdžiuvienė, K., Bernotaitė, L., Šalkus, B., & Malinauskas, A. (2005). Polyaniline-modified electrode as an amperometric ascorbate sensor. Sensors and Actuators B: Chemical, 107, 716–721 DOI: 10.1016/j.snb.2004.11.075. http://dx.doi.org/10.1016/j.snb.2004.11.07510.1016/j.snb.2004.11.075Suche in Google Scholar
[18] Komarneni, S., Li, D., Newalkar, B., Katsuki, H., & Bhalla, A. S. (2002). Microwave-polyol process for Pt and Ag nanoparticles. Langmuir, 18, 5959–5962. DOI: 10.1021/la025741n. http://dx.doi.org/10.1021/la025741n10.1021/la025741nSuche in Google Scholar
[19] Kompan, M. E., Sapurina, I. Yu., & Stejskal, J. (2006). Overcoming the low-dimension crisis in the active zone of fuel cells. Technical Physics Letters, 32, 213–216. DOI: 10.1134/S1063785006030114. http://dx.doi.org/10.1134/S106378500603011410.1134/S1063785006030114Suche in Google Scholar
[20] Kong, L.-B., Zhang, J., An, J.-J., Luo, Y.-C., & Kang, L. (2008). MWNTs/PANI composite materials prepared by insitu chemical oxidative polymerization for supercapacitor electrode. Journal of Materials Science, 43, 3664–3669. DOI: 10.1007/s10853-008-2586-1. http://dx.doi.org/10.1007/s10853-008-2586-110.1007/s10853-008-2586-1Suche in Google Scholar
[21] Konyushenko, E. N., Kazantseva, N. E., Stejskal, J., Trchová, M., Kovářová, J., Sapurina, I., Tomishko, M. M., Demicheva, O. V., & Prokeš, J. (2008). Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes containing nickel nanoparticles. Journal of Magnetism and Magnetic Materials, 320, 231–240. DOI: 10.1016/j.jmmm.2007.05.036. http://dx.doi.org/10.1016/j.jmmm.2007.05.03610.1016/j.jmmm.2007.05.036Suche in Google Scholar
[22] Konyushenko, E. N., Stejskal, J., Trchová, M., Hradil, J., Kovářová, J., Prokeš, J., Cieslar, M., Hwang, J.-Y., Chen, K.-H., & Sapurina, I. (2006). Multi-wall carbon nanotubes coated with polyaniline. Polymer, 47, 5715–5723. DOI: 10.1016/j.polymer.2006.05.059. http://dx.doi.org/10.1016/j.polymer.2006.05.05910.1016/j.polymer.2006.05.059Suche in Google Scholar
[23] Lange, U., Roznyatovskaya, N. V., & Mirsky, V. M. (2008). Conducting polymers in chemical sensors and arrays. Analytica Chimica Acta, 614, 1–26. DOI: 10.1016/j.aca.2008.02.068. http://dx.doi.org/10.1016/j.aca.2008.02.06810.1016/j.aca.2008.02.068Suche in Google Scholar PubMed
[24] Lee, K.-P., Gopalan, A. I., Santhosh, P., Lee, S. H., & Nho, Y. C. (2007). Gamma radiation induced distribution of gold nanoparticles into carbon nanotube-polyaniline composite. Composites Science and Technology, 67, 811–816. DOI: 10.1016/j.compscitech.2005.12.030. http://dx.doi.org/10.1016/j.compscitech.2005.12.03010.1016/j.compscitech.2005.12.030Suche in Google Scholar
[25] Li, J., Liang, Y., Liao, Q., Zhu, X., & Tian, X. (2009). Comparison of the electrocatalytic performance of PtRu nanoparticles supported on multi-walled carbon nanotubes with different length and diameters. Electrochimica Acta, 54, 1277–1285. DOI: 10.1016/j.electacta.2008.09.005. http://dx.doi.org/10.1016/j.electacta.2008.09.00510.1016/j.electacta.2008.09.005Suche in Google Scholar
[26] Li, Y., Wang, H., Cao, X., Yuan, M., & Yang, M. (2008). A composite of polyelectrolyte-grafted multi-wall carbon nanotubes and in situ polymerized polyaniline for the detection of low concentration triethylamine vapor. Nanotechnology, 19, 015503. DOI: 10.1088/0957-4484/19/01/015503. 10.1088/0957-4484/19/01/015503Suche in Google Scholar PubMed
[27] Mokrane, S., Makhloufi, L., & Alonso-Vante, N. (2008). Electrochemistry of platinum nanoparticles supported in polypyrrole (PPy)/C composite materials. Journal of Solid State Electrochemistry, 12, 569–574. DOI: 10.1007/s10008-007-0398-x. http://dx.doi.org/10.1007/s10008-007-0398-x10.1007/s10008-007-0398-xSuche in Google Scholar
[28] Nagashree, K. L., & Ahmed, M. F. (2008). Electrocatalytic oxidation of methanol on Pt modified polyaniline in alkaline medium. Synthetic Metals, 158, 610–616. DOI: 10.1016/j.synthmet.2008.04.006. http://dx.doi.org/10.1016/j.synthmet.2008.04.00610.1016/j.synthmet.2008.04.006Suche in Google Scholar
[29] Nechitailov, A. A., Astrova, E. V., Goryachev, D. N., Zvonareva, T. K., Ivanov-Omskii, V. I., Remenyuk, A. D., Sapurina, I. Yu., Sreseli, O. M., & Tolmachev, V. A. (2007). Catalytic layers for fuel cells based on polyaniline and α-C{Pt} composite obtained by magnetron sputtering. Technical Physical Letters, 33, 545–547. DOI: 10.1134/S1063785007070024. http://dx.doi.org/10.1134/S106378500707002410.1134/S1063785007070024Suche in Google Scholar
[30] Palaniappan, S., & John, A. (2008). Conjugated polymers as heterogeneous catalyst in organic synthesis. Current Organic Chemistry, 12, 98–117. http://dx.doi.org/10.2174/13852720878333003710.2174/138527208783330037Suche in Google Scholar
[31] Pei, H., Hong, L., & Lee, J. Y. (2008). Effects of polyaniline chain structures on proton conduction in a PEM host matrix. Journal of Membrane Science, 307, 126–135. DOI: 10.1016/j.memsci.2007.09.025. http://dx.doi.org/10.1016/j.memsci.2007.09.02510.1016/j.memsci.2007.09.025Suche in Google Scholar
[32] Rahman, Md. A., Kumar, P., Park, D.-S., & Shim, Y.-B. (2008). Electrochemical sensors based on organic conjugated polymers. Sensors, 8, 118–141. DOI: 10.3390/s8010118. http://dx.doi.org/10.3390/s801011810.3390/s8010118Suche in Google Scholar
[33] Ramanavičius, A., Ramanavičien, A., & Malinauskas, A. (2006). Electrochemical sensors based on conducting polymer-polypyrrole. Electrochimica Acta, 51, 6025–6037. DOI: 10.1016/j.electacta.2005.11.052. http://dx.doi.org/10.1016/j.electacta.2005.11.05210.1016/j.electacta.2005.11.052Suche in Google Scholar
[34] Reddy, A. L. M., Rajalakshmi, N., & Ramaprabhu, S. (2008). Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells. Carbon, 46, 2–11. DOI: 10.1016/j.carbon.2007.10.021. 10.1016/j.carbon.2007.10.021Suche in Google Scholar
[35] Sapurina, I. Yu., Kompan, M. E., Zabrodskii, A. G., Stejskal, J., & Trchová, M. (2007). Nanocomposites with mixed electronic and protonic conduction for electrocatalysis. Russian Journal of Electrochemistry, 43, 528–536. DOI: 10.1134/S1023193507050059. http://dx.doi.org/10.1134/S102319350705005910.1134/S1023193507050059Suche in Google Scholar
[36] Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. DOI: 10.1002/pi.2476. http://dx.doi.org/10.1002/pi.247610.1002/pi.2476Suche in Google Scholar
[37] Selvaraj, V., Alagar, M., & Kumar, K. S. (2007). Synthesis and characterization of metal nanoparticles-decorated PPY-CNT composite and their electrocatalytic oxidation of formic acid and formaldehyde for fuel cell applications. Applied Catalysis B: Environmental, 75, 129–138. DOI: 10.1016/j.apcatb.2007.03.012. http://dx.doi.org/10.1016/j.apcatb.2007.03.01210.1016/j.apcatb.2007.03.012Suche in Google Scholar
[38] Shi, J., Guo, D.-J., Wang, Z., & Li, H.-L. (2005). Electrocatalytic oxidation of formic acid on platinum particles dispersed in SWNT/PANI composite film. Journal of Solid State Electrochemistry, 9, 634–638. DOI: 10.1007/s10008-004-0624-8. http://dx.doi.org/10.1007/s10008-004-0624-810.1007/s10008-004-0624-8Suche in Google Scholar
[39] Skotheim, T. A., Elsenbaumer, R. L., & Reynolds, J. R. (Eds.) (1998). Handbook of conducting polymers (2nd Ed.). New York: Marcel Dekker. Suche in Google Scholar
[40] Stejskal, J., Hlavatá, D., Holler, P., Trchová, M., Prokeš, J., & Sapurina, I. (2004). Polyaniline prepared in the presence of various acids: a conductivity study. Polymer International, 53, 294–300. DOI: 10.1002/pi.1406. http://dx.doi.org/10.1002/pi.140610.1002/pi.1406Suche in Google Scholar
[41] Stejskal, J., Kratochvíl, P., & Špírková, M. (1995). Accelerating effect of some cation radicals on the polymerization of aniline. Polymer, 36, 4135–4140. DOI: 10.1016/0032-3861(95)90996-F. http://dx.doi.org/10.1016/0032-3861(95)90996-F10.1016/0032-3861(95)90996-FSuche in Google Scholar
[42] Stejskal, J., Trchová, M., Holler, P., Sapurina, I., & Prokeš, J. (2005). The influence of tungsten compounds on the synthesis and properties of polyaniline. Polymer International, 54, 1606–1612. DOI: 10.1002/pi.1888. http://dx.doi.org/10.1002/pi.188810.1002/pi.1888Suche in Google Scholar
[43] Stejskal, J., Prokeš, J., & Trchová, M. (2008a). Reprotonation of polyaniline: A route to various conducting polymer materials. Reactive & Functional Polymers, 68, 1355–1361. DOI: 10.1016/j.reactfunctpolym.2008.06.012. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.06.01210.1016/j.reactfunctpolym.2008.06.012Suche in Google Scholar
[44] Stejskal, J., Trchová, M., Kovářová, J., Prokeš, J., & Omastová, M. (2008b). Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chemical Papers, 62, 181–186. DOI: 10.2478/s11696-008-0009-z. http://dx.doi.org/10.2478/s11696-008-0009-z10.2478/s11696-008-0009-zSuche in Google Scholar
[45] Stejskal, J., Trchová, M., Brožová, L., & Prokeš, J. (2009a). Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chemical Papers, 63, 77–83. DOI: 10.2478/s11696-008-0086-z. http://dx.doi.org/10.2478/s11696-008-0086-z10.2478/s11696-008-0086-zSuche in Google Scholar
[46] Stejskal, J., Bogomolova, O. E., Blinova, N. V., Trchová, M., Šeděnkovš, J., & Sapurina, I. (2009b). Mixed electron and proton conductivity of polyaniline films in aqueous solutions of acids: beyond the 1000 S cm−1 limit. Polymer International, 58, 872–879. DOI: 10.1002/pi.2605. http://dx.doi.org/10.1002/pi.260510.1002/pi.2605Suche in Google Scholar
[47] Taylor, A. D., Michel, M., Sekol, R. C., Kizuka, J. M., Kotov, N. A., & Thompson, L. T. (2008). Fuel cell membrane electrode assemblies fabricated by layer-by-layer electrostatic self-assembly techniques. Advances Functional Materials, 18, 3003–3009. DOI: 10.1002/adfm.200701516. http://dx.doi.org/10.1002/adfm.20070151610.1002/adfm.200701516Suche in Google Scholar
[48] Trchová, M., Matějka, P., Brodinová, J., Kalendová, A., Prokeš, J., & Stejskal, J. (2006). Structural and conductivity changes during the pyrolysis of polyaniline base. Polymer Degradation and Stability, 91, 114–121. DOI: 10.1016/j.polymdegradstab.2005.04.022. http://dx.doi.org/10.1016/j.polymdegradstab.2005.04.02210.1016/j.polymdegradstab.2005.04.022Suche in Google Scholar
[49] Virji, S., Kaner, R. B., & Weiller, B. H. (2006). Hydrogen sensors based on conductivity changes in polyaniline nanofibers. The Journal of Physical Chemistry B, 110, 22266–22270. DOI: 10.1021/jp063166g. http://dx.doi.org/10.1021/jp063166g10.1021/jp063166gSuche in Google Scholar PubMed
[50] Wang, B. (2005). Recent development of non-platinum catalysts for oxygen reduction reaction. Journal of Power Sources, 152, 1–15. DOI: 10.1016/j.jpowsour.2005.05.098. http://dx.doi.org/10.1016/j.jpowsour.2005.05.09810.1016/j.jpowsour.2005.05.098Suche in Google Scholar
[51] Watcharaphalakorn, S., Ruangchuay, L., Chotpattananont, D., Sirivat, A., & Schwank, J. (2005). Polyaniline/polyimide blends as gas sensors and electrical conductivity response to CO-N2 mixtures. Polymer International, 54, 1126–1133. DOI: 10.1002/pi.1815. http://dx.doi.org/10.1002/pi.181510.1002/pi.1815Suche in Google Scholar
[52] Wu, A., Venancio, E. C., & MacDiarmid, A. G. (2007). Polyaniline and polypyrrole oxygen reversible electrodes. Synthetic Metals, 157, 303–310. DOI: 10.1016/j.synthmet.2007.03.008. http://dx.doi.org/10.1016/j.synthmet.2007.03.00810.1016/j.synthmet.2007.03.008Suche in Google Scholar
[53] Wu, G., Li, L., Li, J.-H., & Xu, B.-Q. (2005). Polyanilinecarbon composite films as supports of Pt and PtRu particles for methanol electrooxidation. Carbon, 43, 2579–2587. DOI: 10.1016/j.carbon.2005.05.011. http://dx.doi.org/10.1016/j.carbon.2005.05.01110.1016/j.carbon.2005.05.011Suche in Google Scholar
[54] Yang, Z., Coutinho, D. H., Sulfstede, R., Balkus, K. J., Jr., & Ferraris, J. P. (2008). Proton conductivity of acid-doped meta-polyaniline. Journal of Membrane Science, 313, 86–90. DOI: 10.1016/j.memsci.2007.12.071. http://dx.doi.org/10.1016/j.memsci.2007.12.07110.1016/j.memsci.2007.12.071Suche in Google Scholar
[55] Zabrodskii, A. G., Kompan, M. E., Malyshkin, B. G., & Sapurina, I. Yu. (2006). Carbon supported polyaniline as anode catalyst: Pathway to platinum-free fuel cells. Technical Physics Letters, 32, 758–761. DOI: 10.1134/S1063785006090070. http://dx.doi.org/10.1134/S106378500609007010.1134/S1063785006090070Suche in Google Scholar
[56] Zhu, Z.-Z., Wang, Z., & Li, H.-L. (2008). Functional multi-wall carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation. Applied Surface Science, 254, 2934–2940. DOI: 10.1016/j.apsusc.2007.10.033. http://dx.doi.org/10.1016/j.apsusc.2007.10.03310.1016/j.apsusc.2007.10.033Suche in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Magnetic nano- and microparticles in biotechnology
- Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
- Copper determination using ICP-MS with hexapole collision cell
- Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
- Robust stabilization of a chemical reactor
- Influence of production progress on the heavy metal content in flax fibers
- In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
- Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
- Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
- Characterization of mechanochemically synthesized lead selenide
- Hydroxyapatite modified with silica used for sorption of copper(II)
- Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
- Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
- Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
- Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
- Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
- Gas chromatographic retention times prediction for components of petroleum condensate fraction
- Gas chromatography with surface ionization detection of nitro pesticides
- Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
- Aqueous foam stabilized by polyoxyethylene dodecyl ether
Artikel in diesem Heft
- Magnetic nano- and microparticles in biotechnology
- Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
- Copper determination using ICP-MS with hexapole collision cell
- Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
- Robust stabilization of a chemical reactor
- Influence of production progress on the heavy metal content in flax fibers
- In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
- Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
- Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
- Characterization of mechanochemically synthesized lead selenide
- Hydroxyapatite modified with silica used for sorption of copper(II)
- Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
- Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
- Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
- Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
- Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
- Gas chromatographic retention times prediction for components of petroleum condensate fraction
- Gas chromatography with surface ionization detection of nitro pesticides
- Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
- Aqueous foam stabilized by polyoxyethylene dodecyl ether